The decomposition theorem, perverse sheaves and the topology of algebraic maps
Authors:
Mark Andrea A. de Cataldo and Luca Migliorini
Journal:
Bull. Amer. Math. Soc. 46 (2009), 535-633
MSC (2000):
Primary 14-02, 14C30, 14Dxx, 14Lxx, 18E30
DOI:
https://doi.org/10.1090/S0273-0979-09-01260-9
Published electronically:
June 26, 2009
MathSciNet review:
2525735
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We give a motivated introduction to the theory of perverse sheaves, culminating in the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber. A goal of this survey is to show how the theory develops naturally from classical constructions used in the study of topological properties of algebraic varieties. While most proofs are omitted, we discuss several approaches to the decomposition theorem and indicate some important applications and examples.
- 1. Jared E. Anderson, A polytope calculus for semisimple groups, Duke Math. J. 116 (2003), no. 3, 567–588. MR 1958098, https://doi.org/10.1215/S0012-7094-03-11636-1
- 2. Jared Anderson and Mikhail Kogan, Mirković-Vilonen cycles and polytopes in Type A, Int. Math. Res. Not. 12 (2004), 561–591. MR 2040622, https://doi.org/10.1155/S1073792804132765
- 3. Aldo Andreotti and Theodore Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. (2) 69 (1959), 713–717. MR 0177422, https://doi.org/10.2307/1970034
- 4. Gottfried Barthel, Ludger Kaup, J.-P. Brasselet, and Karl-Heinz Fieseler, Hodge-Riemann relations for polytopes: a geometric approach, Singularity theory, World Sci. Publ., Hackensack, NJ, 2007, pp. 379–410. MR 2342920, https://doi.org/10.1142/9789812707499_0014
- 5. G. Barthel, J.-P. Brasselet, K.-H. Fieseler, O. Gabber, and L. Kaup, Relèvement de cycles algébriques et homomorphismes associés en homologie d’intersection, Ann. of Math. (2) 141 (1995), no. 1, 147–179 (French). MR 1314034, https://doi.org/10.2307/2118630
- 6. Paul Baum, William Fulton, and Robert MacPherson, Riemann-Roch for singular varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 101–145. MR 0412190
- 7. A. A. Beĭlinson, On the derived category of perverse sheaves, 𝐾-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 27–41. MR 923133, https://doi.org/10.1007/BFb0078365
- 8. A. A. Beĭlinson, How to glue perverse sheaves, 𝐾-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 42–51. MR 923134, https://doi.org/10.1007/BFb0078366
- 9. A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- 10. Alexandre Beĭlinson and Joseph Bernstein, Localisation de 𝑔-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18 (French, with English summary). MR 610137
- 11. A. Beĭlinson and J. Bernstein, A proof of Jantzen conjectures, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50. MR 1237825
- 12. A. Beilinson, V. Drinfeld, ``Quantization of Hitchin integrable system and Hecke eigensheaves'' preprint, available at http://www.math.uchicago.edu/ mitya/langlands.html.
- 13.
J. Bernstein, ``Algebraic theory of
-modules'', ETH Zurich notes, available at http://www.math.uchicago.edu/ mitya/langlands.html
- 14. Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527
- 15. J.-E. Björk, Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 549189
- 16. Walter Borho and Robert MacPherson, Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 15, 707–710 (French, with English summary). MR 618892
- 17. Walter Borho and Robert MacPherson, Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 23–74. MR 737927
- 18. Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012
- 19. Intersection cohomology, Progress in Mathematics, vol. 50, Birkhäuser Boston, Inc., Boston, MA, 1984. Notes on the seminar held at the University of Bern, Bern, 1983; Swiss Seminars. MR 788171
- 20. A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers, Algebraic 𝐷-modules, Perspectives in Mathematics, vol. 2, Academic Press, Inc., Boston, MA, 1987. MR 882000
- 21. Raoul Bott and Hans Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964–1029. MR 0105694, https://doi.org/10.2307/2372843
- 22. Raoul Bott, On a theorem of Lefschetz, Michigan Math. J. 6 (1959), 211–216. MR 0215323
- 23. Tom Braden, Remarks on the combinatorial intersection cohomology of fans, Pure Appl. Math. Q. 2 (2006), no. 4, Special Issue: In honor of Robert D. MacPherson., 1149–1186. MR 2282417, https://doi.org/10.4310/PAMQ.2006.v2.n4.a10
- 24. Tom Braden and Robert MacPherson, Intersection homology of toric varieties and a conjecture of Kalai, Comment. Math. Helv. 74 (1999), no. 3, 442–455. MR 1710686, https://doi.org/10.1007/s000140050098
- 25. P. Brasselet, J. Schürmann, S. Yokura, ``Hirzebruch classes and motivic Chern classes of singular spaces,'' math.AG/0503492.
