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1. Introduction

The ideas in this book revolve around a central theorem, the horotube surgery
theorem, which is mainly of interest to specialists in complex hyperbolic geometry;
see Section 6 below. This book is the culmination of several important papers by
Schwartz in this area, which we describe in Section 4 below. As well as the main
theorem, this book contains background material and applications. It may be used
as an introduction to Schwartz’s contribution to complex hyperbolic geometry as
well as to the subject as a whole, and it is accessible to non-specialists. In this
review we will give some of the historical background, discuss the horotube surgery
theorem, and describe its applications. This plan follows the book and touches on
several themes it contains.

2. Complex hyperbolic space

There are several ways to generalise the hyperbolic plane and its isometry group
to objects in higher dimensions. Perhaps the most familiar is (real) hyperbolic
three space, popularised by the work of Thurston [14]. The Poincaré disc and half
plane models of the hyperbolic plane naturally come with a complex structure and
it is natural to generalise them to complex hyperbolic space in higher complex
dimensions; see [4] or [8] for further details. A useful model for complex hyperbolic
space is the unit ball in C

n equipped with the Bergman metric. When n = 1, this
is just the Poincaré metric on the unit disc in C. When n ≥ 2, complex hyperbolic
space does not have constant curvature but has pinched negative curvature, which
we normalise to lie between −1 and −1/4.

From now on we concentrate on the case n = 2. The hyperbolic plane is iso-
metrically embedded into complex hyperbolic two-space H2

C in two geometrically
distinct ways. First, the intersection of the unit ball in C2 with a complex line
(for example one of the complex coordinate axes) is a totally geodesic disc. The
restriction of the Bergman metric to this disc is the Poincaré metric with constant
curvature −1. On the other hand, the intersection of H2

C
with a Lagrangian plane

(for example the collection of points with real coordinates) is also a totally geodesic
disc. In this case, the restriction of the Bergman metric is the Klein metric on the
hyperbolic plane with constant curvature −1/4.

The group of holomorphic isometries of H2
C

is the projective unitary group
PU(2, 1). It is often useful to lift to the matrix group SU(2, 1), which is a three-
fold cover of PU(2, 1). Non-trivial elements of PU(2, 1) fall into the three classes
familiar from real hyperbolic geometry. Namely, A ∈ PU(2, 1) is loxodromic if it
fixes exactly two points of ∂H2

C
, one of which is attractive and the other repulsive;

A is parabolic if it fixes exactly one point of ∂H2
C

and is elliptic if it fixes at least
one point of H2

C
. Elliptic isometries are either a complex reflection fixing a point

or a complex line, or else they are called regular. Complex reflections correspond
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to matrices in SU(2, 1) with a repeated eigenvalue and regular elliptic maps corre-
spond to matrices with distinct eigenvalues. The full group of complex hyperbolic
isometries P̂U(2, 1) is generated by PU(2, 1) and an antiholomorphic reflection fix-
ing a Lagrangian plane. An example of such an involution is complex conjugation
of both coordinates, which fixes the Lagrangian plane with real coordinates. Fur-
thermore, any element of PU(2, 1) may be written as the product of two reflections
in Lagrangian planes [3].

The natural geometry associated to the boundary of real hyperbolic space is
conformal geometry. Thus the boundary of a hyperbolic 3-manifold or orbifold
naturally carries a conformal structure. In just the same way, the natural geometry
associated to ∂H2

C
is spherical CR geometry and the boundary of a complex hyper-

bolic 2-manifold or orbifold carries a spherical CR structure. For example, Schwartz
has constructed a complex hyperbolic orbifold whose boundary is the Whitehead
link complement, which therefore carries a spherical CR structure; see Theorem 4.3
below.

Three points of ∂H2
C

are completely determined up to PU(2, 1) equivalence by
Cartan’s angular invariant A = A(z1, z2, z3) ∈ [−π/2, π/2]. This invariant measures
how the triple z1, z2, z3 is aligned relative to the complex structure in the following
sense. Denote the complex line spanned by z1 and z2 by L12. Let Π12 be orthogonal
projection onto L12. Consider the triangle in L12 with vertices z1, z2, Π12(z3). The
angular invariant A = A(z1, z2, z3) is half the signed area of this triangle with
respect to the natural Poincaré metric on L12. Hence if z3 ∈ L12, this triangle is
ideal and has area ±π, the sign depending on whether moving around the boundary
from z1 we meet the vertices in the order z1, z2, z3 or in the order z1, z3, z2. Thus,
in this case the angular invariant is A = ±π/2. On the other hand, if z1, z2, z3 lie
in a Lagrangian plane, then Π12(z3) lies on the geodesic with endpoints z1 and z2.
In this case the triangle is degenerate and has area 0. Thus the angular invariant
is also A = 0.

