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THE CLASSICAL THEORY OF MINIMAL SURFACES
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ABSTRACT. We present here a survey of recent spectacular successes in classi-
cal minimal surface theory. We highlight this article with the theorem that the
plane, the helicoid, the catenoid and the one-parameter family {R¢}¢¢c(o,1) of
Riemann minimal examples are the only complete, properly embedded, mini-
mal planar domains in R3; the proof of this result depends primarily on work
of Colding and Minicozzi, Collin, Lépez and Ros, Meeks, Pérez and Ros, and
Meeks and Rosenberg. Rather than culminating and ending the theory with
this classification result, significant advances continue to be made as we enter
a new golden age for classical minimal surface theory. Through our telling of
the story of the classification of minimal planar domains, we hope to pass on to
the general mathematical public a glimpse of the intrinsic beauty of classical
minimal surface theory and our own perspective of what is happening at this
historical moment in a very classical subject.
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1. INTRODUCTION

The theory of minimal surfaces in three-dimensional Euclidean space has its
roots in the calculus of variations developed by Euler and Lagrange in the 18th
century and in later investigations by Enneper, Scherk, Schwarz, Riemann and
Weierstrass in the 19th century. Over the years, many great mathematicians have
contributed to this theory. Besides the above-mentioned names that belong to
the nineteenth century, we find fundamental contributions by Bernstein, Courant,
Douglas, Morrey, Morse, Rad6é and Shiffman in the first half of the last century.
Paraphrasing Osserman, most of the activity in minimal surface theory in those
days was focused almost exclusively on either Plateau’s problem or PDE questions,
and the only global result was the negative one of Bernstein’s theorem[l

Much of the modern global theory of complete minimal surfaces in three-dimen-
sional Euclidean space has been influenced by the pioneering work of Osserman
during the 1960s. Many of the global questions and conjectures that arose in this
classical subject have only recently been addressed. These questions concern an-
alytic and conformal properties, the geometry and asymptotic behavior, and the
topology and classification of the images of certain injective minimal immersions
f: M — R? which are complete in the induced Riemannian metric; we call the im-
age of such a complete, injective, minimal immersion a complete, embedded minimal
surface in R3.

The following classification results solve two of these long standing conjecturesE

Theorem 1.1. A complete, embedded, simply connected minimal surface in R? is
a plane or a helicoid.

Theorem 1.2. Up to scaling and rigid motion, any connected, properly embed-
ded, minimal planar domain in R? is a plane, a helicoid, a catenoid or one of the
Riemann minimal emamplesﬁ In particular, for every such surface there ezists a
foliation of R3 by parallel planes, each of which intersects the surface transversely
in a connected curve which is a circle or a line.

The proofs of the above theorems depend on a series of new results and the-
ory that have been developed over the past decade. The purpose of this article is
twofold. The first is to explain these new global results in a manner accessible to
the general mathematical public, and the second is to explain how these results
transcend their application to the proofs of Theorems [[.I] and and enhance

IThis celebrated result by Bernstein asserts that the only minimal graphs over the entire
plane are graphs given by affine functions, which means that the graphs are planes.

2Several authors pointed out to us that Osserman seems to be the first to ask the question
about whether the plane and the helicoid were the only embedded, simply connected, complete
minimal surfaces. He described this question as potentially the most beautiful extension and
explanation of Bernstein’s Theorem.

3The Riemann minimal examples referred to here were discovered by Riemann around 1860.
See Section for a further discussion of these surfaces and images of them.
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dramatically our current understanding of the theory, giving rise to new theo-
rems and conjectures, some of which were considered to be almost unapproachable
dreams just 15 years ago. The interested reader can also find more detailed history
and further results in the following surveys, reports and popular science articles
31 121 130, [36], 45| (46| [71) (72} 74} [76, 81, 107, 113, 117, 158, 173, 182]. We re-
fer the reader to the excellent graduate texts on minimal surfaces by Dierkes et
al [47), [48], Lawson [99] and Osserman [163], and especially see Nitsche’s book [160]
for a fascinating account of the history and foundations of the subject.

