On the origin and development of subfactors and quantum topology
HTML articles powered by AMS MathViewer
- by Vaughan Jones PDF
- Bull. Amer. Math. Soc. 46 (2009), 309-326 Request permission
Abstract:
We give an account of the beginning of subfactor theory and TQFT and some more recent developments.References
- M. Asaeda and U. Haagerup, Exotic subfactors of finite depth with Jones indices $(5+\sqrt {13})/2$ and $(5+\sqrt {17})/2$, Comm. Math. Phys. 202 (1999), no. 1, 1–63. MR 1686551, DOI 10.1007/s002200050574
- B. M. Baker and R. T. Powers, Product states of certain group-invariant AF-algebras, J. Operator Theory 16 (1986), no. 1, 3–50. MR 847331
- Dror Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), no. 2, 423–472. MR 1318886, DOI 10.1016/0040-9383(95)93237-2
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- Joan S. Birman and Xiao-Song Lin, Knot polynomials and Vassiliev’s invariants, Invent. Math. 111 (1993), no. 2, 225–270. MR 1198809, DOI 10.1007/BF01231287
- Rodney J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1982. MR 690578
- A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333–380. MR 757857, DOI 10.1016/0550-3213(84)90052-X
- Eiichi Bannai, Etsuko Bannai, and François Jaeger, On spin models, modular invariance, and duality, J. Algebraic Combin. 6 (1997), no. 3, 203–228. MR 1456578, DOI 10.1023/A:1008649626312
- Stephen J. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001), no. 2, 471–486. MR 1815219, DOI 10.1090/S0894-0347-00-00361-1
- Dietmar Bisch and Vaughan Jones, Algebras associated to intermediate subfactors, Invent. Math. 128 (1997), no. 1, 89–157. MR 1437496, DOI 10.1007/s002220050137
- C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Three-manifold invariants derived from the Kauffman bracket, Topology 31 (1992), no. 4, 685–699. MR 1191373, DOI 10.1016/0040-9383(92)90002-Y [CFW08]cfwDanny Calegari, Michael Freedman, and Kevin Walker, Positivity of the universal pairing in $3$ dimensions, arXiv:0802.3208
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Alain Connes, Outer conjugacy classes of automorphisms of factors, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 3, 383–419. MR 394228
- Sergio Doplicher, Rudolf Haag, and John E. Roberts, Local observables and particle statistics. II, Comm. Math. Phys. 35 (1974), 49–85. MR 334742
- Sergio Doplicher, Rudolf Haag, and John E. Roberts, Local observables and particle statistics. I, Comm. Math. Phys. 23 (1971), 199–230. MR 297259
- Shalom Eliahou, Louis H. Kauffman, and Morwen B. Thistlethwaite, Infinite families of links with trivial Jones polynomial, Topology 42 (2003), no. 1, 155–169. MR 1928648, DOI 10.1016/S0040-9383(02)00012-5
- John Franks and R. F. Williams, Braids and the Jones polynomial, Trans. Amer. Math. Soc. 303 (1987), no. 1, 97–108. MR 896009, DOI 10.1090/S0002-9947-1987-0896009-2
- P. Di Francesco and J.-B. Zuber, $\textrm {SU}(N)$ lattice integrable models and modular invariance, Recent developments in conformal field theories (Trieste, 1989) World Sci. Publ., River Edge, NJ, 1990, pp. 179–215. MR 1160374
- P. di Francesco, New integrable lattice models from Fuss-Catalan algebras, Nuclear Phys. B 532 (1998), no. 3, 609–634. MR 1657030, DOI 10.1016/S0550-3213(98)00603-8
- K. Fredenhagen, K.-H. Rehren, and B. Schroer, Superselection sectors with braid group statistics and exchange algebras. I. General theory, Comm. Math. Phys. 125 (1989), no. 2, 201–226. MR 1016869
- Michael H. Freedman, Alexei Kitaev, Michael J. Larsen, and Zhenghan Wang, Topological quantum computation, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 1, 31–38. Mathematical challenges of the 21st century (Los Angeles, CA, 2000). MR 1943131, DOI 10.1090/S0273-0979-02-00964-3 [Ga07]stavrosStavros Garoufalidis, Chern-Simons theory, analytic continuation and arithmetic, arXiv:0711.1716
