Frontiers of reality in Schubert calculus
HTML articles powered by AMS MathViewer
- by Frank Sottile PDF
- Bull. Amer. Math. Soc. 47 (2010), 31-71 Request permission
Abstract:
The theorem of Mukhin, Tarasov, and Varchenko (formerly the Shapiro conjecture for Grassmannians) asserts that all (a priori complex) solutions to certain geometric problems in the Schubert calculus are actually real. Their proof is quite remarkable, using ideas from integrable systems, Fuchsian differential equations, and representation theory. There is now a second proof of this result, and it has ramifications in other areas of mathematics, from curves to control theory to combinatorics. Despite this work, the original Shapiro conjecture is not yet settled. While it is false as stated, it has several interesting and not quite understood modifications and generalizations that are likely true, and the strongest and most subtle version of the Shapiro conjecture for Grassmannians remains open.References
- Daniel J. Bates, Frédéric Bihan, and Frank Sottile, Bounds on the number of real solutions to polynomial equations, Int. Math. Res. Not. IMRN 23 (2007), Art. ID rnm114, 7. MR 2380007, DOI 10.1093/imrn/rnm114
- Prakash Belkale and Shrawan Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math. 166 (2006), no. 1, 185–228. MR 2242637, DOI 10.1007/s00222-006-0516-x
- Georgia Benkart, Frank Sottile, and Jeffrey Stroomer, Tableau switching: algorithms and applications, J. Combin. Theory Ser. A 76 (1996), no. 1, 11–43. MR 1405988, DOI 10.1006/jcta.1996.0086
- Grigoriy Blekherman, There are significantly more nonnegative polynomials than sums of squares, Israel J. Math. 153 (2006), 355–380. MR 2254649, DOI 10.1007/BF02771790
- C. I. Byrnes, Pole assignment by output feedback, Three decades of mathematical system theory, Lect. Notes Control Inf. Sci., vol. 135, Springer, Berlin, 1989, pp. 31–78. MR 1025786, DOI 10.1007/BFb0008458
- G. Castelnuovo, Numero delle involuzioni razionali gaicenti sopra una curva di dato genere, Rendi. R. Accad. Lincei 4 (1889), no. 5, 130–133.
- Vyjayanthi Chari and Andrew Pressley, Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001), 191–223. MR 1850556, DOI 10.1090/S1088-4165-01-00115-7
- David Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, 3rd ed., Undergraduate Texts in Mathematics, Springer, New York, 2007. An introduction to computational algebraic geometry and commutative algebra. MR 2290010, DOI 10.1007/978-0-387-35651-8
- D. Eisenbud and J. Harris, Divisors on general curves and cuspidal rational curves, Invent. Math. 74 (1983), no. 3, 371–418. MR 724011, DOI 10.1007/BF01394242
- David Eisenbud and Joe Harris, When ramification points meet, Invent. Math. 87 (1987), no. 3, 485–493. MR 874033, DOI 10.1007/BF01389239
- A. Eremenko and A. Gabrielov, Degrees of real Wronski maps, Discrete Comput. Geom. 28 (2002), no. 3, 331–347. MR 1923956, DOI 10.1007/s00454-002-0735-x
- A. Eremenko and A. Gabrielov, Pole placement static output feedback for generic linear systems, SIAM J. Control Optim. 41 (2002), no. 1, 303–312. MR 1920166, DOI 10.1137/S0363012901391913
- A. Eremenko and A. Gabrielov, Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry, Ann. of Math. (2) 155 (2002), no. 1, 105–129. MR 1888795, DOI 10.2307/3062151
- —, Elementary proof of the B. and M. Shapiro conjecture for rational functions, 2005, arXiv:math/0512370.
- A. Eremenko, A. Gabrielov, M. Shapiro, and A. Vainshtein, Rational functions and real Schubert calculus, Proc. Amer. Math. Soc. 134 (2006), no. 4, 949–957. MR 2196025, DOI 10.1090/S0002-9939-05-08048-2
- Pavel Etingof and Victor Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348. MR 1881922, DOI 10.1007/s002220100171
- Séverine Fiedler-Le Touzé, Pencils of cubics as tools to solve an interpolation problem, Appl. Algebra Engrg. Comm. Comput. 18 (2007), no. 1-2, 53–70. MR 2280310, DOI 10.1007/s00200-006-0028-3
- William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- William Fulton and Piotr Pragacz, Schubert varieties and degeneracy loci, Lecture Notes in Mathematics, vol. 1689, Springer-Verlag, Berlin, 1998. Appendix J by the authors in collaboration with I. Ciocan-Fontanine. MR 1639468, DOI 10.1007/BFb0096380
- Michel Gaudin, La fonction d’onde de Bethe, Collection du Commissariat à l’Énergie Atomique: Série Scientifique. [Collection of the Atomic Energy Commission: Science Series], Masson, Paris, 1983 (French). MR 693905
- Lisa R. Goldberg, Catalan numbers and branched coverings by the Riemann sphere, Adv. Math. 85 (1991), no. 2, 129–144. MR 1093002, DOI 10.1016/0001-8708(91)90052-9
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Mark D. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math. 99 (1992), no. 1-3, 79–113. MR 1158783, DOI 10.1016/0012-365X(92)90368-P
- Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825
- David Hilbert, Ueber die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann. 32 (1888), no. 3, 342–350 (German). MR 1510517, DOI 10.1007/BF01443605
- C. Hillar, L. García-Puente, A. Martín del Campo, J. Ruffo, Z. Teitler, Stephen L. Johnson, and F. Sottile, Experimentation at the frontiers of reality in Schubert calculus, 2009, arXiv:0906.2497.
