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The book Embeddings in Manifolds considers compacta, polyhedra, and mani-
folds and their embeddings into manifolds, with the hope of understanding just how
complicated such embeddings can be. The target manifolds are usually assumed
to be of high dimension, where there is sufficient room to maneuver. R. H. Bing
explained the dimension situation in this way: “Dimension 4 is the most difficult
dimension. It is too old to spank, the way we might deal with the little dimensions
1, 2, and 3; but it is also too young to reason with, the way we deal with the
grown-up dimensions 5 and higher.”

Just to be up front about things: A manifold is a space that is locally home-
omorphic (= topologically equivalent) with Euclidean space, yet globally may be
twisted in some interesting way like the M&bius band. An embedding f: X — Y
of space X into space Y is a function that is a homeomorphism, not of X onto Y,
but of X onto the image f(X) of X in Y.

The most classical of embedding problems is answered by the Jordan Curve The-
orem. The Jordan Curve Theorem states the fact (obvious yet nevertheless difficult
to prove) that every simple closed curve (embedded circle) in the plane separates
the plane into two pieces, namely an interior and an exterior, and it is the boundary
of each. Algebraic topology was originally developed in the process of extending
this theorem and others like it to high dimensions. Among the famous extensions
are the Jordan Separation Theorem, the No Retraction Theorem, Brouwer’s Fixed
Point Theorem, and the Invariance of Domain Theorem.

The more difficult 2-dimensional Schoenflies Theorem, of which the Jordan Curve
Theorem is an immediate corollary, states that all embeddings of the circle into the
plane are equivalent from the standpoint of topology. That is, if f : ST — R2
is any embedding of the unit circle S' ¢ R? into the plane R?, then the map f
extends to a homeomorphism F : R? — R? from the plane to itself. One of the
many possible proofs of the Schoenflies Theorem comes from the theory of complex
variables. The Riemann Mapping Theorem maps the interior of the curve onto the
interior of the unit circle conformally, and Carathéodory [Car] showed that such
a conformal mapping extends to a homeomorphism from the curve to the circle.
The exterior of the curve is handled similarly. The Schoenflies Theorem fails for
2-dimensional spheres embedded in 3-dimensional Euclidean space R3 because the
2-sphere can be locally infinitely knotted in R3®. Among the early examples of
complicated embeddings were Antoine’s Necklace [Ant], [AleJ2] and Alexander’s
Horned Sphere [AleJI]. The goal of the book is to understand such difficulties in
precise terms.

Antoine’s Necklace [Ant] is a Cantor set in R? whose complement is not simply
connected. Such a Cantor set is called wild. The standard middle-thirds Cantor set
is called tame. Antoine’s Necklace is formed as the intersection of chains of chains

2010 Mathematics Subject Classification. Primary 57N35, 57N30, 57N45, 57N40, 57N60,
57TN75, 57N37, 5TN70, 57Q45, 57Q40, 57Q60, 57Q55, 57Q37, 57P05.

(©2011 American Mathematical Society
Reverts to public domain 28 years from publication

485



486 BOOK REVIEWS

FIGURE 1. Antoine’s Necklace

of chains (etc.) of linked solid tori, the first chain linked in the first solid torus as
in Figure[Il Each smaller torus is likewise circled by a linked chain of smaller solid
tori, each of which in turn is circled by a linked chain of even smaller solid tori, and
so on to infinity. Alexander [AleJ2] noted that this necklace could be embedded in
a 2-sphere in R3 by running feelers to the Cantor set.

Alexander’s Horned Sphere [AleJ1] is a 2-sphere in R® whose exterior is not
simply connected. It is formed by running linked feelers to a limiting tame Cantor
set, as in Figure

The theorems in the book are basically of two types: The first shows that em-
beddings are more complicated (worse) than we could ever have imagined. The
second type shows that embeddings are really nicer than we ever hoped, or can be
approximated by nice embeddings, or at least with an additional hypothesis are
nice. It is like the old shaggy dog story, where the dog owner is assured by one and
all that the dog is really, really shaggy, though, at the end, the king assures the
owner that the dog is really not so shaggy after all.

