## The conformal geometry of billiards

HTML articles powered by AMS MathViewer

- by Laura DeMarco PDF
- Bull. Amer. Math. Soc.
**48**(2011), 33-52 Request permission

## Abstract:

This article provides an introduction to some recent results in billiard dynamics. We present results that follow from a study of compact Riemann surfaces (equipped with a holomorphic 1-form) and an $\mathrm {SL}_2\mathbb {R}$ action on the moduli spaces of these surfaces. We concentrate on the progress toward classification of “optimal” billiard tables, those with the simplest trajectory structure.## References

- M. Bainbridge and M. Möller. Deligne-Mumford compactification of the real multiplication locus and Teichmüller curves in genus three.
.*Preprint, 2009* - I. Bouw and M. Möller. Teichmüller curves, triangle groups, and Lyapunov exponents.
.*To appear*, Ann. of Math. (2) - Kariane Calta,
*Veech surfaces and complete periodicity in genus two*, J. Amer. Math. Soc.**17**(2004), no. 4, 871–908. MR**2083470**, DOI 10.1090/S0894-0347-04-00461-8 - Yitwah Cheung,
*Hausdorff dimension of the set of nonergodic directions*, Ann. of Math. (2)**158**(2003), no. 2, 661–678. With an appendix by M. Boshernitzan. MR**2018932**, DOI 10.4007/annals.2003.158.661 - Yitwah Cheung, Pascal Hubert, and Howard Masur,
*Topological dichotomy and strict ergodicity for translation surfaces*, Ergodic Theory Dynam. Systems**28**(2008), no. 6, 1729–1748. MR**2465598**, DOI 10.1017/S0143385708000126 - Y. Cheung, P. Hubert, and H. Masur. Dichotomy for the Hausdorff dimension of the set of nonergodic directions.
.*Preprint, 2009* - Yitwah Cheung and Howard Masur,
*Minimal non-ergodic directions on genus-2 translation surfaces*, Ergodic Theory Dynam. Systems**26**(2006), no. 2, 341–351. MR**2218764**, DOI 10.1017/S0143385705000465 - J. Ellenberg and D. B. McReynolds. Every curve is a Teichmüller curve.
.*Preprint, 2009* - E. Gutkin,
*Billiards on almost integrable polyhedral surfaces*, Ergodic Theory Dynam. Systems**4**(1984), no. 4, 569–584. MR**779714**, DOI 10.1017/S0143385700002650 - Eugene Gutkin and Chris Judge,
*Affine mappings of translation surfaces: geometry and arithmetic*, Duke Math. J.**103**(2000), no. 2, 191–213. MR**1760625**, DOI 10.1215/S0012-7094-00-10321-3 - W. Patrick Hooper,
*Periodic billiard paths in right triangles are unstable*, Geom. Dedicata**125**(2007), 39–46. MR**2322537**, DOI 10.1007/s10711-007-9129-9 - W. P. Hooper. Grid graphs and lattice surfaces.
.*Preprint, 2009* - John Hamal Hubbard,
*Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1*, Matrix Editions, Ithaca, NY, 2006. Teichmüller theory; With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra; With forewords by William Thurston and Clifford Earle. MR**2245223** - P. Hubert and T. A. Schmidt,
*Invariants of translation surfaces*, Ann. Inst. Fourier (Grenoble)**51**(2001), no. 2, 461–495. MR**1824961** - Pascal Hubert and Thomas A. Schmidt,
*Infinitely generated Veech groups*, Duke Math. J.**123**(2004), no. 1, 49–69. MR**2060022**, DOI 10.1215/S0012-7094-04-12312-8 - A. N. Zemljakov and A. B. Katok,
*Topological transitivity of billiards in polygons*, Mat. Zametki**18**(1975), no. 2, 291–300 (Russian). MR**399423** - Richard Kenyon and John Smillie,
*Billiards on rational-angled triangles*, Comment. Math. Helv.**75**(2000), no. 1, 65–108. MR**1760496**, DOI 10.1007/s000140050113 - Steven Kerckhoff, Howard Masur, and John Smillie,
*Ergodicity of billiard flows and quadratic differentials*, Ann. of Math. (2)**124**(1986), no. 2, 293–311. MR**855297**, DOI 10.2307/1971280 - Howard Masur,