3. Triangle groups

A triangle group ∆ is the group generated by reflections in the side of a triangle.
If the internal angles of the triangle are π/p, π/q, π/r, then ∆ = ∆(p, q, r) has the
presentation

∆ =
〈
ι1, ι2, ι3 : ι21 = ι22 = ι23 = (ι1ι2)p = (ι2ι3)q = (ι3ι1)r = 1

〉
.

It is often useful to speak of the index 2 subgroup of ∆ comprising products of even
numbers of reflections, which we denote by ∆+. Writing ι1ι2 = α and ι2ι3 = β, the
group ∆+ = ∆+(p, q, r) has presentation

∆+ =
〈
α, β : αp = βq = (αβ)r = 1

〉
.

The groups ∆ and ∆+ have faithful representations to the isometry group of the
sphere, the Euclidean plane, or the hyperbolic plane depending on whether 1/p +
1/q + 1/r − 1 is positive, zero, or negative respectively. In the hyperbolic case
the internal angles of the triangle may be zero. In this case we allow p, q, or r
to be infinity, and we remove the corresponding relation from each of the above
presentations. In particular, ∆(∞,∞,∞) is the free product of three groups of
order 2, and ∆+(∞,∞,∞) is a free group on two generators.
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In what follows, we restrict our attention to the hyperbolic case; that is, we
suppose 1/p + 1/q + 1/r < 1. For such p, q, r there is a triangle in the hyperbolic
plane with internal angles π/p, π/q, π/r. Moreover, up to applying hyperbolic
isometries, this triangle is unique. The group generated by reflections in the sides
of this triangle is a faithful representation of ∆(p, q, r). This representation ρ is
unique up to conjugacy. In higher dimensional (real) hyperbolic spaces, since there
is a totally geodesic copy of the hyperbolic plane containing the three vertices of
the triangle, the representation ρ is again unique up to conjugation. In contrast,
this is not true in complex hyperbolic space.

Consider three complex lines L1, L2, and L3 in H2
C

for which the complex angle
between L1 and L2 is π/p, the complex angle between L2 and L3 is π/q, and the
complex angle between L3 and L1 is π/r. If Ij for j = 1, 2, 3 denotes the complex
reflection of order 2 fixing Lj , then 〈I1, I2, I3〉 is a representation of ∆(p, q, r). In
contrast to the real hyperbolic case, the lines L1, L2, L3 are not specified up to
conjugation by the three angles π/p, π/q, π/r. In fact there is one more degree
of freedom. This means that there is a one parameter family of representations of
∆(p, q, r).

In the special case when p = q = r, we can define an automorphism of ∆(p, p, p)
that cyclically permutes ι1, ι2, and ι3. A representation ρ : ∆(p, p, p) −→ PU(2, 1)
is called symmetric if this automorphism is represented by an isometry J . Such a
J ∈ PU(2, 1) must have order 3 and satisfies L2 = J(L1) and L3 = J−1(L1). This
means that I2 = JI1J

−1 and I3 = J−1I1J and so 〈I1, I2, I3〉 is an index 3 normal
subgroup of 〈I1, J〉.

4. Ideal triangle groups

An ideal triangle is one where all the interior angles are 0. The corresponding
group is ∆(∞,∞,∞). In this case a representation to PU(2, 1) is generated by
reflections of order 2 fixing complex lines L1, L2, L3 which are pairwise asymptotic.
Let zj = ∂Lj−1 ∩ ∂Lj+1 ∈ ∂H2

C
with indices taken mod 3. The triple z1, z2, z3 is

determined up to PU(2, 1) equivalence by the angular invariant A = A(z1, z2, z3).
Furthermore, we claim that ρ : ∆(∞,∞,∞) −→ PU(2, 1) is determined up to
conjugation by A. In order to see this, choose three points z1, z2, and z3 in ∂H2

C

with angular invariant A. Each pair of these points lies on a unique complex line,
and so the z1, z2, z3 completely determine three complex lines L1, L2, and L3 and
also determine the group 〈I1, I2, I2〉 generated by order 2 complex reflections fixing
these complex lines. Moreover, for any triple of points z1, z2, z3 in ∂H2

C
there

exists J in PU(2, 1) of order 3 satisfying z2 = J(z1) and z3 = J−1(z1). Therefore
the representation ρ is automatically symmetric.

