The evolution of geometric structures on 3-manifolds
HTML articles powered by AMS MathViewer
- by Curtis T. McMullen PDF
- Bull. Amer. Math. Soc. 48 (2011), 259-274
Abstract:
This paper gives an overview of the geometrization conjecture and approaches to its proof.References
- Michael T. Anderson, Geometrization of 3-manifolds via the Ricci flow, Notices Amer. Math. Soc. 51 (2004), no. 2, 184–193. MR 2026939
- Michael Atiyah, The geometry and physics of knots, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1990. MR 1078014, DOI 10.1017/CBO9780511623868
- L. Bessières, G. Besson, Michel Boileau, S. Maillot, and J. Porti. Geometrisation of $3$-Manifolds. In preparation.
- Gérard Besson, Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci (d’après G. Perel′man), Astérisque 307 (2006), Exp. No. 947, ix, 309–347 (French, with French summary). Séminaire Bourbaki. Vol. 2004/2005. MR 2296423
- Huai-Dong Cao and Xi-Ping Zhu, A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10 (2006), no. 2, 165–492. MR 2233789, DOI 10.4310/AJM.2006.v10.n2.a2
- Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $3$-manifolds, Invent. Math. 118 (1994), no. 3, 441–456. MR 1296353, DOI 10.1007/BF01231540
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014
- Daryl Cooper, Craig D. Hodgson, and Steven P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, vol. 5, Mathematical Society of Japan, Tokyo, 2000. With a postface by Sadayoshi Kojima. MR 1778789
- Adrien Douady and John H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263–297. MR 1251582, DOI 10.1007/BF02392534
- Nathan M. Dunfield and William P. Thurston, The virtual Haken conjecture: experiments and examples, Geom. Topol. 7 (2003), 399–441. MR 1988291, DOI 10.2140/gt.2003.7.399
- David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447–510. MR 1189862, DOI 10.2307/2946597
- M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), no. 1, 69–96. MR 840401
- S. J. Gould. The Structure of Evolutionary Theory. Harvard University Press, 2002.
- Matthew A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), no. 2, 285–314. MR 906392
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7–136. MR 1375255
- Richard S. Hamilton, Non-singular solutions of the Ricci flow on three-manifolds, Comm. Anal. Geom. 7 (1999), no. 4, 695–729. MR 1714939, DOI 10.4310/CAG.1999.v7.n4.a2
- Allen Hatcher, Hyperbolic structures of arithmetic type on some link complements, J. London Math. Soc. (2) 27 (1983), no. 2, 345–355. MR 692540, DOI 10.1112/jlms/s2-27.2.345
- Jim Hoste, Morwen Thistlethwaite, and Jeff Weeks, The first 1,701,936 knots, Math. Intelligencer 20 (1998), no. 4, 33–48. MR 1646740, DOI 10.1007/BF03025227
- V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI 10.2307/1971403
- Vaughan Jones, On the origin and development of subfactors and quantum topology, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 2, 309–326. MR 2476415, DOI 10.1090/S0273-0979-09-01244-0
- J. Kahn and V. Markovic. Immersing almost geodesic surfaces in a closed hyperbolic $3$-manifold. Preprint, 2010.
- Michael Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics, vol. 183, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1792613
- R. M. Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997), no. 3, 269–275. MR 1434238, DOI 10.1023/A:1007364912784
- Bruce Kleiner and John Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008), no. 5, 2587–2855. MR 2460872, DOI 10.2140/gt.2008.12.2587
- W. B. R. Lickorish, A representation of orientable combinatorial $3$-manifolds, Ann. of Math. (2) 76 (1962), 531–540. MR 151948, DOI 10.2307/1970373
- C. N. Little. Non-alternate $+/-$ knots. Trans. Royal. Soc. Edinburgh 39 (1898-9), 771–778.