*Hausdorff dimension of the set of nonergodic foliations of a quadratic differential*, Duke Math. J.**66**(1992), no. 3, 387–442. MR**1167101**, DOI 10.1215/S0012-7094-92-06613-0 - Howard Masur,
*Ergodic theory of translation surfaces*, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 527–547. MR**2186247**, DOI 10.1016/S1874-575X(06)80032-9 - Howard Masur and Serge Tabachnikov,
*Rational billiards and flat structures*, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015–1089. MR**1928530**, DOI 10.1016/S1874-575X(02)80015-7 - Curtis T. McMullen,
*Billiards and Teichmüller curves on Hilbert modular surfaces*, J. Amer. Math. Soc.**16**(2003), no. 4, 857–885. MR**1992827**, DOI 10.1090/S0894-0347-03-00432-6 - Curtis T. McMullen,
*Teichmüller curves in genus two: discriminant and spin*, Math. Ann.**333**(2005), no. 1, 87–130. MR**2169830**, DOI 10.1007/s00208-005-0666-y - Curtis T. McMullen,
*Teichmüller curves in genus two: the decagon and beyond*, J. Reine Angew. Math.**582**(2005), 173–199. MR**2139715**, DOI 10.1515/crll.2005.2005.582.173 - Curtis T. McMullen,
*Prym varieties and Teichmüller curves*, Duke Math. J.**133**(2006), no. 3, 569–590. MR**2228463**, DOI 10.1215/S0012-7094-06-13335-5 - Curtis T. McMullen,
*Teichmüller curves in genus two: torsion divisors and ratios of sines*, Invent. Math.**165**(2006), no. 3, 651–672. MR**2242630**, DOI 10.1007/s00222-006-0511-2 - Curtis T. McMullen,
*Dynamics of $\textrm {SL}_2(\Bbb R)$ over moduli space in genus two*, Ann. of Math. (2)**165**(2007), no. 2, 397–456. MR**2299738**, DOI 10.4007/annals.2007.165.397 - Martin Möller,
*Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve*, Invent. Math.**165**(2006), no. 3, 633–649. MR**2242629**, DOI 10.1007/s00222-006-0510-3 - Martin Möller,
*Affine groups of flat surfaces*, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 369–387. MR**2497782**, DOI 10.4171/055-1/11 - Jan-Christoph Puchta,
*On triangular billiards*, Comment. Math. Helv.**76**(2001), no. 3, 501–505. MR**1854695**, DOI 10.1007/PL00013215 - Marina Ratner,
*Interactions between ergodic theory, Lie groups, and number theory*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 157–182. MR**1403920** - Richard Evan Schwartz,
*Obtuse triangular billiards. II. One hundred degrees worth of periodic trajectories*, Experiment. Math.**18**(2009), no. 2, 137–171. MR**2549685** - John Smillie and Barak Weiss,
*Veech’s dichotomy and the lattice property*, Ergodic Theory Dynam. Systems**28**(2008), no. 6, 1959–1972. MR**2465608**, DOI 10.1017/S0143385708000114 - Kisao Takeuchi,
*Arithmetic triangle groups*, J. Math. Soc. Japan**29**(1977), no. 1, 91–106. MR**429744**, DOI 10.2969/jmsj/02910091 - W. A. Veech,
*Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards*, Invent. Math.**97**(1989), no. 3, 553–583. MR**1005006**, DOI 10.1007/BF01388890 - Clayton C. Ward,
*Calculation of Fuchsian groups associated to billiards in a rational triangle*, Ergodic Theory Dynam. Systems**18**(1998), no. 4, 1019–1042. MR**1645350**, DOI 10.1017/S0143385798117479

## Additional Information

**Laura DeMarco**- Affiliation: Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago
- MR Author ID: 677013
- Email: demarco@math.uic.edu
- Received by editor(s): July 19, 2010
- Published electronically: October 15, 2010
- © Copyright 2010 American Mathematical Society
- Journal: Bull. Amer. Math. Soc.
**48**(2011), 33-52 - MSC (2010): Primary 37D50, 32G15
- DOI: https://doi.org/10.1090/S0273-0979-2010-01322-7
- MathSciNet review: 2738905