Before proceeding, we make a few general comments on the proof of Theorem [L1]
which we feel can suggest to the reader a visual idea of what is going on. The most
natural motivation for understanding this theorem, Theorem and other results
presented in this survey is to try to answer the following question: What are the
possible shapes of surfaces which satisfy a variational principle and have a given
topology? For instance, if the variational equation expresses the critical points of
the area functional, and if the requested topology is the simplest one of a disk, then
Theorem [T says that the possible shapes for complete examples are the trivial one
given by a plane and (after a rotation) an infinite double spiral staircase, which is
a visual description of a vertical helicoid. A more precise description of the double
spiral staircase nature of a vertical helicoid is that this surface is the union of
two infinite-sheeted multigraphs (see Definition [4.] for the notion of a multigraph)
that are glued along a vertical axis. Crucial in the proof of Theorem [[I] are local
results of Colding and Minicozzi which describe the structure of compact, embedded
minimal disks, as essentially being modeled by one of the above two examples; i.e.,
either they are graphs or pairs of finitely sheeted multigraphs glued along an “axis”.
A last key ingredient in the proof of Theorem [[LT]is a result on the global aspects
of limits of these shapes, which is given in the Lamination Theorem for Disks by
Colding and Minicozzi; see Theorem 2] below.

For the reader’s convenience, we next include a guide of how the sections depend
on each other; see below for a more detailed explanation of their contents.

§2: Background

§3: Finite total §4: Colding- §5: Minimal §6: Ordering Theorem
curvature, Minicozzi theory laminations of R3 for the space of ends
construction
methods \ / l
§8: Uniqueness §7: Parabolicity,
of the helicoid <+———————————— quadratic area growth
(proper case) of middle ends
§9: Calabi-Yau, §10: Hoffman-Meeks
uniqueness conjecture, one limit
of the helicoid end case, uniqueness of
(complete case) Riemann minimal examples

|

§11: Open problems
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Our survey is organized as follows. We present the main definitions and back-
ground material in the introductory Section In that section we also briefly
describe geometrically, as well as analytically, many of the important classical ex-
amples of properly embedded minimal surfaces in R?. As in many other areas in
mathematics, understanding key examples in this subject is crucial in obtaining a
feeling for the subject, making important theoretical advances and asking the right
questions. We believe that before going further, the unacquainted reader to this
subject will benefit by taking a few minutes to view and identify the computer
graphics images of these surfaces, which appear near the end of Section 2.5 and to
read the brief historical and descriptive comments related to the individual images.

In Section Bl we describe the best understood family of complete embedded
minimal surfaces: those with finite topology and more than one end. Recall that
a compact, orientable surface is homeomorphic to a connected sum of tori, and
the number of these tori is called the genus of the surface. An (orientable) surface
M of finite topology is one which is homeomorphic to a compact surface of genus
g € NU {0} with finitely many points removed, called the ends of M. These
punctures can be naturally identified with different ways to escape to infinity on M,
and also can be identified with punctured disk neighborhoods of these points. These
punctured disk neighborhoods are clearly annuli; hence they are called annular
ends. The crucial result for minimal surfaces with finite topology and more than
one end is Collin’s Theorem, valid under the additional assumption of properness
(a surface in R? is proper if each closed ball in R? contains a compact portion of
the surface with respect to its intrinsic topology). Note that properness implies
completeness.

Theorem 1.3 (Collin [38]). If M C R® is a properly embedded minimal surface
with more than one end, then each annular end of M is asymptotic to the end of a
plane or a catenoid. In particular, if M haséinite topology and more than one end,
then M has finite total Gaussian curvature

Collin’s Theorem reduces the analysis of properly embedded minimal surfaces
of finite topology and more than one end in R? to complex function theory on
compact Riemann surfaces. This reduction then leads to classification results and
to interesting topological obstructions, which we include in Section Bl as well. At
the end of Section Bl we discuss several different methods for constructing properly
embedded minimal surfaces of finite topology and for describing their moduli spaces.

In Section @ we present an overview of some results concerning the geometry,
compactness and regularity of limits of what are called locally simply connected
sequences of minimal surfaces. These results are central in the proofs of Theo-
rems [T and and are taken from a series of papers by Colding and Minicozzi
27, 1) 52, (33, 53, B37).