- 26. Paul Bressler and Valery A. Lunts, Intersection cohomology on nonrational polytopes, Compositio Math. 135 (2003), no. 3, 245–278. MR 1956814, https://doi.org/10.1023/A:1022232232018
- 27. Paul Bressler and Valery A. Lunts, Hard Lefschetz theorem and Hodge-Riemann relations for intersection cohomology of nonrational polytopes, Indiana Univ. Math. J. 54 (2005), no. 1, 263–307. MR 2126725, https://doi.org/10.1512/iumj.2005.54.2528
- 28. Joël Briançon, Description de 𝐻𝑖𝑙𝑏ⁿ𝐶{𝑥,𝑦}, Invent. Math. 41 (1977), no. 1, 45–89. MR 0457432, https://doi.org/10.1007/BF01390164
- 29. J.L. Brylinski, ``(Co)-homologie d'intersection et faisceaux pervers,'' Séminaire Bourbaki, 24 (1981-1982), Exposé No. 585.MR 0689529 (85i:32016a)
- 30. Jean-Luc Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Astérisque 140-141 (1986), 3–134, 251 (French, with English summary). Géométrie et analyse microlocales. MR 864073
- 31. J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), no. 3, 387–410. MR 632980, https://doi.org/10.1007/BF01389272
- 32. Jean-Luc Brylinski and Steven Zucker, An overview of recent advances in Hodge theory, Several complex variables, VI, Encyclopaedia Math. Sci., vol. 69, Springer, Berlin, 1990, pp. 39–142. MR 1095090
- 33. Sylvain E. Cappell and Julius L. Shaneson, Stratifiable maps and topological invariants, J. Amer. Math. Soc. 4 (1991), no. 3, 521–551. MR 1102578, https://doi.org/10.1090/S0894-0347-1991-1102578-4
- 34. Sylvain E. Cappell and Julius L. Shaneson, Euler-Maclaurin expansions for lattices above dimension one, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 7, 885–890 (English, with English and French summaries). MR 1355847
- 35. Sylvain E. Cappell and Julius L. Shaneson, Genera of algebraic varieties and counting of lattice points, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 1, 62–69. MR 1217352, https://doi.org/10.1090/S0273-0979-1994-00436-7
- 36. Sylvain E. Cappell, Laurentiu G. Maxim, and Julius L. Shaneson, Euler characteristics of algebraic varieties, Comm. Pure Appl. Math. 61 (2008), no. 3, 409–421. MR 2376847, https://doi.org/10.1002/cpa.20201
- 37. Sylvain E. Cappell, Laurentiu G. Maxim, and Julius L. Shaneson, Hodge genera of algebraic varieties. I, Comm. Pure Appl. Math. 61 (2008), no. 3, 422–449. MR 2376848, https://doi.org/10.1002/cpa.20202
- 38. Eduardo Cattani, Aroldo Kaplan, and Wilfried Schmid, 𝐿² and intersection cohomologies for a polarizable variation of Hodge structure, Invent. Math. 87 (1987), no. 2, 217–252. MR 870728, https://doi.org/10.1007/BF01389415
- 39. Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997. MR 1433132
- 40. C. H. Clemens, Degeneration of Kähler manifolds, Duke Math. J. 44 (1977), no. 2, 215–290. MR 0444662
- 41. Alessio Corti and Masaki Hanamura, Motivic decomposition and intersection Chow groups. I, Duke Math. J. 103 (2000), no. 3, 459–522. MR 1763656, https://doi.org/10.1215/S0012-7094-00-10334-1
- 42. Charles W. Curtis, The Hecke algebra of a finite Coxeter group, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 51–60. MR 933349
- 43. Mark Andrea A. de Cataldo, Hilbert schemes of a surface and Euler characteristics, Arch. Math. (Basel) 75 (2000), no. 1, 59–64. MR 1764893, https://doi.org/10.1007/s000130050474
- 44. Mark Andrea de Cataldo, The Hodge theory of projective manifolds, Imperial College Press, London, 2007. MR 2351108
- 45. M.A. de Cataldo, ``The perverse filtration and the Lefschetz Hyperplane Theorem, II,'' in preparation.