- Pinhas Grossman and Vaughan F. R. Jones, Intermediate subfactors with no extra structure, J. Amer. Math. Soc. 20 (2007), no. 1, 219–265. MR 2257402, DOI 10.1090/S0894-0347-06-00531-5 [GJS07]alicedima A. Guionnet, V. F. R. Jones, and D. Shlyakhtenko, Random matrices, free probability, planar algebras and subfactors, arXiv:0712.2904
- Rudolf Haag, Local quantum physics, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996. Fields, particles, algebras. MR 1405610, DOI 10.1007/978-3-642-61458-3
- P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 239–246. MR 776477, DOI 10.1090/S0273-0979-1985-15361-3
- Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR 999799, DOI 10.1007/978-1-4613-9641-3 [GJS07]gjs:free A. Guionnet, V. F. R. Jones, and D. Shlyakhtenko, Random matrices, free probability, planar algebras and subfactors, arXiv:0712.2904
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. MR 696688, DOI 10.1007/BF01389127 [Jon99]jones:planar V. F. R. Jones, Planar algebras, Preprint, Berkeley, 1999, math.QA/9909027.
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI 10.2307/1971403
- Vaughan F. R. Jones, In and around the origin of quantum groups, Prospects in mathematical physics, Contemp. Math., vol. 437, Amer. Math. Soc., Providence, RI, 2007, pp. 101–126. MR 2354658, DOI 10.1090/conm/437/08427
- Rinat M. Kashaev, Quantum hyperbolic invariants of knots, Discrete integrable geometry and physics (Vienna, 1996) Oxford Lecture Ser. Math. Appl., vol. 16, Oxford Univ. Press, New York, 1999, pp. 343–359. MR 1676604
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7
- Louis H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), no. 2, 417–471. MR 958895, DOI 10.1090/S0002-9947-1990-0958895-7
- Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426. MR 1740682, DOI 10.1215/S0012-7094-00-10131-7
- V. G. Knizhnik and A. B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B 247 (1984), no. 1, 83–103. MR 853258, DOI 10.1016/0550-3213(84)90374-2
- Maxim Kontsevich, Vassiliev’s knot invariants, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 137–150. MR 1237836
- Daan Krammer, Braid groups are linear, Ann. of Math. (2) 155 (2002), no. 1, 131–156. MR 1888796, DOI 10.2307/3062152
- W. B. R. Lickorish and K. C. Millett, The reversing result for the Jones polynomial, Pacific J. Math. 124 (1986), no. 1, 173–176. MR 850674
- W. B. Raymond Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, vol. 175, Springer-Verlag, New York, 1997. MR 1472978, DOI 10.1007/978-1-4612-0691-0
- Roberto Longo, Index of subfactors and statistics of quantum fields. I, Comm. Math. Phys. 126 (1989), no. 2, 217–247. MR 1027496
- William Menasco and Morwen Thistlethwaite, The classification of alternating links, Ann. of Math. (2) 138 (1993), no. 1, 113–171. MR 1230928, DOI 10.2307/2946636
- H. R. Morton, Seifert circles and knot polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 1, 107–109. MR 809504, DOI 10.1017/S0305004100063982
- Kunio Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187–194. MR 895570, DOI 10.1016/0040-9383(87)90058-9
- Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 119–172. MR 996454
- Adrian Ocneanu, The classification of subgroups of quantum $\textrm {SU}(N)$, Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000) Contemp. Math., vol. 294, Amer. Math. Soc., Providence, RI, 2002, pp. 133–159. MR 1907188, DOI 10.1090/conm/294/04972
- Sorin Popa, Classification of amenable subfactors of type II, Acta Math. 172 (1994), no. 2, 163–255. MR 1278111, DOI 10.1007/BF02392646
