Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
MathSciNet review: 2507284
Full text of review: PDF This review is available free of charge.
Book Information:
Author: Kenneth Stephenson
Title: Introduction to circle packing: The theory of discrete analytic functions
Additional book information: Cambridge University Press, Cambridge, 2005, xii+356 pp., ISBN 978-0-521-82356-2, £42
- E. M. Andreev, Convex polyhedra in Lobačevskiĭ spaces, Mat. Sb. (N.S.) 81 (123) (1970), 445–478 (Russian). MR 0259734
- E. M. Andreev, Convex polyhedra of finite volume in Lobačevskiĭ space, Mat. Sb. (N.S.) 83 (125) (1970), 256–260 (Russian). MR 0273510
- Alan F. Beardon and Kenneth Stephenson, The uniformization theorem for circle packings, Indiana Univ. Math. J. 39 (1990), no. 4, 1383–1425. MR 1087197, DOI https://doi.org/10.1512/iumj.1990.39.39062
- Alan F. Beardon and Kenneth Stephenson, The Schwarz-Pick lemma for circle packings, Illinois J. Math. 35 (1991), no. 4, 577–606. MR 1115988
- Alexander I. Bobenko and Boris A. Springborn, Variational principles for circle patterns and Koebe’s theorem, Trans. Amer. Math. Soc. 356 (2004), no. 2, 659–689. MR 2022715, DOI https://doi.org/10.1090/S0002-9947-03-03239-2
- Alexander I. Bobenko, Tim Hoffmann, and Boris A. Springborn, Minimal surfaces from circle patterns: geometry from combinatorics, Ann. of Math. (2) 164 (2006), no. 1, 231–264. MR 2233848, DOI https://doi.org/10.4007/annals.2006.164.231
- Mario Bonk and Bruce Kleiner, Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), no. 1, 127–183. MR 1930885, DOI https://doi.org/10.1007/s00222-002-0233-z
- Mario Bonk and Bruce Kleiner, Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219–246. MR 2116315, DOI https://doi.org/10.2140/gt.2005.9.219
- Philip L. Bowers and Kenneth Stephenson, Circle packings in surfaces of finite type: an in situ approach with applications to moduli, Topology 32 (1993), no. 1, 157–183. MR 1204413, DOI https://doi.org/10.1016/0040-9383%2893%2990044-V
- Philip L. Bowers and Kenneth Stephenson, A “regular” pentagonal tiling of the plane, Conform. Geom. Dyn. 1 (1997), 58–68. MR 1479069, DOI https://doi.org/10.1090/S1088-4173-97-00014-3
- Philip L. Bowers and Kenneth Stephenson, Uniformizing dessins and Belyĭ maps via circle packing, Mem. Amer. Math. Soc. 170 (2004), no. 805, xii+97. MR 2053391, DOI https://doi.org/10.1090/memo/0805
- James W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), no. 2, 155–234. MR 1301392, DOI https://doi.org/10.1007/BF02398434
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Squaring rectangles: the finite Riemann mapping theorem, The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992) Contemp. Math., vol. 169, Amer. Math. Soc., Providence, RI, 1994, pp. 133–212. MR 1292901, DOI https://doi.org/10.1090/conm/169/01656 J.W. Cannon, W.J. Floyd, and W.R. Parry, The length-area method and discrete Riemann mappings, unpublished manuscript available from Bill Floyd that is based on a talk given by J. Cannon at the Ahlfors Celebration at Stanford University in September, 1997 (1998).
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI https://doi.org/10.1007/978-1-4613-9586-7_3
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 1253544
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- Zheng-Xu He and Oded Schramm, Fixed points, Koebe uniformization and circle packings, Ann. of Math. (2) 137 (1993), no. 2, 369–406. MR 1207210, DOI https://doi.org/10.2307/2946541 M.K. Hurdal and K. Stephenson, Cortical cartography using the discrete conformal approach of circle packings, NeuroImage 23 (2004), Supplement 1, S119-S128. P. Koebe, Kontaktprobleme der Konformen Abbildung, Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 88 (1936), 141-164.
- Burt Rodin and Dennis Sullivan, The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26 (1987), no. 2, 349–360. MR 906396
- Oded Schramm, Square tilings with prescribed combinatorics, Israel J. Math. 84 (1993), no. 1-2, 97–118. MR 1244661, DOI https://doi.org/10.1007/BF02761693 B. Springborn, P. Schröder, and U. Pinkall, Conformal equivalence of triangle meshes, ACM Transactions on Graphics 27:3 [Proceedings of ACM SIGGRAPH 2008], Article 77, 2008.
Review Information:
Reviewer: Philip L. Bowers
Affiliation: Department of Mathematics, The Florida State University, 1017 Academic Way, Tallahassee, Florida 32306-4510
Email: bowers@math.fsu.edu
Journal: Bull. Amer. Math. Soc. 46 (2009), 511-525
DOI: https://doi.org/10.1090/S0273-0979-09-01245-2
Published electronically: February 19, 2009
Additional Notes: This review is dedicated to the memory of Oded Schramm, who worked in circle packing before his discovery of stochastic Loewner evolution and its applications to critical phenomena. This extraordinary mathematician’s untimely death on 01 September 2008 in a hiking accident was a great loss for our community.
Review copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.