- 46. M.A. de Cataldo, ``The standard filtration on cohomology with compact supports with an appendix on the base change map and the Lefschetz hyperplane theorem,'' to appear in a volume in honor of A.J. Sommese's 60th birthday.
- 47. Mark Andrea A. de Cataldo and Luca Migliorini, The Douady space of a complex surface, Adv. Math. 151 (2000), no. 2, 283–312. MR 1758249, https://doi.org/10.1006/aima.1999.1896
- 48. Mark Andrea A. de Cataldo and Luca Migliorini, The hard Lefschetz theorem and the topology of semismall maps, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 5, 759–772 (English, with English and French summaries). MR 1951443, https://doi.org/10.1016/S0012-9593(02)01108-4
- 49. Mark Andrea A. de Cataldo and Luca Migliorini, The Chow groups and the motive of the Hilbert scheme of points on a surface, J. Algebra 251 (2002), no. 2, 824–848. MR 1919155, https://doi.org/10.1006/jabr.2001.9105
- 50. Mark Andrea A. de Cataldo and Luca Migliorini, The Chow motive of semismall resolutions, Math. Res. Lett. 11 (2004), no. 2-3, 151–170. MR 2067464, https://doi.org/10.4310/MRL.2004.v11.n2.a2
- 51. Mark Andrea A. de Cataldo and Luca Migliorini, The Hodge theory of algebraic maps, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 693–750 (English, with English and French summaries). MR 2195257, https://doi.org/10.1016/j.ansens.2005.07.001
- 52. Mark Andrea A. de Cataldo and Luca Migliorini, The Hodge theory of algebraic maps, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 693–750 (English, with English and French summaries). MR 2195257, https://doi.org/10.1016/j.ansens.2005.07.001
- 53. Mark Andrea A. de Cataldo and Luca Migliorini, Intersection forms, topology of maps and motivic decomposition for resolutions of threefolds, Algebraic cycles and motives. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 343, Cambridge Univ. Press, Cambridge, 2007, pp. 102–137. MR 2385301, https://doi.org/10.1017/CBO9780511721496.004
- 54. M. de Cataldo, L. Migliorini, ``Hodge-theoretic aspects of the decomposition theorem,'' to appear in Proceedings of the Seattle 2005 Algebraic Geometry Conference.
- 55. M. de Cataldo, L. Migliorini, ``The perverse filtration and the Lefschetz Hyperplane Section Theorem,'' to appear in Annals of Mathematics.
- 56. P. Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 259–278 (French). MR 0244265
- 57. P. Deligne, ``Le formalisme des cycles évanescents,'', Exposé XIII, 82-115, in Groupes de monodromie en géométrie algébrique, SGA7II, dirigé par P. Deligne et N. Katz, Lecture Notes in Mathematics, Vol. 340. Springer-Verlag, Berlin-New York, 1973.
- 58. Pierre Deligne, Décompositions dans la catégorie dérivée, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 115–128 (French). MR 1265526, https://doi.org/10.1090/pspum/055.1/1265526
- 59. Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 0498551
- 60. Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77 (French). MR 0498552
- 61. Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 0340258
- 62. Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520
- 63.
