Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
MathSciNet review:
2729895
Full text of review:
PDF
This review is available free of charge.
Book Information:
Authors:
Xiaonan Ma and
George Marinescu
Title:
Holomorphic Morse inequalities and Bergman kernels
Additional book information:
Progress in Mathematics, 254, Birkhäuser Verlag, Basel,
2007,
xiv+422 pp.,
ISBN 978-3-7643-8096-0,
US$79.95$
Robert Berman, Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248 (2004), no. 2, 325–344. MR 2088931, DOI 10.1007/s00209-003-0630-z
[B2] R. Berman, Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math. (to appear); arXiv:0710.4375.
[BBSj] R. Berman, B. Berndtsson and J. Sjöstrand, Asymptotics of Bergman kernels, Amer. J. Math. (to appear); arXiv: math/0506367v2.
Jean-Michel Bismut, Demailly’s asymptotic Morse inequalities: a heat equation proof, J. Funct. Anal. 72 (1987), no. 2, 263–278. MR 886814, DOI 10.1016/0022-1236(87)90089-9
Pavel Bleher, Bernard Shiffman, and Steve Zelditch, Universality and scaling of zeros on symplectic manifolds, Random matrix models and their applications, Math. Sci. Res. Inst. Publ., vol. 40, Cambridge Univ. Press, Cambridge, 2001, pp. 31–69. MR 1842782
Pavel Bleher, Bernard Shiffman, and Steve Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142 (2000), no. 2, 351–395. MR 1794066, DOI 10.1007/s002220000092
David Borthwick and Alejandro Uribe, Nearly Kählerian embeddings of symplectic manifolds, Asian J. Math. 4 (2000), no. 3, 599–620. MR 1796696, DOI 10.4310/AJM.2000.v4.n3.a6
L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegő, Journées: Équations aux Dérivées Partielles de Rennes (1975), Astérisque, No. 34-35, Soc. Math. France, Paris, 1976, pp. 123–164 (French). MR 0590106
L. Boutet de Monvel and V. Guillemin, The spectral theory of Toeplitz operators, Annals of Mathematics Studies, vol. 99, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. MR 620794, DOI 10.1515/9781400881444
David Catlin, The Bergman kernel and a theorem of Tian, Analysis and geometry in several complex variables (Katata, 1997) Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1–23. MR 1699887
Jean-Pierre Demailly, Holomorphic Morse inequalities, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 93–114. MR 1128538, DOI 10.4310/pamq.2011.v7.n4.a6
[Dem2] J. P. Demailly, Complex analytic and algebraic geometry. Available at http://www-fourier.ujf-grenoble.fr/ demailly/books.html.
S. K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996), no. 4, 666–705. MR 1438190
S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), no. 3, 479–522. MR 1916953
Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65. MR 350069, DOI 10.1007/BF01406845
Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
V. Guillemin and A. Uribe, The Laplace operator on the $n$th tensor power of a line bundle: eigenvalues which are uniformly bounded in $n$, Asymptotic Anal. 1 (1988), no. 2, 105–113. MR 950009
Shanyu Ji and Bernard Shiffman, Properties of compact complex manifolds carrying closed positive currents, J. Geom. Anal. 3 (1993), no. 1, 37–61. MR 1197016, DOI 10.1007/BF02921329
Niklas Lindholm, Sampling in weighted $L^p$ spaces of entire functions in ${\Bbb C}^n$ and estimates of the Bergman kernel, J. Funct. Anal. 182 (2001), no. 2, 390–426. MR 1828799, DOI 10.1006/jfan.2000.3733
Zhiqin Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), no. 2, 235–273. MR 1749048
A. Menikoff and J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators, Math. Ann. 235 (1978), no. 1, 55–85. MR 481627, DOI 10.1007/BF01421593
K. Wendland and W. Müller, Critical metrics with respect to Ray-Singer analytic torsion and Quillen metric, Analysis, numerics and applications of differential and integral equations (Stuttgart, 1996) Pitman Res. Notes Math. Ser., vol. 379, Longman, Harlow, 1998, pp. 245–250. MR 1606714
Duong H. Phong and Jacob Sturm, Test configurations for K-stability and geodesic rays, J. Symplectic Geom. 5 (2007), no. 2, 221–247. MR 2377252
D. H. Phong and Jacob Sturm, The Monge-Ampère operator and geodesics in the space of Kähler potentials, Invent. Math. 166 (2006), no. 1, 125–149. MR 2242635, DOI 10.1007/s00222-006-0512-1
Bernard Shiffman and Andrew John Sommese, Vanishing theorems on complex manifolds, Progress in Mathematics, vol. 56, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 782484, DOI 10.1007/978-1-4899-6680-3
Bernard Shiffman and Steve Zelditch, Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds, J. Reine Angew. Math. 544 (2002), 181–222. MR 1887895, DOI 10.1515/crll.2002.023
Gang Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), no. 1, 99–130. MR 1064867
Xiaowei Wang, Canonical metrics on stable vector bundles, Comm. Anal. Geom. 13 (2005), no. 2, 253–285. MR 2154820
Steve Zelditch, Szegő kernels and a theorem of Tian, Internat. Math. Res. Notices 6 (1998), 317–331. MR 1616718, DOI 10.1155/S107379289800021X
[Z2] S. Zelditch. Bernstein polynomials, Bergman kernels, and toric Kähler varieties, J. Symplectic Geom. (to appear); arXiv: 0705.2879.
- [B1]
- R. Berman, Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248 (2004), no. 2, 325-344; arXiv:math/0211235. MR 2088931
- [B2]
- R. Berman, Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math. (to appear); arXiv:0710.4375.
