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While there has been a flurry of recent activity in random matrix theory, many of
the ideas go back to the pioneering work of Wigner in the 1950s. He proposed that
the local statistical behavior of scattering resonances of neutrons off large nuclei
could be modeled by the statistical behavior of the eigenvalues of real symmet-
ric random matrices. The data supported this conjecture and in the subsequent
years, many of the conjectures were verified, and the statistical behavior of ran-
dom matrices was seen to model many problems in physics and pure and applied
mathematics.

So what exactly do we mean by a random matrix? At times it means that we are
considering matrices whose entries are independent, random variables taken from
some distribution. For example, we might consider n×n symmetric matrices whose
diagonal and upper-diagonal elements are independent, identically distributed ran-
dom variables. Or we might associate a probability distribution to a set of matrices.
And no matter which kind of matrices we consider, the central questions are: what
statistical properties are shared by them, in particular, what can we say about the
eigenvalue distribution, and what can we say universally when n gets large?

The focus of book by Deift and Gioev is on the latter, that is, on classes or
ensembles of random matrices with associated distributions and in particular on
the following three important, invariant ensembles.

(1) Unitary Ensembles (UE) which are n×n Hermitian matrices together with
a distribution that is invariant under unitary conjugation. In other words,
if U is any unitary matrix, the measure of a set S of matrices is the same
as US U∗.

(2) Orthogonal Ensembles (OE) which are n× n symmetric matrices together
with a distribution that is invariant under conjugation by an orthgonal
matrix.

(3) Symplectic ensembles (SE) which are 2n × 2n Hermitian self-dual matri-
ces together with a distribution that is invariant under unitary-symplectic
conjugation, that is, matrices M that satisfy M = M∗ = JM tJ t and dis-
tributions invariant under the mapping M → UMU∗ with U satisfying
UU∗ = I and UJU∗ = J where

J = diag(J2, . . . , J2), J2 =

(
0 1

−1 0

)
.

Each has an associated probability distribution of the form

Pn(M) dM =
1

Zn
e−tr Q(M)dM,
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where dM is Lebesgue measure on the algebraically independent entries ofM , Q is a
real-valued function, generally an even degree polynomial, and Zn is a normalization
constant.

In the case that Q(x) = x2, these measures are equivalent to having, as much as
is algebraically possible, matrices whose entries are independent normal or Gaussian
random variables. These ensembles are probably the most studied and are indicated
with an extra “Gaussian” adjective as the Gaussian Unitary Ensemble (GUE), the
Gaussian Orthogonal Ensemble (GOE), and the Gaussian Symplectic Ensemble
(GSE).

In each of the above cases one can compute the induced distribution on the
space of eigenvalues. For example, in the UE case one can diagonalize a Hermitian
matrix as UDU∗, where U is unitary and D is a diagonal matrix and then make a
change of variables M �→ (U,D). After integrating out the unitary part (which is
equivalent to computing a Jacobian) one arrives at an induced distribution on the
space of eigenvalues. A similar computation can be made for all three ensembles
and the resulting probability densities have the form

cne
− β

2

∑n
i=1 Q(xi)|Δ(xi)|β,

where Δ(xi) is the Vandermonde determinant

Δ(xi) = det(xi−1
j )1≤i,j≤n =

∏
j<i

(xi − xj),

and cn is the normalizing constant.
Here, more precisely, we mean that if f is any symmetric function of n real

variables, then the expected value of f is

cn

∫
Rn

f(x1, x2, . . . , xn)e
− β

2

∑n
i=1 Q(xi)|Δ(xi)|βdx1dx2 . . . dxn.

For UE β = 2, for OE β = 1, and for SE β = 4, and thus the three ensembles
are often referred to as the β = 1, 2, or 4 ensembles. (It can be shown for SE that
eigenvalues occur in pairs and thus all three densities are defined as functions of n
variables.)

As soon as the densities are known, one can try to compute some statistical
information about the eigenvalues. Since it is easier to describe, we illustrate the
ideas with GUE. We can first factor the exponential terms into the Vandermonde

determinant so that the entry xi−1
j is replaced by e−x2

j/2xi−1
j , and then using el-

ementary row operations we can replace each row by any polynomial. That is,

replace e−x2
j/2xi−1

j by e−x2
j/2pi−1(xj) only changing the determinant by a constant

factor. So we choose to replace them by the normalized Hermite polynomials hk(x)
which satisfy ∫ ∞

−∞
hk(x)hj(x)e

−x2

dx = δjk.

