Taubes’s proof of the Weinstein conjecture in dimension three
HTML articles powered by AMS MathViewer
- by Michael Hutchings PDF
- Bull. Amer. Math. Soc. 47 (2010), 73-125 Request permission
Abstract:
Does every smooth vector field on a closed three-manifold, for example the three-sphere, have a closed orbit? The answer is no, according to counterexamples by K. Kuperberg and others. On the other hand, there is a special class of vector fields, called Reeb vector fields, which are associated to contact forms. The three-dimensional case of the Weinstein conjecture asserts that every Reeb vector field on a closed oriented three-manifold has a closed orbit. This conjecture was recently proved by Taubes using Seiberg-Witten theory. We give an introduction to the Weinstein conjecture, the main ideas in Taubes’s proof, and the bigger picture into which it fits.References
- Casim Abbas, The chord problem and a new method of filling by pseudoholomorphic curves, Int. Math. Res. Not. 18 (2004), 913–927. MR 2037757, DOI 10.1155/S1073792804132236
- Casim Abbas, Kai Cieliebak, and Helmut Hofer, The Weinstein conjecture for planar contact structures in dimension three, Comment. Math. Helv. 80 (2005), no. 4, 771–793. MR 2182700, DOI 10.4171/CMH/34
- Peter Albers and Helmut Hofer, On the Weinstein conjecture in higher dimensions, Comment. Math. Helv. 84 (2009), no. 2, 429–436. MR 2495800, DOI 10.4171/CMH/167
- Vladimir I. Arnold and Boris A. Khesin, Topological methods in hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, 1998. MR 1612569
- D. Auroux, La conjecture de Weinstein en dimension $3$ [d’après C.H. Taubes], Séminaire Bourbaki, 2008-2009, no. 1002.
- Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. MR 1215720, DOI 10.1007/978-3-642-58088-8
- Raoul Bott, Morse theory indomitable, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 99–114 (1989). MR 1001450
- Frédéric Bourgeois, Odd dimensional tori are contact manifolds, Int. Math. Res. Not. 30 (2002), 1571–1574. MR 1912277, DOI 10.1155/S1073792802205048
- Frédéric Bourgeois, A Morse-Bott approach to contact homology, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001) Fields Inst. Commun., vol. 35, Amer. Math. Soc., Providence, RI, 2003, pp. 55–77. MR 1969267
- Frédéric Bourgeois, Kai Cieliebak, and Tobias Ekholm, A note on Reeb dynamics on the tight 3-sphere, J. Mod. Dyn. 1 (2007), no. 4, 597–613. MR 2342700, DOI 10.3934/jmd.2007.1.597
- F. Bourgeois, T. Ekholm, and Y. Eliashberg, A Legendrian surgery long exact sequence for linearized contact homology, in preparation.
- F. Bourgeois and K. Niederkrüger, Towards a good definition of algebraically overtwisted, arXiv:0709.3415
- K. Cieliebak and K. Mohnke, Compactness for punctured holomorphic curves, J. Symplectic Geom. 3 (2005), no. 4, 589–654. Conference on Symplectic Topology. MR 2235856
- Vincent Colin, Emmanuel Giroux, and Ko Honda, Finitude homotopique et isotopique des structures de contact tendues, Publ. Math. Inst. Hautes Études Sci. 109 (2009), 245–293 (French, with French summary). MR 2511589, DOI 10.1007/s10240-009-0022-y
- V. Colin and K. Honda, Reeb vector fields and open book decompositions, arXiv:0809.5088.