- [BBSj]
- R. Berman, B. Berndtsson and J. Sjöstrand, Asymptotics of Bergman kernels, Amer. J. Math. (to appear); arXiv: math/0506367v2.
- [B]
- J. M. Bismut, Demailly's asymptotic Morse inequalities: a heat equation proof. J. Funct. Anal. 72 (1987), no. 2, 263-278. MR 0886814
- [BSZ]
- P. Bleher, B. Shiffman and S. Zelditch, Universality and scaling of zeros on symplectic manifolds. Random matrix models and their applications, 31-69, Math. Sci. Res. Inst. Publ., 40, Cambridge Univ. Press, Cambridge, 2001. MR 1842782
- [BSZ2]
- P. Bleher, B. Shiffman and S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds. Invent. Math. 142 (2000), no. 2, 351-395. MR 1794066
- [BU]
- D. Borthwick and A. Uribe, Nearly Kählerian embeddings of symplectic manifolds. Asian J. Math. 4 (2000), no. 3, 599-620. MR 1796696
- [BSj]
- L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö. Journées: Équations aux Dérivées Partielles de Rennes (1975), pp. 123-164. Asterisque, No. 34-35, Soc. Math. France, Paris, 1976. MR 0590106
- [BG]
- L. Boutet de Monvel and V. Guillemin, The spectral theory of Toeplitz operators. Annals of Mathematics Studies, 99. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. MR 0620794
- [C]
- D. Catlin, The Bergman kernel and a theorem of Tian. Analysis and geometry in several complex variables (Katata, 1997), 1-23, Trends Math., Birkhäuser Boston, Boston, MA, 1999. MR 1699887
- [Dem]
- J. P. Demailly, Holomorphic Morse inequalities. Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), 93-114, Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991. MR 1128538
- [Dem2]
- J. P. Demailly, Complex analytic and algebraic geometry. Available at http://www-fourier.ujf-grenoble.fr/ demailly/books.html.
- [D1]
- S. K. Donaldson, Symplectic submanifolds and almost-complex geometry. J. Differential Geom. 44 (1996), no. 4, 666-705. MR 1438190
- [D2]
- S. K. Donaldson, Scalar curvature and projective embeddings. I. J. Differential Geom. 59 (2001), no. 3, 479-522. MR 1916953
- [F]
- C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math. 26 (1974), 1-65. MR 0350069
- [GH]
- P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978. MR 0507725
- [GU]
- V. Guillemin and A. Uribe, The Laplace operator on the th tensor power of a line bundle: eigenvalues which are uniformly bounded in . Asymptotic Anal. 1 (1988), no. 2, 105-113. MR 0950009
- [JS]
- S. Ji and B. Shiffman, Properties of compact complex manifolds carrying closed positive currents. J. Geom. Anal. 3 (1993), no. 1, 37-61. MR 1197016
- [L]
- N. Lindholm, Sampling in weighted spaces of entire functions in and estimates of the Bergman kernel. J. Funct. Anal. 182 (2001), no. 2, 390-426. MR 1828799
- [Lu]
- Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Amer. J. Math. 122 (2000), no. 2, 235-273. MR 1749048
- [MSj]
- A. Menikoff and J. Sjöstrand, On the eigenvalues of a class of hypoelliptic operators. Math. Ann. 235 (1978), no. 1, 55-85. MR 0481627
- [MW]
- W. Müller and K. Wendland, Critical metrics with respect to Ray-Singer analytic torsion and Quillen metric. Analysis, numerics and applications of differential and integral equations (Stuttgart, 1996), 245-250, Pitman Res. Notes Math. Ser., 379, Longman, Harlow, 1998. MR 1606714
- [PS]
- D.H. Phong and J. Sturm, Lectures on stability and constant scalar curvature (preprint, 2007). MR 2377252
- [PS2]
- D.H. Phong and J. Sturm, The Monge-Ampère operator and geodesics in the space of Kähler potentials. Invent. Math. 166 (2006), no. 1, 125-149. MR 2242635
- [SS]
- B. Shiffman and A.J. Sommese, Vanishing theorems on complex manifolds. Progress in Mathematics, 56. Birkhäuser Boston, Inc., Boston, MA, 1985. MR 0782484
- [SZ]
- B. Shiffman and S. Zelditch, Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds. J. Reine Angew. Math. 544 (2002), 181-222. MR 1887895
- [T]
- G. Tian, On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom. 32 (1990), no. 1, 99-130. MR 1064867
- [W]
- X. Wang, Canonical metrics on stable vector bundles. Comm. Anal. Geom. 13 (2005), no. 2, 253-285. MR 2154820
- [Z]
- S. Zelditch, Szegö kernels and a theorem of Tian. Internat. Math. Res. Notices 1998, no. 6, 317-331. MR 1616718
- [Z2]
- S. Zelditch. Bernstein polynomials, Bergman kernels, and toric Kähler varieties, J. Symplectic Geom. (to appear); arXiv: 0705.2879.
Review Information:
Reviewer:
Steve Zelditch
Affiliation:
Department of Mathematics, Johns Hopkins University, Baltimore, Maryland, 21218
Email:
zelditch@math.jhu.edu
Journal:
Bull. Amer. Math. Soc.
46 (2009), 349-361
DOI:
https://doi.org/10.1090/S0273-0979-08-01224-X
Published electronically:
October 14, 2008
Additional Notes:
Research partially supported by NSF grant DMS-0603850.
Review copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.