In Sections (] and Bl we define and develop the notion of minimal lamination,
which is a natural limit object for a locally simply connected sequence of embedded
minimal surfaces. The reader not familiar with the subject of minimal laminations
should think about the closure of an embedded, non-compact geodesic v on a com-
plete Riemannian surface, a topic which has been widely covered in the literature
(see, e.g., Bonahon [9]). The closure of such a geodesic v is a geodesic lamination
L of the surface. When ~ has no accumulation points, then it is proper and it is

4See equation (@) for the definition of total curvature.
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the unique leaf of £. Otherwise, there pass complete, embedded, pairwise disjoint
geodesics through the accumulation points, and these geodesics together with
form the leaves of the geodesic lamination £. A similar result is true for a com-
plete, embedded minimal surface of locally bounded curvature (i.e., whose Gaussian
curvature is bounded in compact extrinsic balls) in a Riemannian three-manifold
[136]. We include in Section [l a discussion of the Structure Theorem for Minimal
Laminations of R* (Meeks-Rosenberg [136] and Meeks-Pérez-Ros [126]).

In Section [l we explain the Ordering Theorem of Frohman and Meeks [G1] for
the linear ordering of the ends of any properly embedded minimal surface with more
than one end; this is a fundamental result for our purposes of classifying embedded,
minimal planar domains in Theorem [[.2

Section [Mis devoted to conformal questions on minimal surfaces. Roughly speak-
ing, this means studying the conformal type of a given minimal surface (rather
than its Riemannian geometry) considered as a Riemann surface, i.e., an orientable
surface in which one can find an atlas by charts with a holomorphic change of coor-
dinates. To do this, we first define the notion of universal superharmonic function
for domains in R? and give examples. Next we explain how to use these functions
to understand the conformal structure of properly immersed minimal surfaces in
R? which fail to have finite topology. We then follow the work of Collin, Kusner,
Meeks and Rosenberg in [39] to analyze the asymptotic geometry and conformal
structure of properly embedded minimal surfaces of infinite topology.

In Section B we apply the results in the previous sections to explain the main
steps in the proof of Theorem [[I] after replacing completeness by the stronger
hypothesis of properness. This theorem together with Theorem above, The-
orem below and with results by Bernstein and Breiner [4] or by Meeks and
Pérez [I15] lead to a complete understanding of the asymptotic geometry of any
annular end of a complete, embedded minimal surface with finite topology in R?;
namely, the annular end must be asymptotic to an end of a plane, catenoid or heli-
coid. For a discussion of the proof of Theorem [[.4lin the case of positive genus and a
more general classification result of complete embedded minimal annular ends with
compact boundary and infinite total curvature in R?, see the monograph [116].

Theorem 1.4. Every properly embedded, non-planar minimal surface in R3 with
finite genus and one end has the conformal structure of a compact Riemann surface
Y minus one point, can be analytically represented by meromorphic data on ¥ and
is asymptotic to a helicoid. Furthermore, when the genus of X is zero, the only
possible examples are helicoids.

In Section [@ we complete our sketch of the proof of Theorem [l by allowing
the surface to be complete rather than proper. The problem of understanding
the relation between the intrinsic notion of completeness and the extrinsic one
of properness is known as the embedded Calabi-Yau problem in minimal surface
theory; see [13], [21], [210], [2I1] and [I52] for the original Calabi-Yau problem in
the complete immersed setting. Along these lines, we also describe the powerful
Minimal Lamination Closure Theorem (Meeks-Rosenberg [137], Theorem[@.2|below)
and other related results. Theorem [0.2]is a refinement of the results and techniques
used by Colding and Minicozzi [37] to prove the following deep result (see Section [
where we deduce Theorem from Theorem [@.2]).
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Theorem 1.5 (Colding, Minicozzi [37]). A complete, embedded minimal surface of
finite topology in R® is properly embedded.

With Theorem in hand, we note that the hypothesis of properness for M
in the statements of Theorem [[L4] and of Collin’s Theorem can be replaced by
the weaker hypothesis of completeness for M. Hence, Theorem [ follows from
Theorems [[.4] and

In Section [I0] we present some of the results of Meeks, Pérez and Ros [119] 120,
1241 126, 127] on the geometry of complete, embedded minimal surfaces of finite
genus with possibly an infinite number of ends, including the proof of Theorem [[.2]
stated above. We first explain Theorem below on the existence of a bound
on the number of ends of a complete, embedded minimal surface with finite total
curvature solely in terms of the genus. So far, this is the best result towards the
solution of the so-called Hoffman-Meeks conjecture:

A connected surface of finite topology, genus g and r ends, r > 2,
can be properly minimally embedded in R if and only if r < g+ 2.