- Ilia Itenberg, Viatcheslav Kharlamov, and Eugenii Shustin, Welschinger invariant and enumeration of real rational curves, Int. Math. Res. Not. 49 (2003), 2639–2653. MR 2012521, DOI 10.1155/S1073792803131352
- I. V. Itenberg, V. M. Kharlamov, and E. I. Shustin, Logarithmic equivalence of the Welschinger and the Gromov-Witten invariants, Uspekhi Mat. Nauk 59 (2004), no. 6(360), 85–110 (Russian, with Russian summary); English transl., Russian Math. Surveys 59 (2004), no. 6, 1093–1116. MR 2138469, DOI 10.1070/RM2004v059n06ABEH000797
- Michael Joswig and Nikolaus Witte, Products of foldable triangulations, Adv. Math. 210 (2007), no. 2, 769–796. MR 2303239, DOI 10.1016/j.aim.2006.07.016
- D. Kazhdan, B. Kostant, and S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure Appl. Math. 31 (1978), no. 4, 481–507. MR 478225, DOI 10.1002/cpa.3160310405
- Viatcheslav Kharlamov and Frank Sottile, Maximally inflected real rational curves, Mosc. Math. J. 3 (2003), no. 3, 947–987, 1199–1200 (English, with English and Russian summaries). {Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday}. MR 2078569, DOI 10.17323/1609-4514-2003-3-3-947-987
- A. G. Khovanskiĭ, Fewnomials, Translations of Mathematical Monographs, vol. 88, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Smilka Zdravkovska. MR 1108621, DOI 10.1090/mmono/088
- Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
- S. L. Kleiman and Dan Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972), 1061–1082. MR 323796, DOI 10.2307/2317421
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244
- E. Kostlan, On the distribution of roots of random polynomials, From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990) Springer, New York, 1993, pp. 419–431. MR 1246137
- P. P. Kulish and E. K. Sklyanin, Quantum spectral transform method. Recent developments, Integrable quantum field theories (Tvärminne, 1981) Lecture Notes in Phys., vol. 151, Springer, Berlin-New York, 1982, pp. 61–119. MR 671263
- Grigory Mikhalkin, Enumerative tropical algebraic geometry in $\Bbb R^2$, J. Amer. Math. Soc. 18 (2005), no. 2, 313–377. MR 2137980, DOI 10.1090/S0894-0347-05-00477-7
- E. Mukhin, V. Tarasov, and A. Varchenko, The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz, 2005, Annals of Mathematics, to appear.
- E. Mukhin, V. Tarasov, and A. Varchenko, Bethe eigenvectors of higher transfer matrices, J. Stat. Mech. Theory Exp. 8 (2006), P08002, 44. MR 2249767, DOI 10.1088/1742-5468/2006/08/p08002
- Evgenii E. Mukhin, Vitaly O. Tarasov, and Alexander N. Varchenko, Bispectral and $(\mathfrak {gl}_N,\mathfrak {gl}_M)$ dualities, Funct. Anal. Other Math. 1 (2006), no. 1, 47–69. MR 2381962
- Evgeny Mukhin, Vitaly Tarasov, and Alexander Varchenko, Generating operator of $XXX$ or Gaudin transfer matrices has quasi-exponential kernel, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 060, 31. MR 2299861, DOI 10.3842/SIGMA.2007.060
- —, On reality property of Wronski maps, 2007, Confluentes Mathematici, to appear.
- —, Schubert calculus and representations of general linear group, 2007, Journal of the AMS, to appear.
- —, Bethe algebra of Gaudin model, Calogero-Moser space and Cherednik algebra, 2009, arXiv:0906.5185.
- E. Mukhin and A. Varchenko, Critical points of master functions and flag varieties, Commun. Contemp. Math. 6 (2004), no. 1, 111–163. MR 2048778, DOI 10.1142/S0219199704001288
- Evgeny Mukhin and Alexander Varchenko, Norm of a Bethe vector and the Hessian of the master function, Compos. Math. 141 (2005), no. 4, 1012–1028. MR 2148192, DOI 10.1112/S0010437X05001569
- K. Purbhoo, Jeu de taquin and a monodromy problem for Wronskians of polynomials, 2009, arXiv:0902.1321.
