Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Minkowski in Königsberg 1884: A talk in Lindemann’s colloquium


Author: Joachim Schwermer
Journal: Bull. Amer. Math. Soc. 47 (2010), 355-362
MSC (2000): Primary 11F75, 22E40; Secondary 11F70, 57R95
DOI: https://doi.org/10.1090/S0273-0979-10-01291-7
Published electronically: February 2, 2010
MathSciNet review: 2594631
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

References
  • C. F. Gauss, Recension der “Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber.” Göttingsche Gelehrte Anzeigen, July 9, pp. 1065 (1831); reprinted in J. Reine Angew. Math. 20 (1840), 312–320.
  • Ch. Hermite, Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objets de la théorie des nombres, J. Reine Angew. Math. 40 (1850), 261–315.
  • C. Jungnickel, R. McCormmach, Intellectual Mastery of Nature-Theoretical Physics from Ohm to Einstein, 2 vols., 1: The Torch of Mathematics 1800–1870, 2: The Now Mighty Theoretical Physics 1870–1925. Chicago: The University of Chicago Press 1986.
  • F. Lindemann, Lebenserinnerungen, ed. I.Verholzer, München: Selbstverlag 1971.
  • H. Minkowski, Sur la réduction des formes quadratiques positives quaternaires, C. R. Acad. Sci. 96 (1883), 1205–1210.
  • H. Minkowski, Diskontinuitätsbereich für arithmetische Äquivalenz, J. Reine Angew. Math. 129 (1905), 220–279.
  • H. Minkowski, Gesammelte Abhandlungen , ed. D. Hilbert, coll. A. Speiser, H. Weyl, 2 vols. Leipzig, Berlin: Teubner 1911. Reprinted in 1 vol. New York: Chelsea 1967.
  • K. Olesko, Physics as a Calling. Discipline and Practise in the Königsberg Seminar for Physics, Ithaca and London: Cornell University Press 1991.
  • K.-H. Schlote, Die Königsberger Schule, In: Die Albertus-Universität zu Königsberg und ihre Professoren, ed. D. Rauschning, D. v. Nerée, pp. 499–508. Berlin: Duncker-Humblot 1995
  • J. Schwermer, Räumliche Anschauung und Minima positiv definiter quadratischer Formen. Zur Habilitation von Hermann Minkowski 1887 in Bonn, Jahresber. Deutsch. Math.-Verein. 93 (1991), no. 2, 49–105 (German). MR 1106536
  • Joachim Schwermer, Reduction theory of quadratic forms: towards räumliche Anschauung in Minkowski’s early work, The shaping of arithmetic after C. F. Gauss’s Disquisitiones arithmeticae, Springer, Berlin, 2007, pp. 483–504. MR 2308294, DOI https://doi.org/10.1007/978-3-540-34720-0_18
  • Walter Strobl, Aus den wissenschaftlichen Anfängen Hermann Minkowskis, Historia Math. 12 (1985), no. 2, 142–156 (German, with English, French and Spanish summaries). MR 795135, DOI https://doi.org/10.1016/0315-0860%2885%2990004-7

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 11F75, 22E40, 11F70, 57R95

Retrieve articles in all journals with MSC (2000): 11F75, 22E40, 11F70, 57R95


Additional Information

Joachim Schwermer
Affiliation: Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, A-1090 Vienna, Austria; and Erwin Schrödinger International Institute for Mathematical Physics, Boltzmanngasse 9, A-1090 Vienna, Austria
Email: Joachim.Schwermer@univie.ac.at

Keywords: Quadratic forms, reduction theory
Received by editor(s): October 2, 2009
Published electronically: February 2, 2010
Additional Notes: The author thanks Della Fenster for her insightful comments on a first version of this note.
Article copyright: © Copyright 2010 American Mathematical Society