Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
MathSciNet review: 2525742
Full text of review: PDF This review is available free of charge.
Book Information:
Authors: Nikolai Chernov and Roberto Markarian
Title: Chaotic billiards
Additional book information: Mathematical Surveys and Monographs, Vol. 127, American Mathematical Society, Providence, RI, 2006, xii+316 pp., ISBN 0-8218-4096-7, US $85.00
- 1. V. M. Alekseev, Quasirandom dynamical systems, mat. Zametki 6 (1969), 489–498 (Russian). MR 0249754
- 2. Péter Bálint, Nikolai Chernov, Domokos Szász, and Imre Péter Tóth, Geometry of multi-dimensional dispersing billiards, Astérisque 286 (2003), xviii, 119–150 (English, with English and French summaries). Geometric methods in dynamics. I. MR 2052299
- 3. P. Balint and I. Melbourne, Decay of correlations and invariance principle for dispersing billiards with cusps, and related planar billiard flows, Preprint.
- 4. L. A. Bunimovich, On billiards close to dispersing, Math. USSR Sb. 23 (1974), 45-67.
- 5. L. A. Bunimovič, The ergodic properties of certain billiards, Funkcional. Anal. i Priložen. 8 (1974), no. 3, 73–74 (Russian). MR 0357736
- 6. L. A. Bunimovich, Many-dimensional nowhere dispersing billiards with chaotic behavior, Phys. D 33 (1988), no. 1-3, 58–64. Progress in chaotic dynamics. MR 984610, https://doi.org/10.1016/S0167-2789(98)90009-4
- 7. L. A. Bunimovich, On absolutely focusing mirrors, Ergodic theory and related topics, III (Güstrow, 1990) Lecture Notes in Math., vol. 1514, Springer, Berlin, 1992, pp. 62–82. MR 1179172, https://doi.org/10.1007/BFb0097528
- 8. Leonid A. Bunimovich, Mushrooms and other billiards with divided phase space, Chaos 11 (2001), no. 4, 802–808. MR 1875161, https://doi.org/10.1063/1.1418763
- 9. Leonid A. Bunimovich and Jan Rehacek, How high-dimensional stadia look like, Comm. Math. Phys. 197 (1998), no. 2, 277–301. MR 1652730, https://doi.org/10.1007/s002200050451
- 10. L. A. Bunimovich and A. Grigo, Focusing components in chaotic billiards should be absolutely focusing, Comm. Math. Phys., (to appear).
- 11. L. A. Bunimovich and Ya. G. Sinaĭ, Statistical properties of Lorentz gas with periodic configuration of scatterers, Comm. Math. Phys. 78 (1980/81), no. 4, 479–497. MR 606459
- 12. N. Chernov, Advanced statistical properties of dispersing billiards, J. Stat. Phys. 122 (2006), no. 6, 1061–1094. MR 2219528, https://doi.org/10.1007/s10955-006-9036-8
- 13. N. Chernov, A stretched exponential bound on time correlations for billiard flows, J. Stat. Phys. 127 (2007), no. 1, 21–50. MR 2313061, https://doi.org/10.1007/s10955-007-9293-1
- 14. Nikolai Chernov and Dmitry Dolgopyat, Hyperbolic billiards and statistical physics, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1679–1704. MR 2275665
- 15. N. I. Chernov and C. Haskell, Nonuniformly hyperbolic 𝐾-systems are Bernoulli, Ergodic Theory Dynam. Systems 16 (1996), no. 1, 19–44. MR 1375125, https://doi.org/10.1017/S0143385700008695
- 16. G. Del Magno and R. Markarian, On the Bernoulli property of planar hyperbolic billiards, Preprint.
- 17. Victor J. Donnay, Geodesic flow on the two-sphere. I. Positive measure entropy, Ergodic Theory Dynam. Systems 8 (1988), no. 4, 531–553. MR 980796, https://doi.org/10.1017/S0143385700004685
- 18. Victor J. Donnay, Using integrability to produce chaos: billiards with positive entropy, Comm. Math. Phys. 141 (1991), no. 2, 225–257. MR 1133266
- 19. E. Gutkin, Billiard dynamics: a survey with the emphasis on open problems, Regul. Chaotic Dyn. 8 (2003), no. 1, 1–13. MR 1963964, https://doi.org/10.1070/RD2003v008n01ABEH000222
- 20. Anatole Katok, Jean-Marie Strelcyn, F. Ledrappier, and F. Przytycki, Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Mathematics, vol. 1222, Springer-Verlag, Berlin, 1986. MR 872698
- 21. V. F. Lazutkin, Existence of caustics for the billiard problem in a convex domain, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 186–216 (Russian). MR 0328219
- 22. Howard Masur and Serge Tabachnikov, Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015–1089. MR 1928530, https://doi.org/10.1016/S1874-575X(02)80015-7
- 23. V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 0240280
- 24. Nándor Simányi, Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems, Invent. Math. 154 (2003), no. 1, 123–178. MR 2004458, https://doi.org/10.1007/s00222-003-0304-9
- 25. Nándor Simányi, Proof of the ergodic hypothesis for typical hard ball systems, Ann. Henri Poincaré 5 (2004), no. 2, 203–233. MR 2057672, https://doi.org/10.1007/s00023-004-0166-8
- 26. Ja. G. Sinaĭ, Classical dynamic systems with countably-multiple Lebesgue spectrum. II, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 15–68 (Russian). MR 0197684
- 27. Ja. G. Sinaĭ, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Uspehi Mat. Nauk 25 (1970), no. 2 (152), 141–192 (Russian). MR 0274721
- 28. H. Spohn, Large scale dynamics of interacting particles, Springer, Berlin, 1991.
- 29. Serge Tabachnikov, Billiards, Panor. Synth. 1 (1995), vi+142 (English, with English and French summaries). MR 1328336
- 30. D. Szász (ed.), Hard ball systems and the Lorentz gas, Encyclopaedia of Mathematical Sciences, vol. 101, Springer-Verlag, Berlin, 2000. Mathematical Physics, II. MR 1805337
- 31. Maciej Wojtkowski, Invariant families of cones and Lyapunov exponents, Ergodic Theory Dynam. Systems 5 (1985), no. 1, 145–161. MR 782793, https://doi.org/10.1017/S0143385700002807
- 32. Maciej Wojtkowski, Principles for the design of billiards with nonvanishing Lyapunov exponents, Comm. Math. Phys. 105 (1986), no. 3, 391–414. MR 848647
- 33. Lai-Sang Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (1998), no. 3, 585–650. MR 1637655, https://doi.org/10.2307/120960
- 34. Lai-Sang Young, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153–188. MR 1750438, https://doi.org/10.1007/BF02808180
Review Information:
Reviewer: Leonid Bunimovich
Affiliation: Georgia Institute of Technology
Journal: Bull. Amer. Math. Soc. 46 (2009), 683-690
MSC (2000): Primary 37D50; Secondary 37D25, 37A25, 37N05, 82B99
DOI: https://doi.org/10.1090/S0273-0979-09-01234-8
Published electronically: March 23, 2009
Review copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.