The evolution of geometric structures on 3-manifolds
Author:
Curtis T. McMullen
Journal:
Bull. Amer. Math. Soc. 48 (2011), 259-274
MSC (2010):
Primary 57M50
DOI:
https://doi.org/10.1090/S0273-0979-2011-01329-5
Published electronically:
February 7, 2011
MathSciNet review:
2774092
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper gives an overview of the geometrization conjecture and approaches to its proof.
- Michael T. Anderson, Geometrization of 3-manifolds via the Ricci flow, Notices Amer. Math. Soc. 51 (2004), no. 2, 184–193. MR 2026939
- Michael Atiyah, The geometry and physics of knots, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1990. MR 1078014
- L. Bessières, G. Besson, Michel Boileau, S. Maillot, and J. Porti. Geometrisation of $3$-Manifolds. In preparation.
- Gérard Besson, Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci (d’après G. Perel′man), Astérisque 307 (2006), Exp. No. 947, ix, 309–347 (French, with French summary). Séminaire Bourbaki. Vol. 2004/2005. MR 2296423
- Huai-Dong Cao and Xi-Ping Zhu, A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10 (2006), no. 2, 165–492. MR 2233789, DOI https://doi.org/10.4310/AJM.2006.v10.n2.a2
- Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $3$-manifolds, Invent. Math. 118 (1994), no. 3, 441–456. MR 1296353, DOI https://doi.org/10.1007/BF01231540
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014
- Daryl Cooper, Craig D. Hodgson, and Steven P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, vol. 5, Mathematical Society of Japan, Tokyo, 2000. With a postface by Sadayoshi Kojima. MR 1778789
- Adrien Douady and John H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263–297. MR 1251582, DOI https://doi.org/10.1007/BF02392534
- Nathan M. Dunfield and William P. Thurston, The virtual Haken conjecture: experiments and examples, Geom. Topol. 7 (2003), 399–441. MR 1988291, DOI https://doi.org/10.2140/gt.2003.7.399
- David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447–510. MR 1189862, DOI https://doi.org/10.2307/2946597
- M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), no. 1, 69–96. MR 840401
- S. J. Gould. The Structure of Evolutionary Theory. Harvard University Press, 2002.
- Matthew A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), no. 2, 285–314. MR 906392
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7–136. MR 1375255
- Richard S. Hamilton, Non-singular solutions of the Ricci flow on three-manifolds, Comm. Anal. Geom. 7 (1999), no. 4, 695–729. MR 1714939, DOI https://doi.org/10.4310/CAG.1999.v7.n4.a2
- Allen Hatcher, Hyperbolic structures of arithmetic type on some link complements, J. London Math. Soc. (2) 27 (1983), no. 2, 345–355. MR 692540, DOI https://doi.org/10.1112/jlms/s2-27.2.345
- Jim Hoste, Morwen Thistlethwaite, and Jeff Weeks, The first 1,701,936 knots, Math. Intelligencer 20 (1998), no. 4, 33–48. MR 1646740, DOI https://doi.org/10.1007/BF03025227
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI https://doi.org/10.2307/1971403
- Vaughan Jones, On the origin and development of subfactors and quantum topology, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 2, 309–326. MR 2476415, DOI https://doi.org/10.1090/S0273-0979-09-01244-0
- J. Kahn and V. Markovic. Immersing almost geodesic surfaces in a closed hyperbolic $3$-manifold. Preprint, 2010.
- Michael Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics, vol. 183, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1792613
- R. M. Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997), no. 3, 269–275. MR 1434238, DOI https://doi.org/10.1023/A%3A1007364912784
- Bruce Kleiner and John Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008), no. 5, 2587–2855. MR 2460872, DOI https://doi.org/10.2140/gt.2008.12.2587
- W. B. R. Lickorish, A representation of orientable combinatorial $3$-manifolds, Ann. of Math. (2) 76 (1962), 531–540. MR 151948, DOI https://doi.org/10.2307/1970373
- C. N. Little. Non-alternate $+/-$ knots. Trans. Royal. Soc. Edinburgh 39 (1898-9), 771–778.