We may then ask for which values of A the representation ρ is discrete and
faithful. For example, when A = 0, all three points lie on a Lagrangian plane. The
intersections of L1, L2, and L3 with this plane are geodesics and ρ is a Fuchsian
representation preserving this Lagrangian plane. Hence ρ is discrete and faithful.
On the other hand, when A = ±π/2, all three points lie on the same complex line,
and so I1 = I2 = I3 and the image of ρ is a group of order 2. This is certainly not
faithful!

This question was investigated by Goldman and Parker [5] who proved the fol-
lowing theorem.
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Theorem 4.1 ([5]). Let ρ : ∆(∞,∞,∞) −→ PU(2, 1) be a representation of an
ideal triangle group for which all three generators are represented by complex in-
volutions fixing complex lines. Suppose the three vertices have angular invariant
A.

(i) If tan2(A) ≤ 35, then ρ is discrete and faithful.
(ii) If tan2(A) > 125/3, then ρ is either not discrete or not faithful. In partic-

ular, if tan2(A) = ∞, then ρ is not faithful.

Furthermore, Goldman and Parker conjectured that the condition in Theorem
4.1(ii) is necessary and sufficient. In [9] Schwartz gave a proof of this conjecture
that depended on numerical analysis. Later, he gave a more conceptual proof in
[12]. The main result of these papers may be summarised by

Theorem 4.2 ([9], [12]). Let ρ : ∆(∞,∞,∞) −→ PU(2, 1) be a representation
for which all three generators are represented by complex involutions fixing com-
plex lines. Then ρ is discrete and faithful if and only if ρ(ι1ι2ι3) is loxodromic or
parabolic. In particular, suppose that the three vertices have angular invariant A.

(i) If tan2(A) ≤ 125/3, then ρ is discrete and faithful.
(ii) If 125/3 < tan2(A) < ∞, then ρ is not discrete.
(iii) If tan2(A) = ∞, then ρ is not faithful.

Subsequently, Schwartz investigated the geometry of the representation with
tan2(A) = 125/3, the last representation that is discrete and faithful. This group
is sometimes called the last ideal triangle group or the golden triangle group. The
geometry of this group is discussed in [10] and in Chapters 20 and 21 of the book
under review.

Theorem 4.3 ([10]). Let ρ : ∆(∞,∞,∞) −→ PU(2, 1) be a representation of an
ideal triangle group for which ρ(ι1ι2ι3) is parabolic (that is, the three vertices have
angular invariant A where tan2(A) = 125/3). Let J ∈ PU(2, 1) be the order 3
symmetry cyclically permuting the vertices. Then ρ(∆) is discrete and faithful, the
parabolic elements of ρ(∆) are conjugate to powers of IjIj+1 or I1I2I3, and every
other non-trivial element of ρ(∆) is loxodromic.

Moreover, if Ω is the domain of discontinuity of ρ(∆), then Ω/〈J, I1JI1〉 is the
complement of the Whitehead link, the two components of the link corresponding
to the parabolic conjugacy classes (I1JI1)J−1 and (I1JI1)J (that is, to I1I2 and
I1I2I3 = (I1J)3, respectively).

This construction is the first example of a spherical CR structure being put
onto a hyperbolic 3-manifold. It provides a bridge between complex hyperbolic
Kleinian groups and the classical theory in hyperbolic 3-space. This bridge is the
main philosophical starting point for the book under review. The hyperbolic Dehn
surgery theorem of Thurston [14] is the main inspiration behind this book. The
starting point of the hyperbolic Dehn surgery theorem is a cusped hyperbolic 3-
manifold, such as a knot or link complement. A Dehn surgery is a recipe for capping
off one of the cusps by gluing in a solid torus. Of course there are many ways to
do this. The hyperbolic Dehn surgery theorem says that for all but finitely many
Dehn surgeries, the resulting manifold is still hyperbolic.