From this it follows, after identifying the constant, that the density on the space
of eigenvalues for GUE is

cne
−

∑n
i=1 x2

i |Δ(xi)|2 =
1

n!
detKn(xi, xj),
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where

Kn(xi, xj) =

n−1∑
k=0

ϕk(xi)ϕk(xj),

and ϕk(x) = hk(x)e
−x2

2 . The Christoffel-Darboux formula allows one to analyze
Kn(x, y) in a more concise form since it says that for x �= y,

Kn(x, y) =

√
n

2

φn(x)φn−1(y)− φn(y)φn−1(x)

x− y
,

and for x = y, Kn(x, y) is the limit of this expression as x → y.
All the information we need is somehow contained in the function Kn(x, y). It is

clear that for large n this information is intimately related to knowledge about the
asymptotics of the Hermite polynomials. For example, the density of eigenvalues,
ρn(x), defined to be the limit of the expected number of eigenvalues in an interval
around x divided by its length, as the length tends to zero, is exactly Kn(x, x).
Using the known asymptotics for the Hermite polynomials, one can show that

lim
n→∞

√
2

n
ρn(

√
2n x ) =

{
2
π

√
1− x2 if |x| < 1,

0 if |x| > 1

holds uniformly on compact sets of |x| < 1 and |x| > 1. This result, one of the first
successes of Wigner’s program is called the Wigner semi-circle law. Of course, this
computation was only for GUE, but at least for UE, the difference is that we would
replace the Hermite polynomials with those orthogonal with respect to the weight
e−Q(x).

Another important statistic is the gap probability, which is the probability that
no eigenvalues are in the interval (a, b). Using algebraic properties of Kn, one can
show that the gap probability is given by

∞∑
k=0

[
(−1)k

k!

∫ b

a

· · ·
∫ b

a

det (Kn (xi, xj))|ki,j=1 dx1 · · · dxk

]
.

This sum can be reinterpreted as a Fredholm determinant for the operator I−Kn,
where Kn is the integral operator on L2(a, b) with kernel Kn(x, y). Now if we wish
to think about this operator for n large, it is useful to make a change of variables
by replacing Kn(x, y) with

π√
2n

Kn

(
πx√
2n

,
πy√
2n

)
.

Our scaling is determined by the semi-circle law, which tells us that there are on
the order of

√
n eigenvalues in any interval (a, b) contained in the support of the

semi-circle, and without scaling the probability of no eigenvalues in the interval
tends to zero. So we apply a microscope to the interval and scale its size so that we
are able to distinguish the eigenvalues. (Our choice of constants in the scaling is
done so that the expected number of eigenvalues per unit interval is one.) A change
of variables in the integral shows that this is equivalent to scaling the kernel.

Now once again the asymptotics of the orthogonal polynomials, along with the
Christoffel-Darboux formula, become crucial, and one can show that

lim
n→∞

π√
2n

Kn(
πx√
2n

,
πy√
2n

) =
sin π(x− y)

π(x− y)
.
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The end result is that we are now interested in the Fredholm determinant det(I−K)

on L2(a, b) with kernel K(x, y) = sinπ(x−y)
π(x−y) . This kernel, called the sine kernel, is

translation invariant and so we can replace (a, b) with an interval of the same length
(0, s). In a wonderful connection to differential equations, it is known by the work
of Jimbo, Miwa, Môri, and Sato [9] that if we define

σ(s) = − d

ds
log det(I −K),

then σ satisfies a second-order nonlinear differential equation of Painlevé type.
The theory of Painlevé equations and the theory of integrable systems then yield
information about the asymptotics of the probability distribution.

The kind of scaling just done is often called “scaling in the bulk”, and this idea
can be extended to the β = 1 and 4 cases, although these are considerably more
complicated since the kernels are matrix kernels as opposed to scalar kernels.

However, instead of scaling in the bulk one can also scale at the “edge of the
spectrum”. Here we are really investigating the behavior of the eigenvalues near
the largest one, which is around

√
2n. Once again using the asymptotics of the

orthogonal polynomials as a guide to capture the correct scaling factors, we let λmax

be the largest eigenvalue of our random matrix and define the random variable λ
by

λmax =
√
2n+

λ

21/2n1/6
.