P. Deligne, ``Théorèmes de finitude en cohomologie
-adique,'' in Cohomologie étale, Lecture Notes in Mathematics 569, Springer Verlag.
- 64. Pierre Deligne and Luc Illusie, Relèvements modulo 𝑝² et décomposition du complexe de de Rham, Invent. Math. 89 (1987), no. 2, 247–270 (French). MR 894379, https://doi.org/10.1007/BF01389078
- 65. Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325
- 66. P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 0262240
- 67. Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I. MR 0354697
- 68. Alexandru Dimca, Sheaves in topology, Universitext, Springer-Verlag, Berlin, 2004. MR 2050072
- 69. Alan H. Durfee, A naive guide to mixed Hodge theory, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 313–320. MR 713069
- 70. Alan H. Durfee and Morihiko Saito, Mixed Hodge structures on the intersection cohomology of links, Compositio Math. 76 (1990), no. 1-2, 49–67. Algebraic geometry (Berlin, 1988). MR 1078857
- 71. Geir Ellingsrud and Stein Arild Strømme, On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87 (1987), no. 2, 343–352. MR 870732, https://doi.org/10.1007/BF01389419
- 72. Geir Ellingsrud and Stein Arild Strømme, On a cell decomposition of the Hilbert scheme of points in the plane, Invent. Math. 91 (1988), no. 2, 365–370. MR 922805, https://doi.org/10.1007/BF01389372
- 73. Fouad El Zein, Théorie de Hodge des cycles évanescents, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 1, 107–184 (French, with English summary). MR 860812
- 74. Karl-Heinz Fieseler, Rational intersection cohomology of projective toric varieties, J. Reine Angew. Math. 413 (1991), 88–98. MR 1089798, https://doi.org/10.1515/crll.1991.413.88
- 75. Eberhard Freitag and Reinhardt Kiehl, Étale cohomology and the Weil conjecture, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 13, Springer-Verlag, Berlin, 1988. Translated from the German by Betty S. Waterhouse and William C. Waterhouse; With an historical introduction by J. A. Dieudonné. MR 926276
- 76. Edward Frenkel, Lectures on the Langlands program and conformal field theory, Frontiers in number theory, physics, and geometry. II, Springer, Berlin, 2007, pp. 387–533. MR 2290768, https://doi.org/10.1007/978-3-540-30308-4_11
- 77. William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037
- 78. O. Gabber ``Pureté de la cohomologie d'intersection de MacPherson-Goresky,'' redigé par Pierre Deligne, prépublication IHES, 1981.
- 79. D. Gaitsgory, Informal introduction to geometric Langlands, An introduction to the Langlands program (Jerusalem, 2001) Birkhäuser Boston, Boston, MA, 2003, pp. 269–281. MR 1990383
- 80. D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math. 144 (2001), no. 2, 253–280. MR 1826370, https://doi.org/10.1007/s002220100122
- 81. Sergei Gelfand and Robert MacPherson, Verma modules and Schubert cells: a dictionary, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 34th Year (Paris, 1981) Lecture Notes in Math., vol. 924, Springer, Berlin-New York, 1982, pp. 1–50. MR 662251
- 82. Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. MR 1950475
- 83. V. Ginzburg, ``Perverse sheaves on a loop group and Langlands' duality,'' preprint, ArXiv, alg-geom/9511007.