Theorem 1.6 (Meeks, Pérez, Ros [I19]). For every non-negative integer g, there
exists an integer e(g) such that if M C R® is a complete, embedded minimal surface
of finite topology with genus g, then the number of ends of M is at most e(g).

The next goal of Section is to focus on the proof of Theorem In this
setting of infinitely many ends, the set of ends has a topological structure which
makes it a compact, total disconnected metric space with infinitely many points; see
Definition 2220land the paragraph below it. This set has accumulation points, which
produce the new notion of limit end. The first step in the proof of Theorem is
to notice that the number of limit ends of a properly embedded minimal surface
in R? is at most 2; this result appears as Theorem Then one rules out the
existence of a properly embedded minimal planar domain with just one limit end:
this is the purpose of Theorem [[0.3] At that point, we are ready to finish the proof
of Theorem [[L21 This breaks into two parts, the first of which is a quasi-periodicity
property coming from curvature estimates for any surface satisfying the hypotheses
of Theorem (see [126]), and the second one is based on the Shiffman function
and its relation to integrable systems theory through the Korteweg-de Vries (KdV)
equation; see Theorem below.

The final section of this survey is devoted to a discussion of some of the main
outstanding conjectures in the subject. Many of these problems are motivated by
the recent advances in classical minimal surface theory reported on in previous
sections, and many of them appear in print for the first time here. Research math-
ematicians, not necessarily schooled in differential geometry, are likely to find some
of these problems accessible to attack with methods familiar to them. We invite
anyone with an inquisitive mind and strong geometrical intuition to join in the
game of trying to solve these intriguing open problems.

For an inclusive discussion of recent advances in the classical theory of mini-
mal surfaces, we refer the reader to our monograph [I16] on which the present
manuscript is based. The central topics in [116] include the following:

(1) The topological classification of minimal surfaces in R® by Frohman and
Meeks [57].
(2) The uniqueness of Scherk’s singly periodic minimal surfaces by Meeks and

Wolf [143].
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(3) The Calabi-Yau problem for minimal surfaces based on work by Nadi-
rashvili [I52] and Ferrer, Martin and Meeks [58].

Colding-Minicozzi theory for minimal surfaces of finite genus [24].

The asymptotic behavior of minimal annular ends by Meeks and Pérez [115].
The local removable singularity theorem for minimal laminations and its
application to the proofs of the quadratic decay of curvature theorem, the
dynamics theorem for minimal surfaces and the local picture theorem on
the scale of topology by Meeks, Pérez and Ros [122].

A~~~
D U
NSNS AN

2. BASIC RESULTS IN CLASSICAL MINIMAL SURFACE THEORY

We will devote this section to giving a fast tour through the foundations of the
theory, enough to understand the results to be explained in future sections.

2.1. Eight equivalent definitions of minimality. One can define a minimal
surface from different points of view. The equivalences between these starting
points give insight into the richness of the classical theory of minimal surfaces and
its connections with other branches of mathematics.

Definition 2.1. Let X = (x1,22,23): M — R? be an isometric immersion of a
Riemannian surface into space. X is said to be minimal if x; is a harmonic function
on M for each i. In other words, Ax; = 0, where A is the Riemannian Laplacian
on M.

Very often, it is useful to identify a Riemannian surface M with its image un-
der an isometric embedding. Since harmonicity is a local concept, the notion of
minimality can be applied to an immersed surface M C R3 (with the underly-
ing Riemannian structure induced by the inclusion). Let H be the mean curva-
ture function of X, which at every point is the average normal curvature, and let
N: M — S? C R3 be its unit normal or Gauss mapﬁ The well-known vector-valued
formula AX = 2HN, valid for an isometric immersion X: M — R3, leads us to
the following equivalent definition of minimality.

Definition 2.2. A surface M C R? is minimal if and only if its mean curvature
vanishes identically.

After rotation, any (regular) surface M C R® can be locally expressed as the
graph of a function u = u(x,y). In 1776, Meusnier [146] discovered that the condi-
tion on the mean curvature to vanish identically can be expressed as the following
quasi-linear, second-order, elliptic partial differential equation, found in 1762 by

Lagrangdd [07:
(1) (1+ Ui)uyy — 2Ug Uy gy + (1 + UZ)Uwa =0,

which admits a divergence form version:

div [ v )=
V14 [Vul?
Definition 2.3. A surface M C R3 is minimal if and only if it can be locally
expressed as the graph of a solution of the equation ().