- Sorin Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math. 120 (1995), no. 3, 427–445. MR 1334479, DOI 10.1007/BF01241137
- Jacob Rasmussen, Knot polynomials and knot homologies, Geometry and topology of manifolds, Fields Inst. Commun., vol. 47, Amer. Math. Soc., Providence, RI, 2005, pp. 261–280. MR 2189938, DOI 10.1007/bf01579132
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
- Marc Rosso, Groupes quantiques et modèles à vertex de V. Jones en théorie des nœuds, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 6, 207–210 (French, with English summary). MR 956807
- Stephen Sawin, Subfactors constructed from quantum groups, Amer. J. Math. 117 (1995), no. 6, 1349–1369. MR 1363071, DOI 10.2307/2375022
- Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
- H. N. V. Temperley and E. H. Lieb, Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1549, 251–280. MR 498284, DOI 10.1098/rspa.1971.0067
- Morwen B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297–309. MR 899051, DOI 10.1016/0040-9383(87)90003-6
- Morwen Thistlethwaite, Links with trivial Jones polynomial, J. Knot Theory Ramifications 10 (2001), no. 4, 641–643. MR 1831681, DOI 10.1142/S0218216501001050
- Akihiro Tsuchiya and Yukihiro Kanie, Vertex operators in conformal field theory on $\textbf {P}^1$ and monodromy representations of braid group, Conformal field theory and solvable lattice models (Kyoto, 1986) Adv. Stud. Pure Math., vol. 16, Academic Press, Boston, MA, 1988, pp. 297–372. MR 972998, DOI 10.2969/aspm/01610297
- V. G. Turaev and O. Ya. Viro, State sum invariants of $3$-manifolds and quantum $6j$-symbols, Topology 31 (1992), no. 4, 865–902. MR 1191386, DOI 10.1016/0040-9383(92)90015-A
- Victor A. Vassiliev, Topology of discriminants and their complements, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 209–226. MR 1403923
- Pierre Vogel, Invariants de type fini, Nouveaux invariants en géométrie et en topologie, Panor. Synthèses, vol. 11, Soc. Math. France, Paris, 2001, pp. 99–128 (French, with English and French summaries). MR 1882446
- Antony Wassermann, Operator algebras and conformal field theory. III. Fusion of positive energy representations of $\textrm {LSU}(N)$ using bounded operators, Invent. Math. 133 (1998), no. 3, 467–538. MR 1645078, DOI 10.1007/s002220050253
- Hans Wenzl, $C^*$ tensor categories from quantum groups, J. Amer. Math. Soc. 11 (1998), no. 2, 261–282. MR 1470857, DOI 10.1090/S0894-0347-98-00253-7
- Hans Wenzl, Hecke algebras of type $A_n$ and subfactors, Invent. Math. 92 (1988), no. 2, 349–383. MR 936086, DOI 10.1007/BF01404457
- Hans Wenzl, On sequences of projections, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 1, 5–9. MR 873400
- Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772
- S. L. Woronowicz, Twisted $\textrm {SU}(2)$ group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), no. 1, 117–181. MR 890482, DOI 10.2977/prims/1195176848
- Feng Xu, Standard $\lambda$-lattices from quantum groups, Invent. Math. 134 (1998), no. 3, 455–487. MR 1660937, DOI 10.1007/s002220050271
Additional Information
- Vaughan Jones
- Affiliation: Department of Mathematics, University of California at Berkeley, Berkeley, California 94720
- MR Author ID: 95565
- Email: vfr@math.berkeley.edu
- Received by editor(s): November 12, 2008
- Published electronically: January 28, 2009
- Additional Notes: Supported by NSF under Grant No. DMS-0401734, Auckland University and the NZIMA
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Bull. Amer. Math. Soc. 46 (2009), 309-326
- MSC (2000): Primary 46L37; Secondary 46L54
- DOI: https://doi.org/10.1090/S0273-0979-09-01244-0
- MathSciNet review: 2476415