Schwartz’s goal is to take a cusped hyperbolic 3-manifold with a spherical CR
structure and then to perform a Dehn surgery on one or more cusps to obtain new
hyperbolic 3-manifolds with spherical CR structures. Before we discuss this result,
we give a connection to other types of triangle groups.
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5. Lagrangian triangle groups

In addition to the complex triangle groups discussed in the previous section,
there is another type of representation of ∆(p, q, r) to the isometry group of com-
plex hyperbolic space. Namely, we suppose that ρ(∆) ∈ P̂U(2, 1) and each of
the generators is represented by an antiholomorphic involution fixing a Lagrangian
plane. In this case the product of two of the generators is represented by an elliptic
or parabolic element of PU(2, 1). Since any element of PU(2, 1) can be written as
the product of reflections in a pair of Lagrangian planes that intersect in H2

C
(see

[3]), there are no restrictions on the type of elliptic or parabolic maps that can
occur in such a representation. This leads to more possible types of representation.

The only triangle group for which the Lagrangian representation space has been
completely described is ∆(2, 3,∞), the index 2 extension of the classical modular
group. This was done by Falbel and Parker in [2] and uses earlier work of Gusevskii
and Parker [6] and Falbel and Koseleff [1]. There are different components of this
representation space depending on whether the order 2 and order 3 generators of
∆+(2, 3,∞) are represented by complex reflections in points or lines or by regular
elliptic maps. In particular, for the order 2 generator α = ι1ι2 we see that A =
ρ(α) ∈ PU(2, 1) satisfies A2 = I. The only possibilities are that A is a complex
reflection fixing a point or a complex line. On the other hand, the order 3 generator
β = ι2ι3 may be represented by a complex reflection in a point, a complex reflection
in a line, or a regular elliptic map.

There is a copy of ∆(∞,∞,∞) lying in ∆(2, 3,∞) as an index 6 subgroup. Once
again we let A denote the angular invariant of the three parabolic fixed points of
these generators. The main idea may be summarised as

Theorem 5.1 ([2]). Let ρ : ∆(2, 3,∞) −→ P̂U(2, 1) be a representation for which
all three generators are represented by antiholomorphic involutions fixing Lagrangian
planes. Then ρ is discrete and faithful if and only if ρ

(
(ι1ι2ι3)2

)
is loxodromic or

parabolic. In particular, suppose that A = ρ(α) = ρ(ι1ι2) and B = ρ(β) = ρ(ι2ι3)
are the holomorphic elliptic maps of orders 2 and 3, respectively. Then we have the
following.

(i) If B is a complex reflection, then ρ is unique up to conjugacy and preserves
a complex line. There are four such representations depending on whether
A and B fix a point or a complex line.

(ii) If A fixes a point and B is regular elliptic, then the representation is param-
etrised up to conjugacy by the angular invariant A of the three parabolic
fixed points corresponding to AB, BA, and B−1AB−1. The representation
is discrete and faithful for all A ∈ [−π/2, π/2].

(iii) If A fixes a complex line and B is regular elliptic, then the representation
is parametrised up to conjugacy by the angular invariant A of the three
parabolic fixed points corresponding to AB, BA, and B−1AB−1. The rep-
resentation is discrete and faithful if and only if tan2(A) ≥ 15.

In the group from Theorem 5.1(iii) with tan2(A) = 15 the element ρ
(
(ι1ι2ι3)2

)
is parabolic. We can write this in terms of A and B as follows:

ρ
(
(ι1ι2ι3)2

)
= ρ(ι1ι2)ρ(ι3ι2)ρ(ι2ι1)ρ(ι2ι3) = [A, B−1] = (AB)−1[A, B](AB).

Remarkably, the group from Theorem 5.1(iii) with tan2(A) = 15 is commensu-
rable with the golden triangle group, that is, the group from Theorem 4.2 with
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tan2(A) = 125/3. We now explain this. Let G0 = 〈I1, J〉 be the index 3 normal
extension of the golden triangle group. Hence, I1 has order 2 and fixes a complex
line, and J has order 3. Then I2 = JI1J

−1 and I3 = J−1I1J . The parabolic
elements of G0 are conjugate to powers of I1I2 = [I1, J ] and powers of I1J (observe
that I1I2I3 = (I1J)3). Let G1 = 〈A, B〉 be the group of words of even length
in the group from Theorem 5.1(iii) with tan2(A) = 15. Then A has order 2 and
fixes a complex line, and B has order 3. The parabolic elements of G1 are con-
jugate to powers of AB and powers of [A, B]. Thus we identify them by the map
φ : G0 −→ G1 by φ(I1) = A and φ(J) = B.