5Throughout the paper, all surfaces will be assumed to be orientable unless otherwise stated.
61n reality, Lagrange arrived at a slightly different formulation, and equation () was derived
five years later by Borda [11].
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Let © be an orientable subdomain with compact closure in a surface M C R3. If
we perturb normally the inclusion map X on ) by a compactly supported smooth
function v € C5°(£2), then X + tulN is again an immersion whenever |t| < e, with ¢
sufficiently small. The mean curvature function H of M relates to the infinitesimal
variation of the area functional A(t) = Area((X+tulN)(Q)) for compactly supported
normal variations by means of the first variation of area (see, for instance, [160]):

2) A(0) = —2 /Q uH dA,

where dA stands for the area element of M. This variational formula lets us state
a fourth equivalent definition of minimality.

Definition 2.4. A surface M C R3 is minimal if and only if it is a critical point
of the area functional for all compactly supported variations.

In fact, a consequence of the second variation of area (Section 2§)) is that any
point in a minimal surface has a neighborhood with least-area relative to its bound-
ary. This property justifies the word “minimal” for these surfaces. It should be
noted that the global minimization of area on every compact subdomain is a strong
condition for a complete minimal surface to satisfy; in fact, it forces the surface to
be a plane (Theorem 225]).

Definition 2.5. A surface M C R? is minimal if and only if every point p € M
has a neighborhood with least-area relative to its boundary.

Definitions [Z4] and establish minimal surfaces as the two-dimensional analog
to geodesics in Riemannian geometry, and connect the theory of minimal surfaces
with one of the most important classical branches of mathematics: the calculus
of variations. Besides the area functional A, another well-known functional in the
calculus of variations is the Dirichlet energy,

E:/ |VX|?dA,
Q

where again X: M — R? is an isometric immersion and 2 C M is a subdomain
with compact closure. These functionals are related by the inequality £ > 2A,
with equality if and only if the immersion X : M — R3 is conformal. The classical
formula K —e?"K = Au that relates the Gaussian curvature functions K, K for two
conformally related metrics g, § = e*“g on a two-dimensional manifold (A stands
for the Laplace operator with respect to g), together with the existence of solutions
of the Laplace equation Au = K for any open subdomain with compact closure 2
in a Riemannian manifold M such that the volume of M — 2 is positive, guarantees
the existence of local isothermal or conformal coordinates for any two-dimensional
Riemannian manifold, modeled on domains of C. The relation between area and
energy, together with the existence of isothermal coordinates, allows us to give two
further characterizations of minimality.

Definition 2.6. A conformal immersion X : M — R3 is minimal if and only if it
is a critical point of the Dirichlet energy for all compactly supported variations, or
equivalently if any point p € M has a neighborhood with least energy relative to
its boundary.

From a physical point of view, the mean curvature function of a homogeneous
membrane separating two media is equal, up to a non-zero multiplicative constant,
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to the difference between the pressures at the two sides of the surface (Laplace-
Young equation). When this pressure difference is zero, then the membrane has
zero mean curvature. Therefore, soap films (i.e., not bubbles) in space are physical
realizations of the ideal concept of a minimal surface.

Definition 2.7. A surface M C R3? is minimal if and only if every point p € M has
a neighborhood D), which is equal to the unique idealized soap film with boundary
0D,.

Consider again the Gauss map N: M — S? of M. Then, the tangent space T,M
of M at p € M can be identified as subspace of R? under parallel translation with
the tangent space TN(]D)S2 to the unit sphere at N(p). Hence, one can view the
differential A, = —dN,, as an endomorphism of T, M, called the shape operator. A,
is a symmetric linear transformation, whose orthogonal eigenvectors are called the
principal directions of M at p, and the corresponding eigenvalues are the principal
curvatures of M at p. Since the mean curvature function H of M equals the
arithmetic mean of such principal curvatures, minimality reduces to the following

expression:
a b
T

in an orthonormal tangent basis. After identification of N with its stereographic
projection, the Cauchy-Riemann equations give the next and last characterization
of minimality.

