Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
MathSciNet review:
2729897
Full text of review:
PDF
This review is available free of charge.
Book Information:
Author:
Richard Evan Schwartz
Title:
Spherical CR geometry and Dehn surgery
Additional book information:
Princeton University Press,
2007,
186 pp.,
ISBN 978-0-691-12810-8,
paperback
E. Falbel and P.-V. Koseleff, A circle of modular groups in $\textrm {PU}(2,1)$, Math. Res. Lett. 9 (2002), no. 2-3, 379–391. MR 1909651, DOI 10.4310/MRL.2002.v9.n3.a11
Elisha Falbel and John R. Parker, The moduli space of the modular group in complex hyperbolic geometry, Invent. Math. 152 (2003), no. 1, 57–88. MR 1965360, DOI 10.1007/s00222-002-0267-2
Elisha Falbel and Valentino Zocca, A Poincaré’s polyhedron theorem for complex hyperbolic geometry, J. Reine Angew. Math. 516 (1999), 133–158. MR 1724618, DOI 10.1515/crll.1999.082
William M. Goldman, Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Oxford Science Publications. MR 1695450
William M. Goldman and John R. Parker, Complex hyperbolic ideal triangle groups, J. Reine Angew. Math. 425 (1992), 71–86. MR 1151314
Nikolay Gusevskii and John R. Parker, Complex hyperbolic quasi-Fuchsian groups and Toledo’s invariant, Geom. Dedicata 97 (2003), 151–185. Special volume dedicated to the memory of Hanna Miriam Sandler (1960–1999). MR 2003696, DOI 10.1023/A:1023616618854
John R. Parker, Unfaithful complex hyperbolic triangle groups. I. Involutions, Pacific J. Math. 238 (2008), no. 1, 145–169. MR 2443511, DOI 10.2140/pjm.2008.238.145
8. J.R. Parker, Complex Hyperbolic Kleinian Groups. Cambridge University Press (to appear).
Richard Evan Schwartz, Ideal triangle groups, dented tori, and numerical analysis, Ann. of Math. (2) 153 (2001), no. 3, 533–598. MR 1836282, DOI 10.2307/2661362
Richard Evan Schwartz, Degenerating the complex hyperbolic ideal triangle groups, Acta Math. 186 (2001), no. 1, 105–154. MR 1828374, DOI 10.1007/BF02392717
Richard Evan Schwartz, Complex hyperbolic triangle groups, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 339–349. MR 1957045
Richard Evan Schwartz, A better proof of the Goldman-Parker conjecture, Geom. Topol. 9 (2005), 1539–1601. MR 2175152, DOI 10.2140/gt.2005.9.1539
Richard Evan Schwartz, Spherical CR geometry and Dehn surgery, Annals of Mathematics Studies, vol. 165, Princeton University Press, Princeton, NJ, 2007. MR 2286868, DOI 10.1515/9781400837199
14. W.P. Thurston; The Geometry and Topology of Three-Manifolds. Lecture Notes from Princeton University, 1978-1980.
- 1.
- E. Falbel and P.-V. Koseleff; A circle of modular groups in . Math. Res. Lett. 9 (2002), 379-391. MR 1909651
- 2.
- E. Falbel and J.R. Parker; The moduli space of the modular group in complex hyperbolic geometry. Invent. Math., 152 (2003), 57-88. MR 1965360
- 3.
- E. Falbel and V. Zocca; A Poincaré's polyhedron theorem for complex hyperbolic geometry. J. Reine Angew. Math., 516 (1999), 133-158. MR 1724618
- 4.
- W.M. Goldman; Complex Hyperbolic Geometry. Oxford University Press, 1999. MR 1695450
- 5.
- W.M. Goldman and J.R. Parker; Complex hyperbolic ideal triangle groups. J. Reine Angew. Math., 425 (1992), 71-86. MR 1151314
- 6.
- N. Gusevskii and J.R. Parker; Complex hyperbolic quasi-Fuchsian groups and Toledo's invariant. Geometriae Dedicata, 97 (2003), 151-185. MR 2003696
- 7.
- J.R. Parker; Unfaithful complex hyperbolic triangle groups I: Involutions. Pacific J. Math., 238 (2008), 145-169.MR 2443511
- 8.
- J.R. Parker, Complex Hyperbolic Kleinian Groups. Cambridge University Press (to appear).
- 9.
- R.E. Schwartz; Ideal triangle groups, dented tori and numerical analysis. Annals of Math., 153 (2001), 533-598. MR 1836282
- 10.
- R.E. Schwartz; Degenerating the complex hyperbolic ideal triangle groups. Acta Math., 186 (2001), 105-154. MR 1828374
- 11.
- R.E. Schwartz; Complex hyperbolic triangle groups. Proceedings of the International Congress of Mathematicians. Vol II, pp. 339-349, ed: T. Li, Beijing, 2002. MR 1957045
- 12.
- R.E. Schwartz; A better proof of the Goldman-Parker conjecture. Geom. Topol., 9 (2005), 1539-1601. MR 2175152
- 13.
- R.E. Schwartz; Spherical CR Geometry and Dehn Surgery. Annals of Math. Studies 165, 2007. MR 2286868
- 14.
- W.P. Thurston; The Geometry and Topology of Three-Manifolds. Lecture Notes from Princeton University, 1978-1980.
Review Information:
Reviewer:
John R. Parker
Affiliation:
Durham University
Journal:
Bull. Amer. Math. Soc.
46 (2009), 369-376
DOI:
https://doi.org/10.1090/S0273-0979-08-01226-3
Published electronically:
December 23, 2008
Review copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.