We may extend this identification to the other groups in Theorem 5.1(iii). For
such groups AB = φ−1(I1J) is parabolic for all A, but [A, B] = φ−1(I1I2) may be
elliptic, parabolic, or loxodromic. The representation is discrete and faithful when
[A, B] is parabolic or loxodromic. Passing to the index 3 subgroup, this is the same
as saying I1I2I3 = (I1J)3 is parabolic and I1I2, I2I3 and I3I1 are all parabolic or
loxodromic. The statement is

Theorem 5.2 ([2]). Suppose that ρ : ∆(∞,∞,∞) −→ PU(2, 1) is a representation
so that Ij = ρ(ιj) fixes a complex line and I1I2I3 = ρ(ι1ι2ι3) is parabolic. Suppose
that there exists a symmetry map J of order 3 so that I2 = JI1J

−1 and I3 =
J−1I1J . Then ρ is discrete and faithful if and only if I1I2 = ρ(ι1ι2) (and so also
I2I3 and I3I1) is loxodromic or parabolic.

6. The horotube surgery theorem

We will now describe the main result of Schwartz’s book, the horotube surgery
theorem. We give a precise statement in Theorem 6.1 below. Roughly speaking,
the idea behind this theorem is that one begins with a cusped 3-manifold or orbifold
with a spherical CR structure and then by performing certain Dehn surgeries, one
constructs new manifolds or orbifolds which have spherical CR structures.

To be more precise, the class of groups to which the horotube surgery theorem
applies are what Schwartz calls horotube representations of an abstract group Γ.
We will now discuss the properties of a horotube representation. Consider a rep-
resentation ρ0 : Γ −→ PU(2, 1). Suppose that P ∈ ρ0(Γ) is a parabolic map with
fixed point p ∈ ∂H2

C
. A horotube is a P -invariant open set T of ∂H2

C
− {p} so that

T/〈P 〉 has a compact complement in
(
∂H2

C
−{p}

)
/〈P 〉. Schwartz calls the quotient

T/〈P 〉 a horocusp. Suppose that ρ0(Γ) is discrete, and write Λ for its limit set and
Ω for its domain of discontinuity in ∂H2

C
. Then Ω is porous if there exists ε0 > 0

so that A(Ω) contains a ball of spherical diameter ε0 for all A ∈ PU(2, 1). This
condition should be equivalent to Γ being geometrically finite with no maximal
rank cusps (see page 28 of [13]). A discrete representation ρ0 : Γ −→ PU(2, 1)
is a horotube representation if every elliptic element of ρ0(Γ) has a unique fixed
point in H2

C
, the domain of discontinuity Ω is porous, and its quotient Ω/ρ0(Γ) is

the union of a compact set together with a finite collection of disjoint horocusps.
In particular, if ρ0 is a horotube representation, then every parabolic subgroup of
ρ0(Γ) is cyclic.

The horotube surgery theorem concerns families of representations of Γ that
converge to ρ0. Suppose that ρ0 is a horotube representation of Γ. An infinite
cyclic subgroup Υ of Γ is peripheral if ρ0(Υ) is a parabolic subgroup. Such groups
are in one-to-one correspondence with the horocusps. Schwartz says that a sequence
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of representations ρn : Γ −→ PU(2, 1) for n ∈ N converges nicely to ρ0 if for all
γ ∈ Γ and all peripheral subgroups Υ < Γ

• ρn(γ) −→ ρ0(γ) geometrically for each γ ∈ Γ;
• ρn(Υ) −→ ρ0(Υ) setwise with respect to the Hausdorff topology;
• if ρn(Υ) is finite, then each of its elements has a unique fixed point in H2

C
.

Theorem 6.1 (Horotube surgery, Theorem 1.2 of [13]). Suppose that we are given
a horotube representation ρ0 : Γ −→ G0 < PU(2, 1). Let ρn : Γ −→ Gn < PU(2, 1)
be a sequence of representations that converges nicely to ρ0. Then there exists N
so that if n ≥ N , the group Gn = ρn(Γ) is discrete and Ωn/Gn is obtained from
Ω0/G0 by performing a Dehn filling on each horocusp of Ω0/G0 corresponding to a
peripheral subgroup Υ for which Hn = ρn(Υ) is not parabolic. If at least one cusp
is not filled, then ρn is a horotube representation of Γ/ ker(ρn).

