Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 2729895

Full text of review: PDF This review is available free of charge.

Book Information:

Authors: Xiaonan Ma and George Marinescu

Title: Holomorphic Morse inequalities and Bergman kernels

Additional book information: Progress in Mathematics, 254, Birkhäuser Verlag, Basel, 2007, xiv+422 pp., ISBN 978-3-7643-8096-0, US$79.95$

*Bergman kernels and local holomorphic Morse inequalities*, Math. Z.

**248**(2004), no. 2, 325–344. MR

**2088931**, DOI 10.1007/s00209-003-0630-z

**[B2]**

*Bergman kernels and equilibrium measures for line bundles over projective manifolds*, Amer. J. Math. (to appear); arXiv:0710.4375.

**[BBSj]**

*Asymptotics of Bergman kernels*, Amer. J. Math. (to appear); arXiv: math/0506367v2.

*Demailly’s asymptotic Morse inequalities: a heat equation proof*, J. Funct. Anal.

**72**(1987), no. 2, 263–278. MR

**886814**, DOI 10.1016/0022-1236(87)90089-9

*Universality and scaling of zeros on symplectic manifolds*, Random matrix models and their applications, Math. Sci. Res. Inst. Publ., vol. 40, Cambridge Univ. Press, Cambridge, 2001, pp. 31–69. MR

**1842782**

*Universality and scaling of correlations between zeros on complex manifolds*, Invent. Math.

**142**(2000), no. 2, 351–395. MR

**1794066**, DOI 10.1007/s002220000092

*Nearly Kählerian embeddings of symplectic manifolds*, Asian J. Math.

**4**(2000), no. 3, 599–620. MR

**1796696**, DOI 10.4310/AJM.2000.v4.n3.a6

*Sur la singularité des noyaux de Bergman et de Szegő*, Journées: Équations aux Dérivées Partielles de Rennes (1975), Astérisque, No. 34-35, Soc. Math. France, Paris, 1976, pp. 123–164 (French). MR

**0590106**

*The spectral theory of Toeplitz operators*, Annals of Mathematics Studies, vol. 99, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1981. MR

**620794**, DOI 10.1515/9781400881444

*The Bergman kernel and a theorem of Tian*, Analysis and geometry in several complex variables (Katata, 1997) Trends Math., Birkhäuser Boston, Boston, MA, 1999, pp. 1–23. MR

**1699887**

*Holomorphic Morse inequalities*, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 93–114. MR

**1128538**, DOI 10.4310/pamq.2011.v7.n4.a6

**[Dem2]**

*Complex analytic and algebraic geometry*. Available at http://www-fourier.ujf-grenoble.fr/ demailly/books.html.

*Symplectic submanifolds and almost-complex geometry*, J. Differential Geom.

**44**(1996), no. 4, 666–705. MR

**1438190**

*Scalar curvature and projective embeddings. I*, J. Differential Geom.

**59**(2001), no. 3, 479–522. MR

**1916953**

*The Bergman kernel and biholomorphic mappings of pseudoconvex domains*, Invent. Math.

**26**(1974), 1–65. MR

**350069**, DOI 10.1007/BF01406845

*Principles of algebraic geometry*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR

**507725**

*The Laplace operator on the $n$th tensor power of a line bundle: eigenvalues which are uniformly bounded in $n$*, Asymptotic Anal.

**1**(1988), no. 2, 105–113. MR

**950009**

*Properties of compact complex manifolds carrying closed positive currents*, J. Geom. Anal.

**3**(1993), no. 1, 37–61. MR

**1197016**, DOI 10.1007/BF02921329

*Sampling in weighted $L^p$ spaces of entire functions in ${\Bbb C}^n$ and estimates of the Bergman kernel*, J. Funct. Anal.

**182**(2001), no. 2, 390–426. MR

**1828799**, DOI 10.1006/jfan.2000.3733

*On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch*, Amer. J. Math.

**122**(2000), no. 2, 235–273. MR

**1749048**

*On the eigenvalues of a class of hypoelliptic operators*, Math. Ann.

**235**(1978), no. 1, 55–85. MR

**481627**, DOI 10.1007/BF01421593

*Critical metrics with respect to Ray-Singer analytic torsion and Quillen metric*, Analysis, numerics and applications of differential and integral equations (Stuttgart, 1996) Pitman Res. Notes Math. Ser., vol. 379, Longman, Harlow, 1998, pp. 245–250. MR

**1606714**

*Test configurations for K-stability and geodesic rays*, J. Symplectic Geom.

**5**(2007), no. 2, 221–247. MR

**2377252**

*The Monge-Ampère operator and geodesics in the space of Kähler potentials*, Invent. Math.

**166**(2006), no. 1, 125–149. MR

**2242635**, DOI 10.1007/s00222-006-0512-1

*Vanishing theorems on complex manifolds*, Progress in Mathematics, vol. 56, Birkhäuser Boston, Inc., Boston, MA, 1985. MR

**782484**, DOI 10.1007/978-1-4899-6680-3

*Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds*, J. Reine Angew. Math.

**544**(2002), 181–222. MR

**1887895**, DOI 10.1515/crll.2002.023

*On a set of polarized Kähler metrics on algebraic manifolds*, J. Differential Geom.

**32**(1990), no. 1, 99–130. MR

**1064867**

*Canonical metrics on stable vector bundles*, Comm. Anal. Geom.

**13**(2005), no. 2, 253–285. MR

**2154820**

*Szegő kernels and a theorem of Tian*, Internat. Math. Res. Notices

**6**(1998), 317–331. MR

**1616718**, DOI 10.1155/S107379289800021X

**[Z2]**

*Bernstein polynomials, Bergman kernels, and toric Kähler varieties*, J. Symplectic Geom. (to appear); arXiv: 0705.2879.

Review Information:

Reviewer: Steve Zelditch

Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland, 21218

Email: zelditch@math.jhu.edu

Journal: Bull. Amer. Math. Soc.

**46**(2009), 349-361

DOI: https://doi.org/10.1090/S0273-0979-08-01224-X

Published electronically: October 14, 2008

Additional Notes: Research partially supported by NSF grant DMS-0603850.

Review copyright: © Copyright 2008 American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.