Shiing-shen Chern: 1911-2004
Author:
H. Wu
Journal:
Bull. Amer. Math. Soc. 46 (2009), 327-338
MSC (2000):
Primary 53-02, 53-03, 01A60
DOI:
https://doi.org/10.1090/S0273-0979-08-01219-6
Published electronically:
July 1, 2008
MathSciNet review:
2476416
Full-text PDF Free Access
References | Similar Articles | Additional Information
- 1. Carl B. Allendoerfer and André Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101–129. MR 7627, https://doi.org/10.1090/S0002-9947-1943-0007627-9
- 2. Raoul Bott and S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. 114 (1965), 71–112. MR 185607, https://doi.org/10.1007/BF02391818
- 3. Shiing-shen Chern, On integral geometry in Klein spaces, Ann. of Math. (2) 43 (1942), 178–189. MR 6075, https://doi.org/10.2307/1968888
- 4. Shiing-shen Chern, The geometry of isotropic surfaces, Ann. of Math. (2) 43 (1942), 545–559. MR 6477, https://doi.org/10.2307/1968810
- 5. Shiing-shen Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944), 747–752. MR 11027, https://doi.org/10.2307/1969302
- 6. Shiing-shen Chern, Characteristic classes of Hermitian manifolds, Ann. of Math. (2) 47 (1946), 85–121. MR 15793, https://doi.org/10.2307/1969037
- 7. Shiing-Shen Chern, Some new viewpoints in differential geometry in the large, Bull. Amer. Math. Soc. 52 (1946), 1–30. MR 21706, https://doi.org/10.1090/S0002-9904-1946-08487-6
- 8. Shiing-shen Chern, The integrated form of the first main theorem for complex analytic mappings in several complex variables, Ann. of Math. (2) 71 (1960), 536–551. MR 125979, https://doi.org/10.2307/1969943
- 9. S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, https://doi.org/10.1007/BF02392146
- 10. Shiing Shen Chern and James Simons, Characteristic forms and geometric invariants, Ann. of Math. (2) 99 (1974), 48–69. MR 353327, https://doi.org/10.2307/1971013
- 11. F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956 (German). MR 0082174
- 12. W. V. D. Hodge, The characteristic classes on algebraic varieties, Proc. London Math. Soc. (3) 1 (1951), 138–151. MR 0044165, https://doi.org/10.1112/plms/s3-1.1.138
- 13. John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. MR 0440554
- 14. L. Pontrjagin, On some topologic invariants of Riemannian manifolds, C. R. (Doklady) Acad. Sci. URSS (N. S.) 43 (1944), 91–94. MR 0011547
- 15. L. S. Pontryagin, Some topological invariants of closed Riemannian manifolds, Izvestiya Akad. Nauk SSSR. Ser. Mat. 13 (1949), 125–162 (Russian). MR 0030196
- 16. Shiing Shen Chern, Selected papers, Springer-Verlag, New York-Heidelberg, 1978. With a foreword by H. Wu [Hung Hsi Wu] and introductory articles by André Weil and Phillip A. Griffiths. MR 514211
- 17. A. Weil, Oeuvres Scientifiques/Collected Papers, Volume 1 (1926-1951), Springer-Verlag, New York-Berlin-Heidelberg, 1979.
- 18. H. Wu, S. S. Chern, the Berkeley years, In Shiing-shen Chern Memorial volume (in Chinese), S. T. Yau, K. Liu, L. Ji, (eds.) Zhejiang University Press, China, 2005. (English translation in preparation.)
- 19. H. Wu, Historical development of the Gauss-Bonnet theorem, Science in China, Series A, Mathematics, 51 (2008), 777-784.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 53-02, 53-03, 01A60
Retrieve articles in all journals with MSC (2000): 53-02, 53-03, 01A60
Additional Information
H. Wu
Affiliation:
Department of Mathematics, #3840, University of California at Berkeley, Berkeley, California 94720-3840
Email:
wu@math.berkeley.edu
DOI:
https://doi.org/10.1090/S0273-0979-08-01219-6
Received by editor(s):
March 15, 2006
Received by editor(s) in revised form:
March 22, 2008
Published electronically:
July 1, 2008
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.