- S. K. Donaldson, The Seiberg-Witten equations and $4$-manifold topology, Bull. Amer. Math. Soc. (N.S.) 33 (1996), no. 1, 45–70. MR 1339810, DOI 10.1090/S0273-0979-96-00625-8
- S. K. Donaldson, Topological field theories and formulae of Casson and Meng-Taubes, Proceedings of the Kirbyfest (Berkeley, CA, 1998) Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, pp. 87–102. MR 1734402, DOI 10.2140/gtm.1999.2.87
- Y. Eliashberg, Classification of overtwisted contact structures on $3$-manifolds, Invent. Math. 98 (1989), no. 3, 623–637. MR 1022310, DOI 10.1007/BF01393840
- Yakov Eliashberg, Filling by holomorphic discs and its applications, Geometry of low-dimensional manifolds, 2 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 45–67. MR 1171908
- Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. Special Volume (2000), 560–673. GAFA 2000 (Tel Aviv, 1999). MR 1826267, DOI 10.1007/978-3-0346-0425-3_{4}
- John B. Etnyre, Introductory lectures on contact geometry, Topology and geometry of manifolds (Athens, GA, 2001) Proc. Sympos. Pure Math., vol. 71, Amer. Math. Soc., Providence, RI, 2003, pp. 81–107. MR 2024631, DOI 10.1090/pspum/071/2024631
- John B. Etnyre, Lectures on open book decompositions and contact structures, Floer homology, gauge theory, and low-dimensional topology, Clay Math. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 2006, pp. 103–141. MR 2249250
- Oscar García-Prada, A direct existence proof for the vortex equations over a compact Riemann surface, Bull. London Math. Soc. 26 (1994), no. 1, 88–96. MR 1246476, DOI 10.1112/blms/26.1.88
- Hansjörg Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics, vol. 109, Cambridge University Press, Cambridge, 2008. MR 2397738, DOI 10.1017/CBO9780511611438
- Viktor L. Ginzburg, The Weinstein conjecture and theorems of nearby and almost existence, The breadth of symplectic and Poisson geometry, Progr. Math., vol. 232, Birkhäuser Boston, Boston, MA, 2005, pp. 139–172. MR 2103006, DOI 10.1007/0-8176-4419-9_{6}
- Viktor L. Ginzburg and Başak Z. Gürel, A $C^2$-smooth counterexample to the Hamiltonian Seifert conjecture in $\Bbb R^4$, Ann. of Math. (2) 158 (2003), no. 3, 953–976. MR 2031857, DOI 10.4007/annals.2003.158.953
- Emmanuel Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 405–414 (French, with French summary). MR 1957051
- J. Harrison, $C^2$ counterexamples to the Seifert conjecture, Topology 27 (1988), no. 3, 249–278. MR 963630, DOI 10.1016/0040-9383(88)90009-2
- H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993), no. 3, 515–563. MR 1244912, DOI 10.1007/BF01232679
- H. Hofer, K. Wysocki, and E. Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. (2) 157 (2003), no. 1, 125–255. MR 1954266, DOI 10.4007/annals.2003.157.125
- Helmut Hofer and Eduard Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1994. MR 1306732, DOI 10.1007/978-3-0348-8540-9
- M. Hutchings, The embedded contact homology index revisited, arXiv:0805.1240, to appear in the Yashafest proceedings.
- Michael Hutchings and Michael Sullivan, Rounding corners of polygons and the embedded contact homology of $T^3$, Geom. Topol. 10 (2006), 169–266. MR 2207793, DOI 10.2140/gt.2006.10.169
- Michael Hutchings and Clifford Henry Taubes, An introduction to the Seiberg-Witten equations on symplectic manifolds, Symplectic geometry and topology (Park City, UT, 1997) IAS/Park City Math. Ser., vol. 7, Amer. Math. Soc., Providence, RI, 1999, pp. 103–142. MR 1702943, DOI 10.1090/pcms/007/04
- Michael Hutchings and Clifford Henry Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. I, J. Symplectic Geom. 5 (2007), no. 1, 43–137. MR 2371184
- Michael Hutchings and Clifford Henry Taubes, The Weinstein conjecture for stable Hamiltonian structures, Geom. Topol. 13 (2009), no. 2, 901–941. MR 2470966, DOI 10.2140/gt.2009.13.901
- Arthur Jaffe and Clifford Taubes, Vortices and monopoles, Progress in Physics, vol. 2, Birkhäuser, Boston, Mass., 1980. Structure of static gauge theories. MR 614447
- Peter Kronheimer and Tomasz Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, vol. 10, Cambridge University Press, Cambridge, 2007. MR 2388043, DOI 10.1017/CBO9780511543111
- Greg Kuperberg, A volume-preserving counterexample to the Seifert conjecture, Comment. Math. Helv. 71 (1996), no. 1, 70–97. MR 1371679, DOI 10.1007/BF02566410
- Greg Kuperberg and Krystyna Kuperberg, Generalized counterexamples to the Seifert conjecture, Ann. of Math. (2) 143 (1996), no. 3, 547–576. MR 1394969, DOI 10.2307/2118536
- Krystyna Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of Math. (2) 140 (1994), no. 3, 723–732. MR 1307902, DOI 10.2307/2118623
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- Y-J. Lee and C.H. Taubes, Periodic Floer homology and Seiberg-Witten Floer cohomology, arXiv:0906.0383.
- MSRI Hot Topics Workshop, Contact structures, dynamics and the Seiberg-Witten equations in dimension $3$, June 2008, videos at www.msri.org.
- Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR 1698616
- Guowu Meng and Clifford Henry Taubes, $\underline \textrm {SW}=$ Milnor torsion, Math. Res. Lett. 3 (1996), no. 5, 661–674. MR 1418579, DOI 10.4310/MRL.1996.v3.n5.a8
- Klaus Mohnke, Holomorphic disks and the chord conjecture, Ann. of Math. (2) 154 (2001), no. 1, 219–222. MR 1847594, DOI 10.2307/3062116
- John W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996. MR 1367507
- Y-G. Oh and K. Zhu, Embedding property of $J$-holomorphic curves in Calabi-Yau manifolds for generic $J$, arXiv:0805.3581.