- 84. Roger Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1973 (French). Troisième édition revue et corrigée; Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII; Actualités Scientifiques et Industrielles, No. 1252. MR 0345092
- 85. Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724
- 86. Mark Goresky and Robert MacPherson, Intersection homology theory, Topology 19 (1980), no. 2, 135–162. MR 572580, https://doi.org/10.1016/0040-9383(80)90003-8
- 87. Mark Goresky and Robert MacPherson, Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77–129. MR 696691, https://doi.org/10.1007/BF01389130
- 88. M. Goresky and R. MacPherson, Problems and bibliography on intersection homology, Intersection cohomology (Bern, 1983) Progr. Math., vol. 50, Birkhäuser Boston, Boston, MA, 1984, pp. 221–233. MR 788180, https://doi.org/10.1007/978-0-8176-4765-0_9
- 89. Lothar Göttsche, Hilbert schemes of zero-dimensional subschemes of smooth varieties, Lecture Notes in Mathematics, vol. 1572, Springer-Verlag, Berlin, 1994. MR 1312161
- 90. Lothar Göttsche and Wolfgang Soergel, Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296 (1993), no. 2, 235–245. MR 1219901, https://doi.org/10.1007/BF01445104
- 91. Phillip A. Griffiths, Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc. 76 (1970), 228–296. MR 0258824, https://doi.org/10.1090/S0002-9904-1970-12444-2
- 92. Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
- 93. I. Grojnowski, Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996), no. 2, 275–291. MR 1386846, https://doi.org/10.4310/MRL.1996.v3.n2.a12
- 94. Benedict H. Gross, On the Satake isomorphism, Galois representations in arithmetic algebraic geometry (Durham, 1996) London Math. Soc. Lecture Note Ser., vol. 254, Cambridge Univ. Press, Cambridge, 1998, pp. 223–237. MR 1696481, https://doi.org/10.1017/CBO9780511662010.006
- 95. Alexander Grothendieck, Formule de Lefschetz et rationalité des fonctions 𝐿, Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, pp. Exp. No. 279, 41–55 (French). MR 1608788
- 96. F. Guillén and V. Navarro Aznar, Sur le théorème local des cycles invariants, Duke Math. J. 61 (1990), no. 1, 133–155 (French). MR 1068383, https://doi.org/10.1215/S0012-7094-90-06107-1
- 97. T.J. Haines, ``A proof of the Kazhdan-Lusztig purity theorem via the decomposition theorem of BBD,'' Expository note, available on http://www.math.umd.edu/ tjh/
- 98. Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- 99. W. V. D. Hodge, The theory and applications of harmonic integrals, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1989. Reprint of the 1941 original; With a foreword by Michael Atiyah. MR 1015714
- 100. Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, 𝐷-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR 2357361
- 101. Yi Hu, Chien-Hao Liu, and Shing-Tung Yau, Toric morphisms and fibrations of toric Calabi-Yau hypersurfaces, Adv. Theor. Math. Phys. 6 (2002), no. 3, 457–506. MR 1957668, https://doi.org/10.4310/ATMP.2002.v6.n3.a2
- 102. James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460
- 103. Anthony A. Iarrobino, Punctual Hilbert schemes, Mem. Amer. Math. Soc. 10 (1977), no. 188, viii+112. MR 0485867, https://doi.org/10.1090/memo/0188
- 104. Luc Illusie, Autour du théorème de monodromie locale, Astérisque 223 (1994), 9–57 (French). Périodes 𝑝-adiques (Bures-sur-Yvette, 1988). MR 1293970
- 105. Luc Illusie, Frobenius et dégénérescence de Hodge, Introduction à la théorie de Hodge, Panor. Synthèses, vol. 3, Soc. Math. France, Paris, 1996, pp. 113–168 (French, with French summary). MR 1409820
- 106. Nagayoshi Iwahori, On the structure of a Hecke ring of a Chevalley group over a finite field, J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 215–236 (1964). MR 0165016
- 107. N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of 𝔭-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 5–48. MR 0185016
- 108. Birger Iversen, Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, 1986. MR 842190
- 109. D. Kaledin, Symplectic singularities from the Poisson point of view, J. Reine Angew. Math. 600 (2006), 135–156. MR 2283801, https://doi.org/10.1515/CRELLE.2006.089
- 110. V. Yu. Kaloshin, A geometric proof of the existence of Whitney stratifications, Mosc. Math. J. 5 (2005), no. 1, 125–133 (English, with English and Russian summaries). MR 2153470
- 111. J. Kamnitzer, ``Mirković-Vilonen cycles and polytopes'', math.AG/0501365 to appear in Ann. of Math.