- B. Mazur, Number theory as gadfly, Amer. Math. Monthly 98 (1991), no. 7, 593–610. MR 1121312, DOI https://doi.org/10.2307/2324924
- C. McMullen, Iteration on Teichmüller space, Invent. Math. 99 (1990), no. 2, 425–454. MR 1031909, DOI https://doi.org/10.1007/BF01234427
- Curt McMullen, Rational maps and Kleinian groups, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 889–899. MR 1159274
- Curt McMullen, Riemann surfaces and the geometrization of $3$-manifolds, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 207–216. MR 1153266, DOI https://doi.org/10.1090/S0273-0979-1992-00313-0
- Curtis T. McMullen, Renormalization and 3-manifolds which fiber over the circle, Annals of Mathematics Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996. MR 1401347
- Curtis T. McMullen, From dynamics on surfaces to rational points on curves, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 2, 119–140. MR 1713286, DOI https://doi.org/10.1090/S0273-0979-99-00856-3
- William W. Menasco and Morwen B. Thistlethwaite, The Tait flyping conjecture, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 403–412. MR 1098346, DOI https://doi.org/10.1090/S0273-0979-1991-16083-0
- John Milnor, Towards the Poincaré conjecture and the classification of 3-manifolds, Notices Amer. Math. Soc. 50 (2003), no. 10, 1226–1233. MR 2009455
- John W. Morgan, On Thurston’s uniformization theorem for three-dimensional manifolds, The Smith conjecture (New York, 1979) Pure Appl. Math., vol. 112, Academic Press, Orlando, FL, 1984, pp. 37–125. MR 758464, DOI https://doi.org/10.1016/S0079-8169%2808%2961637-2
- John W. Morgan, Recent progress on the Poincaré conjecture and the classification of 3-manifolds, Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 1, 57–78. MR 2115067, DOI https://doi.org/10.1090/S0273-0979-04-01045-6
- John Morgan and Gang Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs, vol. 3, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. MR 2334563
- J. Morgan and G. Tian. Ricci Flow and the Geometrization Conjecture. In preparation.
- D. Mostow. Strong Rigidity of Locally Symmetric Spaces, volume 78 of Annals of Math. Studies. Princeton University Press, 1972.
- Hitoshi Murakami, A quantum introduction to knot theory, Primes and knots, Contemp. Math., vol. 416, Amer. Math. Soc., Providence, RI, 2006, pp. 137–165. MR 2276140, DOI https://doi.org/10.1090/conm/416/07891
- Hitoshi Murakami and Jun Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001), no. 1, 85–104. MR 1828373, DOI https://doi.org/10.1007/BF02392716
- Jean-Pierre Otal, Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235 (1996), x+159 (French, with French summary). MR 1402300
- G. Perelman. The entropy formula for the Ricci flow and its geometric applications. \verb$arXiv:math/0211159$.
- G. Perelman. Ricci flow with surgery on three-manifolds. \verb$arXiv:math/0303109$.
- G. Perelman. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. \verb$arXiv:math/0307245$.
- Henri Poincaré, Œuvres. Tome II, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Sceaux, 1995 (French). Fonctions fuchsiennes. [Fuchsian functions]; With a preface and a biographical sketch of Poincaré by G. Darboux; Reprint of the 1916 original. MR 1401791
- John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MR 1299730
- Alan W. Reid, Arithmeticity of knot complements, J. London Math. Soc. (2) 43 (1991), no. 1, 171–184. MR 1099096, DOI https://doi.org/10.1112/jlms/s2-43.1.171
- Peter Scott, The geometries of $3$-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401–487. MR 705527, DOI https://doi.org/10.1112/blms/15.5.401
- C. Weber and H. Seifert, Die beiden Dodekaederräume, Math. Z. 37 (1933), no. 1, 237–253 (German). MR 1545392, DOI https://doi.org/10.1007/BF01474572
- P. G. Tait. On knots I. Trans. Roy. Soc. Edinburgh 28 (1876-7), 145–190.
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI https://doi.org/10.1090/S0273-0979-1982-15003-0
- William P. Thurston, Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. (2) 124 (1986), no. 2, 203–246. MR 855294, DOI https://doi.org/10.2307/1971277
- William P. Thurston, Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. (2) 124 (1986), no. 2, 203–246. MR 855294, DOI https://doi.org/10.2307/1971277
- William P. Thurston, Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. (2) 124 (1986), no. 2, 203–246. MR 855294, DOI https://doi.org/10.2307/1971277
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975
- Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 57M50
Retrieve articles in all journals with MSC (2010): 57M50
Additional Information
Curtis T. McMullen
Affiliation:
Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138-2901
Received by editor(s):
October 17, 2010
Published electronically:
February 7, 2011
Additional Notes:
This research was supported in part by the NSF
Article copyright:
© Copyright 2011
by the author