Definition 2.8. A surface M C R? is minimal if and only if its stereographi-
cally projected Gauss map g: M — C U {oo} is meromorphic with respect to the
underlying Riemann surface structure.

This concludes our discussion of the equivalent definitions of minimality. The
connection between minimal surface theory and complex analysis made possible
the advances in the so-called first golden age of classical minimal surface theory
(approximately 1855-1890). In this period, many great mathematicians took part,
such as Beltrami, Bonnet, Catalan, Darboux, Enneper, Lie, Riemann, Schoenflies,
Schwarz, Serret, Weierstrass, Weingarten, etc. (these historical references and many
others can be found in the excellent book by Nitsche [I60]). A second golden age of
classical minimal surface theory occurred in the decade 1930-1940, with pioneering
works by Courant, Douglas, Morrey, Morse, Rad6, Shiffman and others. Among
the greatest achievements of this period, we mention that Douglas won the first
Fields medal (jointly with Ahlfors) for his complete solution to the classical Plateau
problerrﬂ for disks.

Many geometers believe that since the early 1980s, we are living in a third golden
age of classical minimal surface theory. A vast number of new embedded examples
has been found in this period, very often with the aid of modern computers, which
allow us to visualize beautiful models such as those appearing in the figures of this
text. In these years, geometric measure theory, conformal geometry, functional
analysis, integrable systems and other branches of mathematics have joined the
classical methods, contributing fruitful new techniques and results, some of which
will be treated in this article. At the same time, the theory of minimal surfaces

"In its simplest formulation, this problem asks whether any smooth Jordan curve in R? bounds
a disk of least area, a problem proposed by the Belgian physicist Plateau in 1870.
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has diversified and expanded its frontiers. Minimal submanifolds in more general
ambient geometries have been studied, and subsequent applications of minimal
submanifolds have helped lead to solutions of some fundamental problems in other
branches of mathematics, including the Positive Mass Conjecture (Schoen, Yau) and
the Penrose Conjecture (Bray) in mathematical physics, and the Smith Conjecture
(Meeks, Yau), the Poincaré Conjecture (Colding, Minicozzi, Perelman) and the
Thurston Geometrization Conjecture in three-manifold theory.

Returning to our background discussion, we note that Definition 1] and the
maximum principle for harmonic functions imply that no compact minimal surfaces
in R3 exist. Although the study of compact minimal surfaces with boundary has
been extensively developed and dates back to the well-known Plateau problem
(see Footnote [0), in this survey we will focus on the study of complete minimal
surfaces (possibly with boundary), in the sense that all geodesics can be indefinitely
extended up to the boundary of the surface. Note that, with respect to the natural
Riemannian distance function between points on a surface, the property of being
“geodesically complete” is equivalent to the surface being a complete metric space.
A stronger global hypothesis, whose relationship with completeness is an active
field of research in minimal surface theory, is presented in the following definition.

Definition 2.9. A map f: X — Y between topological spaces is proper if f=1(C')
is compact in X for any compact set C C Y. A minimal surface M C R? is proper
when the inclusion map is proper.

The Gaussian curvature function K of a surface M C R3? is the product of its
principal curvatures. If M is minimal, then its principal curvatures are oppositely
signed and thus, K is non-positive. Another interpretation of K is the determinant
of the shape operator A; thus | K| is the absolute value of the Jacobian for the Gauss
map N. Therefore, after integrating K on M (note that this integral may be —oo
or a non-positive number), we obtain the same quantity as when computing the
negative of the spherical area of M through its Gauss map, counting multiplicities.
This quantity is called the total curvature of the minimal surface:

(3) C(M) = /MKdA = —Area(N: M — §?).

2.2. Weierstrass representation. Recall that the Gauss map of a minimal sur-
face M can be viewed as a meromorphic function g: M — CU{oco} on the underlying
Riemann surface. Furthermore, the harmonicity of the third coordinate function x3
of M lets us define (at least locally) its harmonic conjugate function z%; hence, the
so-called height diﬁerentiaﬁ dh = dzxs + idx% is a holomorphic differential on M.
The pair (g, dh) is usually referred to as the Weierstrass datdd of the minimal sur-
face, and the minimal immersion X : M — R3 can be expressed up to translation
by X (po), po € M, solely in terms of this data as

(4) X(p)—%/pj(%(é—g>,%<é+g),1>dh,

where 3 stands for real part [99L T63]. The pair (g, dh) satisfies certain compatibility
conditions, stated in assertions i), ii) of Theorem 2I0 below. The key point is that

8Note that the height differential might not be exact since z3 need not be globally well defined
on M. Nevertheless, the notation dh is commonly accepted, and we will also make use of it here.
9This representation was derived locally by Weierstrass in 1866.
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this procedure has the following converse, which gives a cookbook-type recipe for
analytically defining a minimal surface.

