Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
MathSciNet review: 2507282
Full text of review: PDF This review is available free of charge.
Book Information:
Authors: Patrizia Pucci and James Serrin
Title: The maximum principle
Additional book information: Progress in Nonlinear Differential Equations and Their Applications, no. 73, Birkhäuser Verlag, Basel, no. 73, 2007, x+235 pp., ISBN 978-3-7643-8144-8, US $64.95$
- H. Berestycki, L. Nirenberg, and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994), no. 1, 47–92. MR 1258192, DOI https://doi.org/10.1002/cpa.3160470105
- L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, vol. 128, Cambridge University Press, Cambridge, 2000. MR 1751289
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825
- James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. MR 170096, DOI https://doi.org/10.1007/BF02391014
Review Information:
Reviewer: Yehuda Pinchover
Affiliation: Technion - Israel Institute of Technology
Email: pincho@techunix.technion.ac.il
Journal: Bull. Amer. Math. Soc. 46 (2009), 499-504
DOI: https://doi.org/10.1090/S0273-0979-09-01246-4
Published electronically: March 16, 2009
Review copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.