Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 2651087
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Alexander Molev
Title: Yangians and classical Lie algebras
Additional book information: Mathematical Surveys and Monographs, 143, American Mathematical Society, Providence, RI, 2007, xviii+400 pp., ISBN 13: 978-0-8218-4374-1, US$99 hardcover

References [Enhancements On Off] (What's this?)

  • Tomoyuki Arakawa, Drinfeld functor and finite-dimensional representations of Yangian, Comm. Math. Phys. 205 (1999), no. 1, 1–18. MR 1706920, DOI 10.1007/s002200050664
  • Jonathan Brown, Twisted Yangians and finite $W$-algebras, Transform. Groups 14 (2009), no. 1, 87–114. MR 2480853, DOI 10.1007/s00031-008-9041-x
  • Jonathan Brundan and Alexander Kleshchev, Shifted Yangians and finite $W$-algebras, Adv. Math. 200 (2006), no. 1, 136–195. MR 2199632, DOI 10.1016/j.aim.2004.11.004
  • I. V. Cherednik, A new interpretation of Gel′fand-Tzetlin bases, Duke Math. J. 54 (1987), no. 2, 563–577. MR 899405, DOI 10.1215/S0012-7094-87-05423-8
  • Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
  • V. G. Drinfel′d, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060–1064 (Russian). MR 802128
  • V. G. Drinfel′d, Degenerate affine Hecke algebras and Yangians, Funktsional. Anal. i Prilozhen. 20 (1986), no. 1, 69–70 (Russian). MR 831053
  • V. G. Drinfel′d, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798–820. MR 934283
  • V. G. Drinfel′d, A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), no. 1, 13–17 (Russian); English transl., Soviet Math. Dokl. 36 (1988), no. 2, 212–216. MR 914215
  • I. M. Gel′fand and M. L. Cetlin, Finite-dimensional representations of the group of unimodular matrices, Doklady Akad. Nauk SSSR (N.S.) 71 (1950), 825–828 (Russian). MR 0035774
  • A. I. Molev, Finite-dimensional irreducible representations of twisted Yangians, J. Math. Phys. 39 (1998), no. 10, 5559–5600. MR 1642338, DOI 10.1063/1.532551
  • A. Molev, M. Nazarov, and G. Ol′shanskiĭ, Yangians and classical Lie algebras, Uspekhi Mat. Nauk 51 (1996), no. 2(308), 27–104 (Russian); English transl., Russian Math. Surveys 51 (1996), no. 2, 205–282. MR 1401535, DOI 10.1070/RM1996v051n02ABEH002772
  • Maxim Nazarov and Vitaly Tarasov, Representations of Yangians with Gelfand-Zetlin bases, J. Reine Angew. Math. 496 (1998), 181–212. MR 1605817, DOI 10.1515/crll.1998.029
  • G. I. Ol′shanskiĭ, Twisted Yangians and infinite-dimensional classical Lie algebras, Quantum groups (Leningrad, 1990) Lecture Notes in Math., vol. 1510, Springer, Berlin, 1992, pp. 104–119. MR 1183482, DOI 10.1007/BFb0101183
  • N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Quantization of Lie groups and Lie algebras, Algebra i Analiz 1 (1989), no. 1, 178–206 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 1, 193–225. MR 1015339
  • Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158

  • Review Information:

    Reviewer: Jonathan Brundan
    Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
    Journal: Bull. Amer. Math. Soc. 47 (2010), 561-566
    Published electronically: February 9, 2010
    Additional Notes: The reviewer was supported in part by NSF Grant DMS-0635607.
    Review copyright: © Copyright 2010 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.