Finite element exterior calculus: from Hodge theory to numerical stability
HTML articles powered by AMS MathViewer
- by Douglas N. Arnold, Richard S. Falk and Ragnar Winther PDF
- Bull. Amer. Math. Soc. 47 (2010), 281-354 Request permission
Abstract:
This article reports on the confluence of two streams of research, one emanating from the fields of numerical analysis and scientific computation, the other from topology and geometry. In it we consider the numerical discretization of partial differential equations that are related to differential complexes so that de Rham cohomology and Hodge theory are key tools for exploring the well-posedness of the continuous problem. The discretization methods we consider are finite element methods, in which a variational or weak formulation of the PDE problem is approximated by restricting the trial subspace to an appropriately constructed piecewise polynomial subspace. After a brief introduction to finite element methods, we develop an abstract Hilbert space framework for analyzing the stability and convergence of such discretizations. In this framework, the differential complex is represented by a complex of Hilbert spaces, and stability is obtained by transferring Hodge-theoretic structures that ensure well-posedness of the continuous problem from the continuous level to the discrete. We show stable discretization is achieved if the finite element spaces satisfy two hypotheses: they can be arranged into a subcomplex of this Hilbert complex, and there exists a bounded cochain projection from that complex to the subcomplex. In the next part of the paper, we consider the most canonical example of the abstract theory, in which the Hilbert complex is the de Rham complex of a domain in Euclidean space. We use the Koszul complex to construct two families of finite element differential forms, show that these can be arranged in subcomplexes of the de Rham complex in numerous ways, and for each construct a bounded cochain projection. The abstract theory therefore applies to give the stability and convergence of finite element approximations of the Hodge Laplacian. Other applications are considered as well, especially the elasticity complex and its application to the equations of elasticity. Background material is included to make the presentation self-contained for a variety of readers.References
- Scot Adams and Bernardo Cockburn, A mixed finite element method for elasticity in three dimensions, J. Sci. Comput. 25 (2005), no. 3, 515–521. MR 2221175, DOI 10.1007/s10915-004-4807-3
- C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21 (1998), no. 9, 823–864 (English, with English and French summaries). MR 1626990, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
- Douglas N. Arnold, Gerard Awanou, and Ragnar Winther, Finite elements for symmetric tensors in three dimensions, Math. Comp. 77 (2008), no. 263, 1229–1251. MR 2398766, DOI 10.1090/S0025-5718-08-02071-1
- Douglas N. Arnold, Franco Brezzi, and Jim Douglas Jr., PEERS: a new mixed finite element for plane elasticity, Japan J. Appl. Math. 1 (1984), no. 2, 347–367. MR 840802, DOI 10.1007/BF03167064
- Douglas N. Arnold, Jim Douglas Jr., and Chaitan P. Gupta, A family of higher order mixed finite element methods for plane elasticity, Numer. Math. 45 (1984), no. 1, 1–22. MR 761879, DOI 10.1007/BF01379659
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Differential complexes and stability of finite element methods. I. The de Rham complex, Compatible spatial discretizations, IMA Vol. Math. Appl., vol. 142, Springer, New York, 2006, pp. 24–46. MR 2249344, DOI 10.1007/0-387-38034-5
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Differential complexes and stability of finite element methods. II. The elasticity complex, Compatible spatial discretizations, IMA Vol. Math. Appl., vol. 142, Springer, New York, 2006, pp. 47–67. MR 2249345, DOI 10.1007/0-387-38034-5_{3}
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer. 15 (2006), 1–155. MR 2269741, DOI 10.1017/S0962492906210018
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math. Comp. 76 (2007), no. 260, 1699–1723. MR 2336264, DOI 10.1090/S0025-5718-07-01998-9
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Geometric decompositions and local bases for spaces of finite element differential forms, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 21-26, 1660–1672. MR 2517938, DOI 10.1016/j.cma.2008.12.017
- Douglas N. Arnold and Ragnar Winther, Mixed finite elements for elasticity, Numer. Math. 92 (2002), no. 3, 401–419. MR 1930384, DOI 10.1007/s002110100348
- V. I. Arnol′d, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York-Heidelberg, 1978. Translated from the Russian by K. Vogtmann and A. Weinstein. MR 0690288, DOI 10.1007/978-1-4757-1693-1
