Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
MathSciNet review:
2798320
Full text of review:
PDF
This review is available free of charge.
Book Information:
Title:
Theory of finite simple groups
Additional book information:
by Gerhard Michler,
Cambridge University Press, Cambridge,
2006,
xii+662 pp.,
ISBN 978-0-521-86625-5,
$155.00$,
hardcover
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
2. -, ATLAS of finite group representations, http://web.mat.bham.ac.uk/atlas /index.html.
Christoph Jansen, Klaus Lux, Richard Parker, and Robert Wilson, An atlas of Brauer characters, London Mathematical Society Monographs. New Series, vol. 11, The Clarendon Press, Oxford University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton; Oxford Science Publications. MR 1367961
Michael Aschbacher, The status of the classification of the finite simple groups, Notices Amer. Math. Soc. 51 (2004), no. 7, 736–740. MR 2072045
Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups. I, Mathematical Surveys and Monographs, vol. 111, American Mathematical Society, Providence, RI, 2004. Structure of strongly quasithin $K$-groups. MR 2097623, DOI 10.1090/surv/111
Michael Aschbacher and Stephen D. Smith, The classification of quasithin groups. I, Mathematical Surveys and Monographs, vol. 111, American Mathematical Society, Providence, RI, 2004. Structure of strongly quasithin $K$-groups. MR 2097623, DOI 10.1090/surv/111
7. The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.10; 2007, (http://www.gap-system.org)
.
Robert L. Griess Jr., The friendly giant, Invent. Math. 69 (1982), no. 1, 1–102. MR 671653, DOI 10.1007/BF01389186
Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups. Number 6. Part IV. The special odd case, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 2005. MR 2104668, DOI 10.1090/surv/040.6
Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien, Handbook of computational group theory, Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2005. MR 2129747, DOI 10.1201/9781420035216
Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775–1029. MR 166261
Zvonimir Janko, A new finite simple group with abelian Sylow $2$-subgroups and its characterization, J. Algebra 3 (1966), 147–186. MR 193138, DOI 10.1016/0021-8693(66)90010-X
Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341, DOI 10.1017/CBO9780511629235
14. J.J. Cannon and W. Bosma (Eds.) Handbook of Magma Functions, Edition 2.13, 2006, 4350 pages.
Gerhard O. Michler, On the construction of the finite simple groups with a given centralizer of a 2-central involution, J. Algebra 234 (2000), no. 2, 668–693. Special issue in honor of Helmut Wielandt. MR 1800751, DOI 10.1006/jabr.2000.8549
R. A. Parker and R. A. Wilson, The computer construction of matrix representations of finite groups over finite fields, J. Symbolic Comput. 9 (1990), no. 5-6, 583–590. Computational group theory, Part 1. MR 1075424, DOI 10.1016/S0747-7171(08)80075-2
17. A. Seress, Permutation Group Algorithms, Chapman & Hall/CRC, 2005.
Charles C. Sims, The existence and uniqueness of Lyons’ group, Finite groups ’72 (Proc. Gainesville Conf., Univ. Florida, Gainesville, Fla., 1972) North-Holland Math. Studies, Vol. 7, North-Holland, Amsterdam, 1973, pp. 138–141. MR 0354881
Ronald Solomon, A brief history of the classification of the finite simple groups, Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 3, 315–352. MR 1824893, DOI 10.1090/S0273-0979-01-00909-0
- 1.
- J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Oxford University Press, Oxford, 1985. MR 0827219
- 2.
- -, ATLAS of finite group representations, http://web.mat.bham.ac.uk/atlas /index.html.
- 3.
- C. Jansen, K. Lux, R. Parker and R. Wilson, An Atlas of Brauer Characters, Clarendon Press, Oxford, 1995. MR 1367961
- 4.
- M. Aschbacher, The status of the classification of finite simple groups, Notices Amer. Math. Soc., 51 (2004), 736-740. MR 2072045
- 5.
- M. Aschbacher and S.D. Smith, The classification of quasithin groups. I. Structure of strongly quasithin
-groups, Mathematical Surveys and Monographs, 111. American Mathematical Society, Providence, RI, 2004. xiv+477 pp. MR 2097623
- 6.
- M. Aschbacher and S.D. Smith, The classification of quasithin groups. II. Main theorems: the classification of simple QTKE-groups., Mathematical Surveys and Monographs, 112. American Mathematical Society, Providence, RI, 2004, i-xii and 479-1221 pp. MR 2097623
- 7.
- The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.10; 2007,
(http://www.gap-system.org)
.
- 8.
- R.L. Griess, The Friendly Giant, Invent. Math. 69 (1982), 1-102. MR 0671653
- 9.
- D. Gorenstein, R. Lyons and R. Solomon, The classification of the finite simple groups. Number 6. Part IV. The special odd case., Mathematical Surveys and Monographs, 40.6. American Mathematical Society, Providence, RI, 2005. xii+529 pp. MR 2104668
- 10.
- D.F. Holt, B. Eick and E.A. O'Brien, Handbook of Computational Group Theory, Chapman & Hall/CRC, 2005. MR 2129747
- 11.
- W. Feit and J.G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. MR 0166261
- 12.
- Z. Janko A new finite simple group with abelian
-Sylow subgroups and its characterization, J. Algebra 3 (1966), 147-186. MR 0193138
- 13.
- Peter Kleidman and Martin Liebeck, The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series 129, Cambridge University Press, 1990. MR 1057341
- 14.
- J.J. Cannon and W. Bosma (Eds.) Handbook of Magma Functions, Edition 2.13, 2006, 4350 pages.
- 15.
- G.O. Michler, On the construction of the finite simple groups with a given centralizer of a
-central involution, J. Algebra 234 (2000), 668-693. MR 1800751
- 16.
- R.A. Parker and R.A. Wilson, The computer construction of matrix groups and representations of finite groups over finite fields, J. Symbolic Computation 9 (1990), 583-590. MR 1075424
- 17.
- A. Seress, Permutation Group Algorithms, Chapman & Hall/CRC, 2005.
- 18.
- C.C. Sims, The existence and uniqueness of Lyons' group, in ``Finite Groups
'', edited by T. Hagen and M.P. Hale and E.E. Shult, North Holland, 1973, 138-141. MR 0354881
- 19.
- R. Solomon, A brief history of the classification of finite simple groups, Bull. Amer. Math. Soc. (New Series) 38 (2001), 315-352. MR 1824893
Review Information:
Reviewer:
Derek F. Holt
Affiliation:
Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
Email:
D.F.Holt@warwick.ac.uk
Journal:
Bull. Amer. Math. Soc.
46 (2009), 151-156
DOI:
https://doi.org/10.1090/S0273-0979-08-01215-9
Published electronically:
September 15, 2008
Review copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.