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158. MR 2113019, DOI 10.4007/annals.2004.159.1027
- Peter Ozsváth and Zoltán Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006), no. 2, 326–400. MR 2222356, DOI 10.1016/j.aim.2005.03.014
- Tim Perutz, Lagrangian matching invariants for fibred four-manifolds. I, Geom. Topol. 11 (2007), 759–828. MR 2302502, DOI 10.2140/gt.2007.11.759
- Paul H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), no. 2, 157–184. MR 467823, DOI 10.1002/cpa.3160310203
- A. Rechtman, Existence of periodic orbits for geodesible vector fields on closed $3$-manifolds, arXiv:0904.2719.
- Joel Robbin and Dietmar Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995), no. 1, 1–33. MR 1331677, DOI 10.1112/blms/27.1.1
- Matthias Schwarz, Morse homology, Progress in Mathematics, vol. 111, Birkhäuser Verlag, Basel, 1993. MR 1239174, DOI 10.1007/978-3-0348-8577-5
- Matthias Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000), no. 2, 419–461. MR 1755825, DOI 10.2140/pjm.2000.193.419
- Paul A. Schweitzer, Counterexamples to the Seifert conjecture and opening closed leaves of foliations, Ann. of Math. (2) 100 (1974), 386–400. MR 356086, DOI 10.2307/1971077
- Clifford Henry Taubes, $\textrm {Gr}\Longrightarrow \textrm {SW}$: from pseudo-holomorphic curves to Seiberg-Witten solutions, J. Differential Geom. 51 (1999), no. 2, 203–334. MR 1728301
- C.H. Taubes, $SW\Rightarrow Gr$: From the Seiberg-Witten equations to pseudo-holomorphic curves, in “Seiberg-Witten and Gromov invariants for symplectic 4-manifolds”, Internat. Press, 2000.
- Clifford Henry Taubes, Seiberg Witten and Gromov invariants for symplectic $4$-manifolds, First International Press Lecture Series, vol. 2, International Press, Somerville, MA, 2000. Edited by Richard Wentworth. MR 1798809
- Clifford Henry Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007), 2117–2202. MR 2350473, DOI 10.2140/gt.2007.11.2117
- Clifford Henry Taubes, The Seiberg-Witten equations and the Weinstein conjecture. II. More closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009), no. 3, 1337–1417. MR 2496048, DOI 10.2140/gt.2009.13.1337
- Clifford Henry Taubes, Asymptotic spectral flow for Dirac operators, Comm. Anal. Geom. 15 (2007), no. 3, 569–587. MR 2379805
- C.H. Taubes, An observation concerning uniquely ergodic vector fields on $3$-manifolds, arXiv:0811.3983.
- C.H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology I, arXiv:0811.3985.
- C.H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology II-IV, preprints, 2008.
- C.H. Taubes, Embedded contact homology and Seiberg-Witten Floer homology V, preprint, 2008.
- Vladimir Turaev, A combinatorial formulation for the Seiberg-Witten invariants of $3$-manifolds, Math. Res. Lett. 5 (1998), no. 5, 583–598. MR 1666856, DOI 10.4310/MRL.1998.v5.n5.a3
- Michael Usher, Vortices and a TQFT for Lefschetz fibrations on 4-manifolds, Algebr. Geom. Topol. 6 (2006), 1677–1743. MR 2263047, DOI 10.2140/agt.2006.6.1677
- Claude Viterbo, A proof of Weinstein’s conjecture in $\textbf {R}^{2n}$, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), no. 4, 337–356 (English, with French summary). MR 917741
- Alan Weinstein, Periodic orbits for convex Hamiltonian systems, Ann. of Math. (2) 108 (1978), no. 3, 507–518. MR 512430, DOI 10.2307/1971185
- Alan Weinstein, On the hypotheses of Rabinowitz’ periodic orbit theorems, J. Differential Equations 33 (1979), no. 3, 353–358. MR 543704, DOI 10.1016/0022-0396(79)90070-6
- Edward Witten, From superconductors and four-manifolds to weak interactions, Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 3, 361–391. MR 2318156, DOI 10.1090/S0273-0979-07-01167-6
- E. Zehnder, Remarks on periodic solutions on hypersurfaces, Periodic solutions of Hamiltonian systems and related topics (Il Ciocco, 1986) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 209, Reidel, Dordrecht, 1987, pp. 267–279. MR 920629
Additional Information
- Michael Hutchings
- Affiliation: Mathematics Department, 970 Evans Hall, University of California, Berkeley, California 94720
- Email: hutching@math.berkeley.edu
- Received by editor(s): June 11, 2009
- Received by editor(s) in revised form: August 26, 2009
- Published electronically: October 29, 2009
- Additional Notes: Partially supported by NSF grant DMS-0806037
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Bull. Amer. Math. Soc. 47 (2010), 73-125
- MSC (2010): Primary 57R17, 57R57, 53D40
- DOI: https://doi.org/10.1090/S0273-0979-09-01282-8
- MathSciNet review: 2566446