- Ivo Babuška, Error-bounds for finite element method, Numer. Math. 16 (1970/71), 322–333. MR 288971, DOI 10.1007/BF02165003
- I. Babuška and J. Osborn, Eigenvalue problems, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 641–787. MR 1115240
- Garth A. Baker, Combinatorial Laplacians and Sullivan-Whitney forms, Differential geometry (College Park, Md., 1981/1982) Progr. Math., vol. 32, Birkhäuser, Boston, Mass., 1983, pp. 1–33. MR 702525
- Pavel B. Bochev and James M. Hyman, Principles of mimetic discretizations of differential operators, Compatible spatial discretizations, IMA Vol. Math. Appl., vol. 142, Springer, New York, 2006, pp. 89–119. MR 2249347, DOI 10.1007/0-387-38034-5_{5}
- D. Boffi, A note on the de Rham complex and a discrete compactness property, Appl. Math. Lett. 14 (2001), no. 1, 33–38. MR 1793699, DOI 10.1016/S0893-9659(00)00108-7
- Daniele Boffi, Compatible discretizations for eigenvalue problems, Compatible spatial discretizations, IMA Vol. Math. Appl., vol. 142, Springer, New York, 2006, pp. 121–142. MR 2249348, DOI 10.1007/0-387-38034-5_{6}
- Daniele Boffi, Approximation of eigenvalues in mixed form, discrete compactness property, and application to $hp$ mixed finite elements, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37-40, 3672–3681. MR 2339993, DOI 10.1016/j.cma.2006.10.024
- Daniele Boffi, Franco Brezzi, and Lucia Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form, Math. Comp. 69 (2000), no. 229, 121–140. MR 1642801, DOI 10.1090/S0025-5718-99-01072-8
- Alain Bossavit, Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism, IEE Trans. Mag. 135, Part A (1988), 493–500.
- Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304, DOI 10.1007/978-1-4757-3951-0
- J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7 (1970), 112–124. MR 263214, DOI 10.1137/0707006
- F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 129–151 (English, with French summary). MR 365287
- Franco Brezzi and Klaus-Jürgen Bathe, A discourse on the stability conditions for mixed finite element formulations, Comput. Methods Appl. Mech. Engrg. 82 (1990), no. 1-3, 27–57. Reliability in computational mechanics (Austin, TX, 1989). MR 1077650, DOI 10.1016/0045-7825(90)90157-H
- Franco Brezzi, Jim Douglas Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217–235. MR 799685, DOI 10.1007/BF01389710
- Franco Brezzi, Konstantin Lipnikov, and Mikhail Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal. 43 (2005), no. 5, 1872–1896. MR 2192322, DOI 10.1137/040613950
- J. Brüning and M. Lesch, Hilbert complexes, J. Funct. Anal. 108 (1992), no. 1, 88–132. MR 1174159, DOI 10.1016/0022-1236(92)90147-B
- J. G. Charney, R. Fjörtoft, and J. von Neumann, Numerical integration of the barotropic vorticity equation, Tellus 2 (1950), 237–254. MR 42799, DOI 10.3402/tellusa.v2i4.8607
- Jeff Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), no. 2, 259–322. MR 528965, DOI 10.2307/1971113
- Snorre H. Christiansen, Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension, Numer. Math. 107 (2007), no. 1, 87–106. MR 2317829, DOI 10.1007/s00211-007-0081-2
- Snorre H. Christiansen and Ragnar Winther, Smoothed projections in finite element exterior calculus, Math. Comp. 77 (2008), no. 262, 813–829. MR 2373181, DOI 10.1090/S0025-5718-07-02081-9
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. 9 (1975), no. R-2, 77–84 (English, with Loose French summary). MR 0400739
- Martin Costabel, A coercive bilinear form for Maxwell’s equations, J. Math. Anal. Appl. 157 (1991), no. 2, 527–541. MR 1112332, DOI 10.1016/0022-247X(91)90104-8
- R. Courant, K. Friedrichs, and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100 (1928), no. 1, 32–74 (German). MR 1512478, DOI 10.1007/BF01448839
- L. Demkowicz, P. Monk, L. Vardapetyan, and W. Rachowicz, de Rham diagram for $hp$ finite element spaces, Comput. Math. Appl. 39 (2000), no. 7-8, 29–38. MR 1746160, DOI 10.1016/S0898-1221(00)00062-6
- Mathieu Desbrun, Anil N. Hirani, Melvin Leok, and Jerrold E. Marsden, Discrete exterior calculus, 2005, available from arXiv.org/math.DG/0508341.
- Jozef Dodziuk, Finite-difference approach to the Hodge theory of harmonic forms, Amer. J. Math. 98 (1976), no. 1, 79–104. MR 407872, DOI 10.2307/2373615
- J. Dodziuk and V. K. Patodi, Riemannian structures and triangulations of manifolds, J. Indian Math. Soc. (N.S.) 40 (1976), no. 1-4, 1–52 (1977). MR 488179
- Jim Douglas Jr. and Jean E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39–52. MR 771029, DOI 10.1090/S0025-5718-1985-0771029-9
- Patrick Dular and Christophe Geuzaine, GetDP: A general environment for the treatment of discrete problems, http://geuz.org/getdp/.
