Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 2729897

Full text of review: PDF This review is available free of charge.

Book Information:

Author: Richard Evan Schwartz

Title: Spherical CR geometry and Dehn surgery

Additional book information: Princeton University Press, 2007, 186 pp., ISBN 978-0-691-12810-8, paperback

*A circle of modular groups in $\textrm {PU}(2,1)$*, Math. Res. Lett.

**9**(2002), no. 2-3, 379–391. MR

**1909651**, DOI 10.4310/MRL.2002.v9.n3.a11

*The moduli space of the modular group in complex hyperbolic geometry*, Invent. Math.

**152**(2003), no. 1, 57–88. MR

**1965360**, DOI 10.1007/s00222-002-0267-2

*A Poincaré’s polyhedron theorem for complex hyperbolic geometry*, J. Reine Angew. Math.

**516**(1999), 133–158. MR

**1724618**, DOI 10.1515/crll.1999.082

*Complex hyperbolic geometry*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Oxford Science Publications. MR

**1695450**

*Complex hyperbolic ideal triangle groups*, J. Reine Angew. Math.

**425**(1992), 71–86. MR

**1151314**

*Complex hyperbolic quasi-Fuchsian groups and Toledo’s invariant*, Geom. Dedicata

**97**(2003), 151–185. Special volume dedicated to the memory of Hanna Miriam Sandler (1960–1999). MR

**2003696**, DOI 10.1023/A:1023616618854

*Unfaithful complex hyperbolic triangle groups. I. Involutions*, Pacific J. Math.

**238**(2008), no. 1, 145–169. MR

**2443511**, DOI 10.2140/pjm.2008.238.145

**8.**

*Ideal triangle groups, dented tori, and numerical analysis*, Ann. of Math. (2)

**153**(2001), no. 3, 533–598. MR

**1836282**, DOI 10.2307/2661362

*Degenerating the complex hyperbolic ideal triangle groups*, Acta Math.

**186**(2001), no. 1, 105–154. MR

**1828374**, DOI 10.1007/BF02392717

*Complex hyperbolic triangle groups*, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 339–349. MR

**1957045**

*A better proof of the Goldman-Parker conjecture*, Geom. Topol.

**9**(2005), 1539–1601. MR

**2175152**, DOI 10.2140/gt.2005.9.1539

*Spherical CR geometry and Dehn surgery*, Annals of Mathematics Studies, vol. 165, Princeton University Press, Princeton, NJ, 2007. MR

**2286868**, DOI 10.1515/9781400837199

**14.**

*The Geometry and Topology of Three-Manifolds*. Lecture Notes from Princeton University, 1978-1980.

Review Information:

Reviewer: John R. Parker

Affiliation: Durham University

Journal: Bull. Amer. Math. Soc.

**46**(2009), 369-376

DOI: https://doi.org/10.1090/S0273-0979-08-01226-3

Published electronically: December 23, 2008

Review copyright: © Copyright 2008 American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.