Some authors have asserted that topologists have taken a wrong turn with a
definition of embedding that allows for such complicated things, and these authors
have proposed various fixes.

The most common fix is to assume that the embedding is smooth (infinitely
differentiable) or piecewise linear (that is, polyhedral). But even those hypotheses
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FIGURE 2. Alexander’s Horned Sphere
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allow some rather strange phenomena. For example, there is a 5-dimensional poly-
hedron P formed from a rather small number of polyhedral pieces (simplexes) that
is topologically equivalent to the 5-dimensional sphere S° and yet has the following
properties: There are four simplex edges in P that form a simple closed curve J. As
viewed in the polyhedron P, the edges of J are straight segments. But as viewed
in the topologically equivalent 5-dimensional sphere S°, the curve J is infinitely
knotted in the neighborhood of each point. The homeomorphism P — S° takes
some straight arcs to infinitely knotted arcs. (See [Edwl] and [Canl.)

Another suggested fix is to abandon the geometric picture entirely and turn
instead to algebra where a typical algebraic realization might be a supposedly well-
behaved direct or inverse limit. But such limits are precisely the algebraic analogues
of infinite knotting.

It seems to us that a more reasonable point of view is to accept these infin-
itely knotted embeddings as a necessary consequence of the completion process
that passes from the rational numbers to the real numbers. Complicated embed-
dings arise in the same limiting process that gives us those wonderful irrational
numbers. The unification and simplification process of completion has complicated
consequences. The consequences are to be loved, or at least appreciated or acknowl-
edged. Paul Alexandroff [AleP|] wrote, “I would formulate the basic problem of set-
theoretic topology as follows: To determine which set-theoretic structures have a
connection with the intuitively given material of elementary polyhedral topology and
hence deserve to be considered as geometrical figures—even if very general ones.”

The problems considered in the book are the following:

Main Problem. Which embeddings of one topological space X in another topo-
logical space Y are equivalent? That is, given two embeddings fi,f2 : X — Y,
when is there a homeomorphism h : Y — Y such that fo = ho f17

Taming Problem. If f : X — Y is an embedding from a polyhedron X into a
manifold Y, is f equivalent to a piecewise linear embedding? (An embedding that
is equivalent to a piecewise linear embedding is called tame. An embedding that is
not equivalent to a piecewise linear embedding is called wild.)

Unknotting Problem. Which piecewise linear embeddings of a polyhedron X
into a manifold Y are equivalent? (The term unknotting refers to the common oc-
currence where there is a standard embedding considered to be unknotted, and the
unknotting problem asks whether a given embedding is equivalent to this unknotted
embedding.)

As noted by the authors, “While isolated examples of wild embeddings were
discovered earlier, the work of R. H. Bing in the 1950s and 1960s revealed the per-
vasiveness of wildness in dimensions three and higher.” The authors give examples
of wildness in all high dimensions and all codimensions. (The codimension of an
embedding f : X — Y is the integer k& = dim(Y) — dim(X). The codimension
measures the extra room available for attempts to move the image of X around in
Y.)

While the work of Bing initiated the considerable efforts to understand tame
and wild embeddings, Bing’s fundamental work in dimension three is mostly side
stepped by the book. His work, and that of those who followed in dimension three,
relied on very difficult and fundamental results that are outside the scope of this
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book. In particular, the Moise [Moil], [Moi2] and Bing [Binl] proofs of the trian-
gulability of 3-manifolds and the accompanying Hauptvermutung for 3-manifolds,
Bing’s Side Approximation Theorem [Bin2], Bing’s Taming by Homeomorphic Side
Approximation [Bin3], and Bing’s 1-ULC Taming Theorem in dimension 3 [Bin4],
which are necessary in dimension three, do not appear in this book, though they
and some of their consequences are occasionally mentioned. Some of their general-
izations to higher dimensions do appear. But the omissions form a gap waiting to
be filled by some ambitious writer.