Now rescaling our Fredholm determinant kernel leads to a different kernel and
letting (a, b) = (s,∞), we find that in the limit

Prob(λ ≤ s) = det(I −KAiry),

where KAiry is the integral operator defined on L2(s,∞) with kernel

KAiry =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
.

Note that all the eigenvalues are less than s if and only if the largest is less than
s, so this determinant is the formula for the cumulative distribution of the largest
eigenvalue. Note also the similarity between the form of this Airy kernel and the
sine kernel.

The determinant det(I −KAiry), generally denoted by F2(s), is called a Tracy-
Widom distribution. In 1994 it was shown by Tracy and Widom that the distri-
bution could be expressed by an integral involving a Painlevé II transcendent, and
thereafter they also discovered the distributions and analogous results for β = 1
and 4 [14, 15]. These also can be expressed in terms of Painlevé functions:

F1(s)
2 = exp

(
−
∫ ∞

s

q(x)dx

)
F2(s),

F2(s) = exp

(
−
∫ ∞

s

(x− s)q(x)2dx

)
,

F4(s/
√
2)2 = cosh2

(
1

2

∫ ∞

s

q(x)dx

)
F2(s),
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where q satisfies the Painlevé equation

q′′ = xq + 2q3

with boundary condition q(x) ∼ Ai(x) as x → ∞. (Proofs that such a solution
exists, together with the evaluation of its behavior as x → −∞ was first given by
Hastings and McLeod [8]; see also the later works of Clarkson and McLeod [3],
Deift and Zhou [7], and also the paper of Ablowitz and Segur [1].)

The discovery of the three distributions had remarkable consequences in analysis,
because it soon became apparent that the Tracy-Widom distributions occurred
naturally in many other settings. They can be seen in applications related to
patience sorting, random permutations, tiling problems, random growth models,
and principal component analysis. In some sense, they give rise to a different type
of central limit theorem, meaning that if one rescales certain random variables, the
limiting distribution is Tracy-Widom.

For an extensive history of random matrix theory, the reader is referred to the
classic book by Mehta [11] where much more can be found about other ensem-
bles, universality, and connections to other topics. There are many other facets
of random matrix theory and its applications not mentioned in this review. One
can consider general β for example, or one can consider Wigner ensembles, those
whose entries are independent random variables, or one can perturb UE by adding
a fixed Hermitian matrix. There are unexpected applications of random matrix
theory to number theory and the spacing of consecutive zeros of L-functions. All
of these topics and many more have generated much interesting mathematics in
recent years.

Because it is the most transparent case, this review has concentrated on GUE.
There are two elements that make things much harder than the case of GUE.
One is to extend to more general functions Q(x) and the other is to consider the
orthogonal and symplectic ensembles. The book by Deift and Gioev gives a very
careful treatment of all three ensembles and as much as is possible and reasonable
for general functions Q(x). The goal is to show that the limiting kernels are the
same as in the Gaussian cases, and thus the limiting distributions are universal.
They precisely define and include all the analytic and algebraic identities necessary
to derive the formulas for the basic eigenvalue statistics generally following the
approach of Tracy and Widom.

The most important feature of the book is the second half where they give a clear
and complete exposition for both OE and SE. They produce the error estimates
which yield the limiting kernels for the gap probabilities in the case where Q(x) is
a monomial although the methods are applicable for polynomials of even degree.
The authors make use an alternative description of the orthogonal and symplectic
ensembles which was found in 1999 by Widom [16] combined with a difficult analysis
of the asymptotics of the orthogonal polynomials for general Q(x) to obtain the
universality results. These estimates are new and more precise than previously
derived by the authors themselves [4, 5].

Other relevant results for more general Q(x) and β = 2 include those found by
Bleher and Its [2], Deift, Kricherbauer, K. McLaughlin, Venakides, and Zhou [6],
Kuijlaars and McLaughlin [10], Pastur and Shcherbina [12], and for the quartic case
and β = 1 and 4 by Stojanovic, [13].

Much of what is written about random matrix theory comes from a blend of
different points of view and different disciplines. The reviewer is grateful that
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the authors have provided a very nice addition to the literature of random matrix
theory that includes a complete, rigorous treatment of the invariant ensembles. It is
based on graduate courses given by the authors, but will prove useful as a general
reference to the specialist and as a valuable introduction to those curious about
random matrices.
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