- 112. Kalle Karu, Hard Lefschetz theorem for nonrational polytopes, Invent. Math. 157 (2004), no. 2, 419–447. MR 2076929, https://doi.org/10.1007/s00222-004-0358-3
- 113. M. Kashiwara, Faisceaux constructibles et systèmes holonômes d’équations aux dérivées partielles linéaires à points singuliers réguliers, Séminaire Goulaouic-Schwartz, 1979–1980 (French), École Polytech., Palaiseau, 1980, pp. Exp. No. 19, 7 (French). MR 600704
- 114. Masaki Kashiwara, On the holonomic systems of linear differential equations. II, Invent. Math. 49 (1978), no. 2, 121–135. MR 511186, https://doi.org/10.1007/BF01403082
- 115. Masaki Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), no. 2, 319–365. MR 743382, https://doi.org/10.2977/prims/1195181610
- 116. Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006
- 117. Masaki Kashiwara and Takahiro Kawai, The Poincaré lemma for variations of polarized Hodge structure, Publ. Res. Inst. Math. Sci. 23 (1987), no. 2, 345–407. MR 890924, https://doi.org/10.2977/prims/1195176545
- 118. David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, https://doi.org/10.1007/BF01390031
- 119. David Kazhdan and George Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185–203. MR 573434
- 120. Steven L. Kleiman, The development of intersection homology theory, Pure Appl. Math. Q. 3 (2007), no. 1, Special Issue: In honor of Robert D. MacPherson., 225–282. MR 2330160, https://doi.org/10.4310/PAMQ.2007.v3.n1.a8
- 121. Klaus Lamotke, The topology of complex projective varieties after S. Lefschetz, Topology 20 (1981), no. 1, 15–51. MR 592569, https://doi.org/10.1016/0040-9383(81)90013-6
- 122. G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 131–210 (French). MR 908218
- 123. Yves Laszlo and Christoph Sorger, The line bundles on the moduli of parabolic 𝐺-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 4, 499–525 (English, with English and French summaries). MR 1456243, https://doi.org/10.1016/S0012-9593(97)89929-6
- 124. S. Lefschetz, L'analysis situs et la géométrie algébrique, Gauthier Villars, Paris, 1924.
- 125. S. Lefschetz, Selected papers, Chelsea, N.Y., 1971.
- 126. G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178. MR 641425, https://doi.org/10.1016/0001-8708(81)90038-4
- 127. George Lusztig, Singularities, character formulas, and a 𝑞-analog of weight multiplicities, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 208–229. MR 737932
- 128. George Lusztig, Intersection cohomology methods in representation theory, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 155–174. MR 1159211
- 129. G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), no. 2, 365–421. MR 1088333, https://doi.org/10.1090/S0894-0347-1991-1088333-2
- 130. George Lusztig and David A. Vogan Jr., Singularities of closures of 𝐾-orbits on flag manifolds, Invent. Math. 71 (1983), no. 2, 365–379. MR 689649, https://doi.org/10.1007/BF01389103
- 131. I. G. Macdonald, The Poincaré polynomial of a symmetric product, Proc. Cambridge Philos. Soc. 58 (1962), 563–568. MR 0143204
- 132. R. D. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974), 423–432. MR 0361141, https://doi.org/10.2307/1971080
- 133. Robert MacPherson, Global questions in the topology of singular spaces, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 213–235. MR 804683
- 134. R. MacPherson, Intersection homology and perverse sheaves, Hermann Weyl Lectures, manuscript, 1990.
- 135. Robert MacPherson and Kari Vilonen, Elementary construction of perverse sheaves, Invent. Math. 84 (1986), no. 2, 403–435. MR 833195, https://doi.org/10.1007/BF01388812
- 136. David B. Massey, Introduction to perverse sheaves and vanishing cycles, Singularity theory (Trieste, 1991) World Sci. Publ., River Edge, NJ, 1995, pp. 487–508. MR 1378418
- 137. L. Maxim, G. Schürmann, ``Hodge-theoretic Atiyah-Meyer formulae and the stratified multiplicative property,'' arXiv:0707.0129.