- Jim Ruffo, Yuval Sivan, Evgenia Soprunova, and Frank Sottile, Experimentation and conjectures in the real Schubert calculus for flag manifolds, Experiment. Math. 15 (2006), no. 2, 199–221. MR 2253007
- Bruce E. Sagan, The symmetric group, 2nd ed., Graduate Texts in Mathematics, vol. 203, Springer-Verlag, New York, 2001. Representations, combinatorial algorithms, and symmetric functions. MR 1824028, DOI 10.1007/978-1-4757-6804-6
- Vadim V. Schechtman and Alexander N. Varchenko, Arrangements of hyperplanes and Lie algebra homology, Invent. Math. 106 (1991), no. 1, 139–194. MR 1123378, DOI 10.1007/BF01243909
- I. Scherbak and A. Varchenko, Critical points of functions, $\mathfrak {s}\mathfrak {l}_2$ representations, and Fuchsian differential equations with only univalued solutions, Mosc. Math. J. 3 (2003), no. 2, 621–645, 745 (English, with English and Russian summaries). Dedicated to Vladimir I. Arnold on the occasion of his 65th birthday. MR 2025276, DOI 10.17323/1609-4514-2003-3-2-621-645
- H. Schubert, Anzahl-Bestimmungen für Lineare Räume, Acta Math. 8 (1886), no. 1, 97–118 (German). Beliebiger dimension. MR 1554694, DOI 10.1007/BF02417085
- M. P. Schützenberger, Quelques remarques sur une construction de Schensted, Math. Scand. 12 (1963), 117–128 (French). MR 190017, DOI 10.7146/math.scand.a-10676
- Secant Team, Frontiers of Reality in Schubert Calculus, www.math.tamu.edu/˜secant.
- J. Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian boundary conditions, math.SG/0606429.
- Evgenia Soprunova and Frank Sottile, Lower bounds for real solutions to sparse polynomial systems, Adv. Math. 204 (2006), no. 1, 116–151. MR 2233129, DOI 10.1016/j.aim.2005.05.016
- Frank Sottile, Enumerative geometry for the real Grassmannian of lines in projective space, Duke Math. J. 87 (1997), no. 1, 59–85. MR 1440063, DOI 10.1215/S0012-7094-97-08703-2
- Frank Sottile, Pieri-type formulas for maximal isotropic Grassmannians via triple intersections, Colloq. Math. 82 (1999), no. 1, 49–63. MR 1736034, DOI 10.4064/cm-82-1-49-63
- Frank Sottile, The special Schubert calculus is real, Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 35–39. MR 1679451, DOI 10.1090/S1079-6762-99-00058-X
- Frank Sottile, Real Schubert calculus: polynomial systems and a conjecture of Shapiro and Shapiro, Experiment. Math. 9 (2000), no. 2, 161–182. MR 1780204
- Frank Sottile, Some real and unreal enumerative geometry for flag manifolds, Michigan Math. J. 48 (2000), 573–592. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786506, DOI 10.1307/mmj/1030132734
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- D. Talalaev, Quantization of the Gaudin system, 2004, arXiv:hep-th/0404153.
- Ravi Vakil, Schubert induction, Ann. of Math. (2) 164 (2006), no. 2, 489–512. MR 2247966, DOI 10.4007/annals.2006.164.489
- Jan Verschelde, Numerical evidence for a conjecture in real algebraic geometry, Experiment. Math. 9 (2000), no. 2, 183–196. MR 1780205
- Jean-Yves Welschinger, Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry, C. R. Math. Acad. Sci. Paris 336 (2003), no. 4, 341–344 (English, with English and French summaries). MR 1976315, DOI 10.1016/S1631-073X(03)00059-1
- Dennis E. White, Sign-balanced posets, J. Combin. Theory Ser. A 95 (2001), no. 1, 1–38. MR 1840476, DOI 10.1006/jcta.2000.3146
- George Wilson, Collisions of Calogero-Moser particles and an adelic Grassmannian, Invent. Math. 133 (1998), no. 1, 1–41. With an appendix by I. G. Macdonald. MR 1626461, DOI 10.1007/s002220050237
Additional Information
- Frank Sottile
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 355336
- ORCID: 0000-0003-0087-7120
- Email: sottile@math.tamu.edu
- Received by editor(s): July 6, 2009
- Received by editor(s) in revised form: July 22, 2009
- Published electronically: November 2, 2009
- Additional Notes: The work of Sottile is supported by NSF grant DMS-0701050
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Bull. Amer. Math. Soc. 47 (2010), 31-71
- MSC (2010): Primary 14M15, 14N15
- DOI: https://doi.org/10.1090/S0273-0979-09-01276-2
- MathSciNet review: 2566445