Standard results from algebraic topology (homotopy theory, homology, and coho-
mology) and standard results from piecewise linear topology (simplicial complexes,
general position, regular neighborhoods) form the basic prerequisites for the book.
The additional techniques that are characteristic of the subject involve cut and
paste arguments, careful inductions on dimension, and infinite applications of such
processes, with the attendant difficult attention to convergence.

The key technical tool developed in the book is that of engulfing [Stal]. En-
gulfing is a method designed to stretch an open set, using regular neighborhood
theory, to surround a critical subcomplex. The simplest case simply stretches the
open set along the product of a complex with an interval. Such a product arises
from a homotopy that is placed in general position. Complications arise since the
homotopy may not be embedded. Delicate inductive arguments allow considerably
more complicated stretchings. The method is powerful enough that Stallings was
able to use it to prove the Poincaré Conjecture in high dimensions [Sta2]. There
are many other consequences.

After giving many examples of wild embeddings in Chapter 2 and developing
engulfing and its consequences in Chapter 3, the authors proceed in succeeding
chapters to prove the best-known taming and approximation theorems in high di-
mensions. The extent of the material to be covered is indicated by the fact that
the authors include 15 pages of references. The subject divides naturally into cases
according to codimension, where, as the reader will recall, the codimension of the
embedding f : X — Y is the integer £ = dim(Y) — dim(X). Generally speaking,
results are easier when k is large and things are most complicated when k = 2,
the codimension in which classical knotting occurs, as with the embedding of the
circle into 3-dimensional space. This classical knotting can always be iterated in
the small, so that infinitely knotted objects arise because of codimension 2 classical
knotting. In general, tame embeddings are characterized by the local triviality of
various homotopy conditions. The authors have to rely on more and more difficult
external results that do not appear in the book as codimensions shrink toward 0.

Of all the beautiful and complex methods that one encounters in the book,
my particular favorite is the method of Stan’ko [Stan], a method that works in
codimension 3. It is an extremely clever and beautiful example of the kind of infinite
processes, with convergence issues, that arise in the subject. M. A. Stan’ko observed
that, if we restrict our view to a 3-dimensional slice in a high-dimensional manifold,
then the visible portion of any codimension 3 compactum seems to be knotted in a
very simple way. To see this in the first place requires a good deal of imagination
and insight. Stan’ko then notes that one can tear apart that knotting by ripping one
portion of the compactum through another portion. As far as the 3-dimensional
slice is concerned, this results in a new embedding of the visible portion of the
compactum, and the new embedding has simpler knotting. Unfortunately, adjacent
to the slice, one creates intersections. However, the intersections can be avoided
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by an adjacent, yet smaller, preconditioning move of exactly the same sort...,
which creates new smaller intersections, which can be avoided by adjacent smaller
preconditioning moves of the same sort, etc., etc., etc. The limit can be managed
in such a way that the result is an unknotted embedding of the compactum.

The Stan’ko paper is four pages long. I heard about it via the grapevine in a
path that eventually led back to Bob Edwards [Edw2] who had learned about it
from Stan’ko’s paper. It took me a month to digest the four pages. Edwards noted
that the method can be reinterpreted in terms of an infinite 2-dimensional complex
that models the algebraic object that is a commutator of commutators of commu-
tators, infinitely. D. R. McMillan called such an algebraic object an omegatator.
Daverman and Venema call the geometric realization a Stan’ko complex. It is more
commonly known in the literature by the name suggested by McMillan: the grope.
The grope plays an interesting role both in the approximation of codimension 1
spheres by tame spheres [AncCan| and in the proof of the Double Suspension The-
orem [Edwl], [Can], which states that the double suspension of any homology sphere
is a topological sphere.
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