- 138. Mark McConnell, The rational homology of toric varieties is not a combinatorial invariant, Proc. Amer. Math. Soc. 105 (1989), no. 4, 986–991. MR 954374, https://doi.org/10.1090/S0002-9939-1989-0954374-9
- 139. Z. Mebkhout, Une équivalence de catégories, Compositio Math. 51 (1984), no. 1, 51–62 (French). MR 734784
- 140. Z. Mebkhout, Une autre équivalence de catégories, Compositio Math. 51 (1984), no. 1, 63–88 (French). MR 734785
- 141. Zoghman Mebkhout, Sur le problème de Hilbert-Riemann, Complex analysis, microlocal calculus and relativistic quantum theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979) Lecture Notes in Phys., vol. 126, Springer, Berlin-New York, 1980, pp. 90–110 (French). MR 579742
- 142. J. Milne, Lectures on Étale Cohomology, available at http://www.jmilne.org/math/
- 143. R. Mirollo and K. Vilonen, Bernstein-Gel′fand-Gel′fand reciprocity on perverse sheaves, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 3, 311–323. MR 925719
- 144. J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. MR 0163331
- 145. I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143. MR 2342692, https://doi.org/10.4007/annals.2007.166.95
- 146.
Takuro
Mochizuki, Asymptotic behaviour of tame harmonic bundles and an
application to pure twistor 𝐷-modules. I, Mem. Amer. Math.
Soc. 185 (2007), no. 869, xii+324. MR
2281877, https://doi.org/10.1090/memo/0869
Takuro Mochizuki, Asymptotic behaviour of tame harmonic bundles and an application to pure twistor 𝐷-modules. II, Mem. Amer. Math. Soc. 185 (2007), no. 870, xii+565. MR 2283665, https://doi.org/10.1090/memo/0870 - 147. Shigefumi Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593–606. MR 554387, https://doi.org/10.2307/1971241
- 148. David Nadler, Perverse sheaves on real loop Grassmannians, Invent. Math. 159 (2005), no. 1, 1–73. MR 2142332, https://doi.org/10.1007/s00222-004-0382-3
- 149. Hiraku Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18, American Mathematical Society, Providence, RI, 1999. MR 1711344
- 150. Hiraku Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), no. 3, 515–560. MR 1604167, https://doi.org/10.1215/S0012-7094-98-09120-7
- 151. Hiraku Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. (2) 145 (1997), no. 2, 379–388. MR 1441880, https://doi.org/10.2307/2951818
- 152. B.C. Ngô, ``Le lemme fondamental pour les algèbres de Lie'' Prépublication, 2007.
- 153. Madhav V. Nori, Constructible sheaves, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) Tata Inst. Fund. Res. Stud. Math., vol. 16, Tata Inst. Fund. Res., Bombay, 2002, pp. 471–491. MR 1940678
- 154. Tadao Oda, Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15, Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties; Translated from the Japanese. MR 922894
- 155. Claude Sabbah, Polarizable twistor 𝒟-modules, Astérisque 300 (2005), vi+208 (English, with English and French summaries). MR 2156523
- 156. Morihiko Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 849–995 (1989) (French). MR 1000123, https://doi.org/10.2977/prims/1195173930
- 157. Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. MR 1047415, https://doi.org/10.2977/prims/1195171082
- 158. Morihiko Saito, Decomposition theorem for proper Kähler morphisms, Tohoku Math. J. (2) 42 (1990), no. 2, 127–147. MR 1053945, https://doi.org/10.2748/tmj/1178227650
- 159. Morihiko Saito, Mixed Hodge complexes on algebraic varieties, Math. Ann. 316 (2000), no. 2, 283–331. MR 1741272, https://doi.org/10.1007/s002080050014
- 160. Morihiko Saito, Introduction to mixed Hodge modules, Astérisque 179-180 (1989), 10, 145–162. Actes du Colloque de Théorie de Hodge (Luminy, 1987). MR 1042805
- 161. Ichirô Satake, Theory of spherical functions on reductive algebraic groups over 𝔭-adic fields, Inst. Hautes Études Sci. Publ. Math. 18 (1963), 5–69. MR 0195863
- 162. Jörg Schürmann, Topology of singular spaces and constructible sheaves, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 63, Birkhäuser Verlag, Basel, 2003. MR 2031639
- 163. S. Shaneson, ``Characteristic classes, lattice points and Euler-MacLaurin formulae,'' Proceedings ICM, Zurich, Switzerland, 1994.
