Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
MathSciNet review: 2731659
Full text of review: PDF This review is available free of charge.
Book Information:
Authors: Percy Deift and Dimitri Gioev
Title: Random matrix theory: invariant ensembles and universality
Additional book information: Courant Lecture Notes in Mathematics, 18, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, Rhode Island, 2009, x+217 pp., ISBN 978-0-8218-4737-4, $33.00
- 1. M. J. Ablowitz and H. Segur, Asymptotic solutions of the Korteweg-deVries equation, Studies in Appl. Math. 57 (1976/77), no. 1, 13–44. MR 481656, https://doi.org/10.1002/sapm197757113
- 2. Pavel Bleher and Alexander Its, Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model, Ann. of Math. (2) 150 (1999), no. 1, 185–266. MR 1715324, https://doi.org/10.2307/121101
- 3. Peter A. Clarkson and J. Bryce McLeod, A connection formula for the second Painlevé transcendent, Arch. Rational Mech. Anal. 103 (1988), no. 2, 97–138. MR 946971, https://doi.org/10.1007/BF00251504
- 4. Percy Deift and Dimitri Gioev, Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices, Comm. Pure Appl. Math. 60 (2007), no. 6, 867–910. MR 2306224, https://doi.org/10.1002/cpa.20164
- 5. Percy Deift and Dimitri Gioev, Universality in random matrix theory for orthogonal and symplectic ensembles, Int. Math. Res. Pap. IMRP 2 (2007), Art. ID rpm004, 116. MR 2335245
- 6. P. Deift, T. Kriecherbauer, K. T-R McLaughlin, S. Venakides, and X. Zhou, Asymptotics for polynomials orthogonal with respect to varying exponential weights, Internat. Math. Res. Notices 16 (1997), 759–782. MR 1472344, https://doi.org/10.1155/S1073792897000500
- 7. P. A. Deift and X. Zhou, Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math. 48 (1995), no. 3, 277–337. MR 1322812, https://doi.org/10.1002/cpa.3160480304
- 8. S. P. Hastings and J. B. McLeod, A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Rational Mech. Anal. 73 (1980), no. 1, 31–51. MR 555581, https://doi.org/10.1007/BF00283254
- 9. Michio Jimbo, Tetsuji Miwa, Yasuko Môri, and Mikio Sato, Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Phys. D 1 (1980), no. 1, 80–158. MR 573370, https://doi.org/10.1016/0167-2789(80)90006-8
- 10. A. B. J. Kuijlaars and K. T-R McLaughlin, Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields, Comm. Pure Appl. Math. 53 (2000), no. 6, 736–785. MR 1744002, https://doi.org/10.1002/(SICI)1097-0312(200006)53:6<736::AID-CPA2>3.0.CO;2-5
- 11. Madan Lal Mehta, Random matrices, 3rd ed., Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam, 2004. MR 2129906
- 12. L. Pastur and M. Shcherbina, Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles, J. Statist. Phys. 86 (1997), no. 1-2, 109–147. MR 1435193, https://doi.org/10.1007/BF02180200
- 13.
Alexandre
Stojanovic, Universality in orthogonal and symplectic invariant
matrix models with quartic potential, Math. Phys. Anal. Geom.
3 (2000), no. 4, 339–373 (2001). MR
1845356, https://doi.org/10.1023/A:1011457714198
Alexandre Stojanovic, Errata: “Universality in orthogonal and symplectic invariant matrix models with quartic potential” [Math. Phys. Anal. Geom. 3 (2000), no. 4, 339–373; MR1845356], Math. Phys. Anal. Geom. 7 (2004), no. 4, 347–349. MR 2108624, https://doi.org/10.1007/s11040-004-2719-y - 14. Craig A. Tracy and Harold Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), no. 1, 151–174. MR 1257246
- 15. Craig A. Tracy and Harold Widom, On orthogonal and symplectic matrix ensembles, Comm. Math. Phys. 177 (1996), no. 3, 727–754. MR 1385083
- 16. Harold Widom, On the relation between orthogonal, symplectic and unitary matrix ensembles, J. Statist. Phys. 94 (1999), no. 3-4, 347–363. MR 1675356, https://doi.org/10.1023/A:1004516918143
Review Information:
Reviewer: Estelle Basor
Affiliation: American Institute of Mathematics
Email: ebasor@aimath.org
Journal: Bull. Amer. Math. Soc. 48 (2011), 147-152
MSC (2010): Primary 60-02; Secondary 47Bxx, 47N50, 60B99, 60E05, 62E99, 82Bxx
DOI: https://doi.org/10.1090/S0273-0979-2010-01307-0
Published electronically: October 27, 2010
Review copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.