- Michael Eastwood, A complex from linear elasticity, The Proceedings of the 19th Winter School “Geometry and Physics” (Srní, 1999), 2000, pp. 23–29. MR 1758075
- Anders Logg et al., The FEniCS project, http://www.fenics.org.
- Daniel White et al., EMSolve: Unstructured grid computational electromagnetics using mixed finite element methods, https://www-eng.llnl.gov/emsolve/emsolve_home.html.
- Wolfgang Bangerth et al., deal.II: A finite element differential equations analysis library, http://www.dealii.org.
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845
- R. S. Falk and J. E. Osborn, Error estimates for mixed methods, RAIRO Anal. Numér. 14 (1980), no. 3, 249–277 (English, with French summary). MR 592753
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe, Design of tangent vector fields, SIGGRAPH ’07: ACM SIGGRAPH 2007 Papers (New York), ACM, 2007, paper 56.
- Badouin M. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method, Stress Analysis (O. C. Zienkiewicz and G. S. Holister, eds.), Wiley, New York, 1965, pp. 145–197.
- Matthew P. Gaffney, The harmonic operator for exterior differential forms, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 48–50. MR 48138, DOI 10.1073/pnas.37.1.48
- N. V. Glotko, On the complex of Sobolev spaces associated with an abstract Hilbert complex, Sibirsk. Mat. Zh. 44 (2003), no. 5, 992–1014 (Russian, with Russian summary); English transl., Siberian Math. J. 44 (2003), no. 5, 774–792. MR 2019553, DOI 10.1023/A:1025924417135
- Steven J. Gortler, Craig Gotsman, and Dylan Thurston, Discrete one-forms on meshes and applications to 3D mesh parameterization, Comput. Aided Geom. Design 23 (2006), no. 2, 83–112. MR 2189438, DOI 10.1016/j.cagd.2005.05.002
- M. Gromov and M. A. Shubin, Near-cohomology of Hilbert complexes and topology of non-simply connected manifolds, Astérisque 210 (1992), 9–10, 283–294. Méthodes semi-classiques, Vol. 2 (Nantes, 1991). MR 1221363
- Xianfeng David Gu and Shing-Tung Yau, Computational conformal geometry, Advanced Lectures in Mathematics (ALM), vol. 3, International Press, Somerville, MA; Higher Education Press, Beijing, 2008. With 1 CD-ROM (Windows, Macintosh and Linux). MR 2439718
- R. Hiptmair, Canonical construction of finite elements, Math. Comp. 68 (1999), no. 228, 1325–1346. MR 1665954, DOI 10.1090/S0025-5718-99-01166-7
- —, Higher order Whitney forms, Geometrical Methods in Computational Electromagnetics (F. Teixeira, ed.), PIER, vol. 32, EMW Publishing, Cambridge, MA, 2001, pp. 271–299.
- R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer. 11 (2002), 237–339. MR 2009375, DOI 10.1017/S0962492902000041
- Lars Hörmander, The analysis of linear partial differential operators. III, Classics in Mathematics, Springer, Berlin, 2007. Pseudo-differential operators; Reprint of the 1994 edition. MR 2304165, DOI 10.1007/978-3-540-49938-1
- inuTech GmbH, Diffpack: Expert tools for expert problems, http://www.diffpack.com.
- Klaus Jänich, Vector analysis, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2001. Translated from the second German (1993) edition by Leslie Kay. MR 1811820, DOI 10.1007/978-1-4757-3478-2
- C. Johnson and B. Mercier, Some equilibrium finite element methods for two-dimensional elasticity problems, Numer. Math. 30 (1978), no. 1, 103–116. MR 483904, DOI 10.1007/BF01403910
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452, DOI 10.1007/978-3-642-66282-9
- Fumio Kikuchi, On a discrete compactness property for the Nédélec finite elements, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), no. 3, 479–490. MR 1039483
- P. Robert Kotiuga, Hodge decompositions and computational electromagnetics, Ph.D. thesis in Electrical Engineering, McGill University, 1984.
- Serge Lang, Differential and Riemannian manifolds, 3rd ed., Graduate Texts in Mathematics, vol. 160, Springer-Verlag, New York, 1995. MR 1335233, DOI 10.1007/978-1-4612-4182-9
- Jean-Louis Loday, Cyclic homology, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. MR 1217970, DOI 10.1007/978-3-662-21739-9
- Anders Logg and Kent-Andre Mardal, Finite element exterior calculus, http://www.fenics.org/wiki/Finite_Element_Exterior_Calculus, 2009.
