Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Minkowski in Königsberg 1884: A talk in Lindemann’s colloquium
HTML articles powered by AMS MathViewer

by Joachim Schwermer PDF
Bull. Amer. Math. Soc. 47 (2010), 355-362 Request permission
References
  • C. F. Gauss, Recension der “Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber.” Göttingsche Gelehrte Anzeigen, July 9, pp. 1065 (1831); reprinted in J. Reine Angew. Math. 20 (1840), 312–320.
  • Ch. Hermite, Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objets de la théorie des nombres, J. Reine Angew. Math. 40 (1850), 261–315.
  • C. Jungnickel, R. McCormmach, Intellectual Mastery of Nature-Theoretical Physics from Ohm to Einstein, 2 vols., 1: The Torch of Mathematics 1800–1870, 2: The Now Mighty Theoretical Physics 1870–1925. Chicago: The University of Chicago Press 1986.
  • F. Lindemann, Lebenserinnerungen, ed. I.Verholzer, München: Selbstverlag 1971.
  • H. Minkowski, Sur la réduction des formes quadratiques positives quaternaires, C. R. Acad. Sci. 96 (1883), 1205–1210.
  • H. Minkowski, Diskontinuitätsbereich für arithmetische Äquivalenz, J. Reine Angew. Math. 129 (1905), 220–279.
  • H. Minkowski, Gesammelte Abhandlungen , ed. D. Hilbert, coll. A. Speiser, H. Weyl, 2 vols. Leipzig, Berlin: Teubner 1911. Reprinted in 1 vol. New York: Chelsea 1967.
  • K. Olesko, Physics as a Calling. Discipline and Practise in the Königsberg Seminar for Physics, Ithaca and London: Cornell University Press 1991.
  • K.-H. Schlote, Die Königsberger Schule, In: Die Albertus-Universität zu Königsberg und ihre Professoren, ed. D. Rauschning, D. v. Nerée, pp. 499–508. Berlin: Duncker-Humblot 1995
  • J. Schwermer, Räumliche Anschauung und Minima positiv definiter quadratischer Formen. Zur Habilitation von Hermann Minkowski 1887 in Bonn, Jahresber. Deutsch. Math.-Verein. 93 (1991), no. 2, 49–105 (German). MR 1106536
  • Joachim Schwermer, Reduction theory of quadratic forms: towards räumliche Anschauung in Minkowski’s early work, The shaping of arithmetic after C. F. Gauss’s Disquisitiones arithmeticae, Springer, Berlin, 2007, pp. 483–504. MR 2308294, DOI 10.1007/978-3-540-34720-0_{1}8
  • Walter Strobl, Aus den wissenschaftlichen Anfängen Hermann Minkowskis, Historia Math. 12 (1985), no. 2, 142–156 (German, with English, French and Spanish summaries). MR 795135, DOI 10.1016/0315-0860(85)90004-7
Similar Articles
Additional Information
  • Joachim Schwermer
  • Affiliation: Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, A-1090 Vienna, Austria; and Erwin Schrödinger International Institute for Mathematical Physics, Boltzmanngasse 9, A-1090 Vienna, Austria
  • Email: Joachim.Schwermer@univie.ac.at
  • Received by editor(s): October 2, 2009
  • Published electronically: February 2, 2010
  • Additional Notes: The author thanks Della Fenster for her insightful comments on a first version of this note.
  • © Copyright 2010 American Mathematical Society
  • Journal: Bull. Amer. Math. Soc. 47 (2010), 355-362
  • MSC (2000): Primary 11F75, 22E40; Secondary 11F70, 57R95
  • DOI: https://doi.org/10.1090/S0273-0979-10-01291-7
  • MathSciNet review: 2594631