- 164. Nicolas Spaltenstein, On the fixed point set of a unipotent element on the variety of Borel subgroups, Topology 16 (1977), no. 2, 203–204. MR 0447423, https://doi.org/10.1016/0040-9383(77)90022-2
- 165. T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279–293. MR 0491988, https://doi.org/10.1007/BF01403165
- 166. T. A. Springer, Reductive groups, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–27. MR 546587
- 167. T.A. Springer, ``Quelques applications de la cohomologie d'intersection,'' Séminaire Bourbaki, 24 (1981-1982), Exposé No. 589.
- 168. Joseph Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, 229–257. MR 0429885, https://doi.org/10.1007/BF01403146
- 169. Robert Steinberg, On the desingularization of the unipotent variety, Invent. Math. 36 (1976), 209–224. MR 0430094, https://doi.org/10.1007/BF01390010
- 170. Cumrun Vafa and Edward Witten, A strong coupling test of 𝑆-duality, Nuclear Phys. B 431 (1994), no. 1-2, 3–77. MR 1305096, https://doi.org/10.1016/0550-3213(94)90097-3
- 171. J.-L. Verdier, Spécialisation de faisceaux et monodromie modérée, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 332–364 (French). MR 737938
- 172. Jean-Louis Verdier, Extension of a perverse sheaf over a closed subspace, Astérisque 130 (1985), 210–217. Differential systems and singularities (Luminy, 1983). MR 804054
- 173. Jean-Louis Verdier, Des catégories dérivées des catégories abéliennes, Astérisque 239 (1996), xii+253 pp. (1997) (French, with French summary). With a preface by Luc Illusie; Edited and with a note by Georges Maltsiniotis. MR 1453167
- 174. Jean-Louis Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295–312 (French). MR 0481096, https://doi.org/10.1007/BF01390015
- 175. Claire Voisin, Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge University Press, Cambridge, 2002. Translated from the French original by Leila Schneps. MR 1967689
- 176. Claire Voisin, On the Hilbert scheme of points of an almost complex fourfold, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 689–722 (English, with English and French summaries). MR 1775365
- 177. André Weil, Sur les courbes algébriques et les variétés qui s’en déduisent, Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945), Hermann et Cie., Paris, 1948 (French). MR 0027151
- 178. André Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267, Hermann, Paris, 1958 (French). MR 0111056
- 179. Hermann Weyl, On Hodge’s theory of harmonic integrals, Ann. of Math. (2) 44 (1943), 1–6. MR 0008633, https://doi.org/10.2307/1969060
- 180. Steven Zucker, Hodge theory with degenerating coefficients. 𝐿₂ cohomology in the Poincaré metric, Ann. of Math. (2) 109 (1979), no. 3, 415–476. MR 534758, https://doi.org/10.2307/1971221
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 14-02, 14C30, 14Dxx, 14Lxx, 18E30
Retrieve articles in all journals with MSC (2000): 14-02, 14C30, 14Dxx, 14Lxx, 18E30
Additional Information
Mark Andrea A. de Cataldo
Affiliation:
Department of Mathematics, Stony Brook University, Stony Brook, New York 11794
Email:
mde@math.sunysb.edu
Luca Migliorini
Affiliation:
Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
Email:
migliori@dm.unibo.it
DOI:
https://doi.org/10.1090/S0273-0979-09-01260-9
Received by editor(s):
December 16, 2007
Received by editor(s) in revised form:
July 17, 2008, December 28, 2008, and February 13, 2009
Published electronically:
June 26, 2009
Additional Notes:
The second author was partially supported by GNSAGA and PRIN 2007 project “Spazi di moduli e teoria di Lie”
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.