- Peter Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR 2059447, DOI 10.1093/acprof:oso/9780198508885.001.0001
- Werner Müller, Analytic torsion and $R$-torsion of Riemannian manifolds, Adv. in Math. 28 (1978), no. 3, 233–305. MR 498252, DOI 10.1016/0001-8708(78)90116-0
- J.-C. Nédélec, Mixed finite elements in $\textbf {R}^{3}$, Numer. Math. 35 (1980), no. 3, 315–341. MR 592160, DOI 10.1007/BF01396415
- J.-C. Nédélec, A new family of mixed finite elements in $\textbf {R}^3$, Numer. Math. 50 (1986), no. 1, 57–81. MR 864305, DOI 10.1007/BF01389668
- R. A. Nicolaides and K. A. Trapp, Covolume discretization of differential forms, Compatible spatial discretizations, IMA Vol. Math. Appl., vol. 142, Springer, New York, 2006, pp. 161–171. MR 2249350, DOI 10.1007/0-387-38034-5_{8}
- R. Picard, An elementary proof for a compact imbedding result in generalized electromagnetic theory, Math. Z. 187 (1984), no. 2, 151–164. MR 753428, DOI 10.1007/BF01161700
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 292–315. MR 0483555
- Yves Renard and Julien Pommier, Getfem++, http://home.gna.org/getfem/.
- Joachim Schöberl, NGSolve – $3$D finite element solver, http://www.hpfem.jku.at/ngsolve/.
- Joachim Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp. 77 (2008), no. 262, 633–649. MR 2373173, DOI 10.1090/S0025-5718-07-02030-3
- Rolf Stenberg, On the construction of optimal mixed finite element methods for the linear elasticity problem, Numer. Math. 48 (1986), no. 4, 447–462. MR 834332, DOI 10.1007/BF01389651
- Rolf Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math. 53 (1988), no. 5, 513–538. MR 954768, DOI 10.1007/BF01397550
- R. Stenberg, Two low-order mixed methods for the elasticity problem, The mathematics of finite elements and applications, VI (Uxbridge, 1987) Academic Press, London, 1988, pp. 271–280. MR 956898
- D. Sullivan, Differential forms and the topology of manifolds, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 37–49. MR 0370611
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078, DOI 10.1007/BF02684341
- Michael E. Taylor, Partial differential equations. I, Applied Mathematical Sciences, vol. 115, Springer-Verlag, New York, 1996. Basic theory. MR 1395148, DOI 10.1007/978-1-4684-9320-7
- John von Neumann and H. H. Goldstine, Numerical inverting of matrices of high order, Bull. Amer. Math. Soc. 53 (1947), 1021–1099. MR 24235, DOI 10.1090/S0002-9904-1947-08909-6
- Ke Wang, Weiwei, Yiying Tong, Desbrun Mathieu, and Peter Schröder, Edge subdivision schemes and the construction of smooth vector fields, ACM Trans. on Graphics 25 (2006), 1041–1048.
- Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. MR 0087148, DOI 10.1515/9781400877577
- Jinchao Xu and Ludmil Zikatanov, Some observations on Babuška and Brezzi theories, Numer. Math. 94 (2003), no. 1, 195–202. MR 1971217, DOI 10.1007/s002110100308
- K\B{o}saku Yosida, Functional analysis, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the sixth (1980) edition. MR 1336382, DOI 10.1007/978-3-642-61859-8
Additional Information
- Douglas N. Arnold
- Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
- MR Author ID: 27240
- Email: arnold@umn.edu
- Richard S. Falk
- Affiliation: Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854
- Email: falk@math.rutgers.edu
- Ragnar Winther
- Affiliation: Centre of Mathematics for Applications and Department of Informatics, University of Oslo, 0316 Oslo, Norway
- MR Author ID: 183665
- Email: ragnar.winther@cma.uio.no
- Received by editor(s): June 23, 2009
- Received by editor(s) in revised form: August 12, 2009
- Published electronically: January 25, 2010
- Additional Notes: The work of the first author was supported in part by NSF grant DMS-0713568.
The work of the second author was supported in part by NSF grant DMS-0609755.
The work of the third author was supported by the Norwegian Research Council - © Copyright 2010 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 47 (2010), 281-354
- MSC (2000): Primary 65N30, 58A14
- DOI: https://doi.org/10.1090/S0273-0979-10-01278-4
- MathSciNet review: 2594630