Furthermore Schwartz gives precise details about which Dehn surgeries arise in
terms of ρ0(Υ) and ρn(Υ).

7. Application of the HST to triangle groups

We now discuss how the horotube surgery theorem may be applied to triangle
groups. The starting point is the golden triangle group. Schwartz proves that this
is a horotube representation with four (conjugacy classes of) peripheral subgroups,
namely Υ12 = 〈ι1ι2〉, Υ23 = 〈ι2ι3〉, Υ31 = 〈ι3ι1〉, and Υ123 = 〈ι1ι2ι3〉. Suppose
that ρn(∆) is a sequence of representations of ∆ = ∆(∞,∞,∞) converging nicely
to the golden triangle group. Then there are several possible scenarios depending
on whether the generator of each of these subgroups is loxodromic, elliptic, or
parabolic.

For example, suppose that the three peripheral subgroups Υjk are all parabolic
and Υ123 is loxodromic. Such representations are covered by Theorem 4.2, which
indicates that they are all horotube representations. Likewise, suppose that Υjk

are all loxodromic and Υ123 is parabolic. If, in addition, there is a symmetry map J
that cyclically conjugates ρ(Υ12), ρ(Υ23), and ρ(Υ31), then such representations are
covered by Theorem 5.2, which indicates that they are all horotube representations.

The more interesting case arises when at least one of the peripheral subgroups is
elliptic. In the symmetric case, there are only finitely many discrete representations
where all the peripheral subgroups are elliptic, and so we cannot use the horotube
surgery theorem in this case.

Theorem 7.1 ([7]). There are only finitely many conjugacy classes of symmetric,
discrete representations ρ : ∆(p, p, p) −→ PU(2, 1) for which ρ(ιj) = Ij fixes a
complex line and for which I1I2 = ρ(ι1ι2) and I1I2I3 = ρ(ι1ι2ι3) are both elliptic.

Of course, we could ask about asymmetric groups where all the peripheral sub-
groups of the golden triangle group are elliptic.

Therefore, it is natural to ask about groups for which one family of peripheral
triangle groups is elliptic and the other loxodromic. This is one of the applications
of the horotube surgery theorem given by Schwartz. Consider one of the groups
from Theorem 4.2 for which I1I2I3 = ρ(ι1ι2ι3) is loxodromic and IjIk = ρ(ιjιk) is
parabolic for each pair j 	= k in {1, 2, 3}. This group is the limit of a sequence
of representations with I1I2I3 loxodromic and at least one of the IjIk elliptic, the
orders tending to infinity. Now suppose that ρ is sufficiently far along this sequence.
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By applying the horotube surgery theorem, Schwartz is able to prove the following
result.

Theorem 7.2 (Theorem 1.10 of [13]). Suppose that ρ : ∆(p, q, r) −→ PU(2, 1)
is a representation so that Ij = ρ(ιj) fixes a complex line and IjIk = ρ(ιjιk) has
the same order as ιjιk (p, q, and r may also be ∞). Suppose also that I1I2I3 =
ρ(ι1ι2ι3) is loxodromic. Then for min{p, q, r} sufficiently large, ρ is a horotube
representation and hence is discrete.

We can give a further application of the horotube surgery theorem by swapping
the roles of IjIk and I1I2I3 in the previous theorem. Namely, consider one of
the symmetric representations in Theorem 5.2 where I1I2, I2I3, and I3I1 are each
loxodromic and I1I2I3 is parabolic. This group is the limit of a sequence of groups
for which I1I2, I2I3, and I3I1 are loxodromic and I1I2I3 is regular elliptic. Since our
original group is a horotube representation, by taking ρ sufficiently far along this
sequence, we can apply the horotube surgery theorem. This leads to the following
result:

Theorem 7.3. Suppose that ρ : ∆(∞,∞,∞) −→ PU(2, 1) is a symmetric repre-
sentation for which Ij = ρ(ιj) fixes a complex line and IjIk = ρ(ιjιk) is loxodromic.
If ρ(I1I2I3) is regular elliptic of sufficiently high order, then ρ is a horotube repre-
sentation and hence is discrete.
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