Theorem 2.10 (Osserman [I61]). Let M be a Riemann surface, g: M — CU {oo}
a meromorphic function and dh a holomorphic one-form on M. Assume that:

i) The zeros of dh coincide with the poles and zeros of g, with the same order.
ii) For any closed curve v C M,

(5) /gdh:/ﬁ, m/dh:o,
¥ v 9 ¥

where Z denotes the complex conjugate of z € C. Then, the map X: M — R® given
by @) is a conformal minimal immersion with Weierstrass data (g, dh).

Condition ) in Theorem 2.I0]expresses the non-degeneracy of the induced metric
by X on M, so by weakening it to the condition that the zeros and poles of g coincide
with the zeros of dh with at most the same order, we allow the conformal X to be a
branched minimal surface. Condition i) deals with the independence of (@) on the
integration path, and it is usually called the period problem[ By the Divergence
Theorem, it suffices to consider the period problem on homology classes in M.

All local geometric invariants of a minimal surface M can be expressed in terms
of its Weierstrass data. For instance, the first and second fundamental forms are

respectively (see [74] [163]):

1 _ : dg
© = (Glal+laianl) L 1) =R (D))
where v is a tangent vector to M, and the Gaussian curvature is
4ldg/g| ’
(7) K=- < - .
(gl + lgl=")?|dh|

If (g,dh) is the Weierstrass data of a minimal surface X: M — R3, then for
each X\ > 0 the pair (\g, dh) satisfies condition i) of Theorem and the second
equation in (B)). The first equation in (Bl holds for this new Weierstrass data if and
only if fv gdh = f,y d?h = 0 for all homology classes v in M, a condition which can
be stated in terms of the notion of flux, which we now define. Given a minimal
surface M with Weierstrass data (g, dh), the fluz vector along a closed curve v C M
is defined as

(8)  F(v) :/yRotgoo(’}/) :%L (% (é—g) % ($+g) ,1) dh € R?,

where Rotgge denotes the rotation by angle 7/2 in the tangent plane of M at any
point, and & stands for imaginary part.

Coming back to our Weierstrass data (\g,dh), the first equation in (&) holds
for this new pair if and only if the flux of M along ~ is a vertical vector for all
closed curves v C M. Thus, for a minimal surface X with vertical flux and for A a
positive real number, the Weierstrass data (Ag, dh) produces a well-defined minimal
surface Xy: M — R3. The family {X,}, is a smooth deformation of X; = X

10The reason for this name is that the failure of (&) implies that equation (@) only defines X
as an additively multivalued map. The translation vectors given by this multivaluation are called
the periods of the pair (g, dh).
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by minimal surfaces, called the Ldpez-Ros deformatz'on Clearly, the conformal
structure, height differential and the set of points in M with vertical normal vector
are preserved throughout this deformation. Another important property of the
Lépez-Ros deformation is that if a component of a horizontal section of X is convex,
then the same property holds for the related component at the same height for any

X, A > 0. For details, see [T04] [T71].

2.3. Minimal surfaces with finite total curvature. Among the family of com-
plete minimal surfaces in space, those with finite total curvature have been the most
extensively studied. The principal reason for this is that they can be thought of as
compact algebraic objects in a natural sense, which opens tremendously the num-
ber and depth of tools that can be applied to study these kinds of surfaces. We can
illustrate this point of view with the example of the catenoid (see Section for a
computer image and discussion of this surface, as well as other examples of com-
plete, embedded minimal surfaces of finite total curvature). The vertical catenoid
C is obtained as the surface of revolution of the graph of cosh zs around the x3-
axis. It is straightforward to check that its Gauss map N: C — S? is a conformal
diffeomorphism of C' with its image, which consists of S? punctured in the north
and south poles. Hence, the conformal compactification C' of C is conformally
the sphere and the Gauss map extends holomorphically to the compactification C.
More generally, we have the following result.