- B. Mazur, Number theory as gadfly, Amer. Math. Monthly 98 (1991), no. 7, 593–610. MR 1121312, DOI 10.2307/2324924
- C. McMullen, Iteration on Teichmüller space, Invent. Math. 99 (1990), no. 2, 425–454. MR 1031909, DOI 10.1007/BF01234427
- Curt McMullen, Rational maps and Kleinian groups, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 889–899. MR 1159274
- Curt McMullen, Riemann surfaces and the geometrization of $3$-manifolds, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 207–216. MR 1153266, DOI 10.1090/S0273-0979-1992-00313-0
- Curtis T. McMullen, Renormalization and 3-manifolds which fiber over the circle, Annals of Mathematics Studies, vol. 142, Princeton University Press, Princeton, NJ, 1996. MR 1401347, DOI 10.1515/9781400865178
- Curtis T. McMullen, From dynamics on surfaces to rational points on curves, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 2, 119–140. MR 1713286, DOI 10.1090/S0273-0979-99-00856-3
- William W. Menasco and Morwen B. Thistlethwaite, The Tait flyping conjecture, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 403–412. MR 1098346, DOI 10.1090/S0273-0979-1991-16083-0
- John Milnor, Towards the Poincaré conjecture and the classification of 3-manifolds, Notices Amer. Math. Soc. 50 (2003), no. 10, 1226–1233. MR 2009455
- John W. Morgan, On Thurston’s uniformization theorem for three-dimensional manifolds, The Smith conjecture (New York, 1979) Pure Appl. Math., vol. 112, Academic Press, Orlando, FL, 1984, pp. 37–125. MR 758464, DOI 10.1016/S0079-8169(08)61637-2
- John W. Morgan, Recent progress on the Poincaré conjecture and the classification of 3-manifolds, Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 1, 57–78. MR 2115067, DOI 10.1090/S0273-0979-04-01045-6
- John Morgan and Gang Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs, vol. 3, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. MR 2334563, DOI 10.1305/ndjfl/1193667709
- J. Morgan and G. Tian. Ricci Flow and the Geometrization Conjecture. In preparation.
- D. Mostow. Strong Rigidity of Locally Symmetric Spaces, volume 78 of Annals of Math. Studies. Princeton University Press, 1972.
- Hitoshi Murakami, A quantum introduction to knot theory, Primes and knots, Contemp. Math., vol. 416, Amer. Math. Soc., Providence, RI, 2006, pp. 137–165. MR 2276140, DOI 10.1090/conm/416/07891
- Hitoshi Murakami and Jun Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001), no. 1, 85–104. MR 1828373, DOI 10.1007/BF02392716
- Jean-Pierre Otal, Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235 (1996), x+159 (French, with French summary). MR 1402300
- G. Perelman. The entropy formula for the Ricci flow and its geometric applications. \verb$arXiv:math/0211159$.
- G. Perelman. Ricci flow with surgery on three-manifolds. \verb$arXiv:math/0303109$.
- G. Perelman. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. \verb$arXiv:math/0307245$.
- Henri Poincaré, Œuvres. Tome II, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Sceaux, 1995 (French). Fonctions fuchsiennes. [Fuchsian functions]; With a preface and a biographical sketch of Poincaré by G. Darboux; Reprint of the 1916 original. MR 1401791
- John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MR 1299730, DOI 10.1007/978-1-4757-4013-4
- Alan W. Reid, Arithmeticity of knot complements, J. London Math. Soc. (2) 43 (1991), no. 1, 171–184. MR 1099096, DOI 10.1112/jlms/s2-43.1.171
- Peter Scott, The geometries of $3$-manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401–487. MR 705527, DOI 10.1112/blms/15.5.401
- C. Weber and H. Seifert, Die beiden Dodekaederräume, Math. Z. 37 (1933), no. 1, 237–253 (German). MR 1545392, DOI 10.1007/BF01474572
- P. G. Tait. On knots I. Trans. Roy. Soc. Edinburgh 28 (1876-7), 145–190.
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI 10.1090/S0273-0979-1982-15003-0
- William P. Thurston, Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. (2) 124 (1986), no. 2, 203–246. MR 855294, DOI 10.2307/1971277
- William P. Thurston, Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. (2) 124 (1986), no. 2, 203–246. MR 855294, DOI 10.2307/1971277
- William P. Thurston, Hyperbolic structures on $3$-manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. (2) 124 (1986), no. 2, 203–246. MR 855294, DOI 10.2307/1971277
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975
- Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772
Additional Information
- Curtis T. McMullen
- Affiliation: Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138-2901
- Received by editor(s): October 17, 2010
- Published electronically: February 7, 2011
- Additional Notes: This research was supported in part by the NSF
- © Copyright 2011 by the author
- Journal: Bull. Amer. Math. Soc. 48 (2011), 259-274
- MSC (2010): Primary 57M50
- DOI: https://doi.org/10.1090/S0273-0979-2011-01329-5
- MathSciNet review: 2774092