Theorem 2.11 (Huber [87], Osserman [163]). Let M C R?® be a complete (ori-
ented), immersed minimal surface with finite total curvature. Then,

i) M is conformally a compact Riemann surface M with a finite number of
points removed (called the ends of M ).

i) The Weierstrass data (g, dh) extends meromorphically to M. In particular,
the total curvature of M is a multiple of —4rr.

In this setting, the Gauss map ¢ has a well-defined finite degree on M. A direct
consequence of (@) is that the total curvature of an M as in Theorem RIT]is —47
times the degree of its Gauss map g. It turns out that this degree can be computed
in terms of the genus of the compactification M and the number of ends, by means
of the Jorge-Meeks formul [89]. Rather than stating here this general formula
for an immersed surface M as in Theorem 211l we will emphasize the particular
case when all the ends of M are embedded:

(9) deg(g) = genus(M) + #(ends) — 1.

The asymptotic behavior of a complete, embedded minimal surface in R? with
finite total curvature is well understood. Schoen [I88] demonstrated that, after
a rotation, each embedded end of a complete minimal surface with finite total
curvature can be parameterized as a graph over the exterior of a disk in the (21, z3)-
plane with height function

121 + Co2T2
r2

(10) z3(x1, w2) = alogr +b+ +0(r?),

HThis deformation is well known since Lépez and Ros used it as the main ingredient in their
proof of Theorem below, although it had already been previously used by other authors; see
Nayatani [153].

12This is an application of the classical Gauss-Bonnet formula. Different authors, such as
Gackstatter and Osserman [I63], have obtained related formulas.
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where 7 = /2% + 22, a,b,c1,co € R and O(r~2) denotes a function such that
r20(r=2) is bounded as r — oo. The coefficient a in ([[0) is called the logarithmic
growth of the end. When a # 0, the end is called a catenoidal end; if a = 0, we have
a planar end. We use this language since a catenoidal end is asymptotic to one of
the ends of a catenoid (see Section 20l for a description of the catenoid) and a planar
end is asymptotic to the end of a plane. In particular, complete embedded minimal
surfaces with finite total curvature are always proper; in fact, an elementary analysis
of the asymptotic behavior shows that the equivalence between completeness and
properness still holds for immersed minimal surfaces with finite total curvature.

As explained above, minimal surfaces with finite total curvature have been widely
studied and their comprehension is the starting point to deal with more general
questions about complete embedded minimal surfaces. In Section 2.5 we will briefly
describe some examples in this family. Section[3contains short explanations of some
of the main results and constructions for finite total curvature minimal surfaces.
Beyond these two short incursions, we will not develop extensively the theory of
minimal surfaces with finite total curvature, since this is not the purpose this article,
as explained in the Introduction. We refer the interested reader to the treatises by
Hoffman and Karcher [74], Lépez and Martin [I03] and Pérez and Ros [I7]1] for a
more in-depth treatment of these special surfaces.

2.4. Periodic minimal surfaces. A properly embedded minimal surface M C
R? is called singly, doubly, or triply periodic when it is invariant by an infinite
group G of isometries of R? of rank 1,2,3 (respectively) that acts properly and
discontinuously. Very often, it is useful to study such an M as a minimal surface in
the complete, flat three-manifold R /G. Up to finite coverings and after composing
by a fixed rotation in R3, these three-manifolds reduce to R? /T, R?/Sy, T? x R and
T3, where T denotes a non-trivial translation, Sy is the screw motion symmetry
resulting from the composition of a rotation of angle # around the z3-axis with a
translation in the direction of this axis, and T?, T? are flat tori obtained as quotients
of R?, R3 by 2 or 3 linearly independent translations, respectively.

Meeks and Rosenberg [131] [134] developed the theory of periodic minimal sur-
faces. For instance, they obtained in this setting similar conclusions to those given
in Theorem ZI1] except that the Gauss map g of a minimal surface in R3/G is
not necessarily well defined (the Gauss map g does not descend to the quotient
for surfaces in R?/Sy, 6 € (0,27), and in this case the role of g is played by the
well-defined meromorphic differential form dg/g). An important fact, due to Meeks
and Rosenberg [I31], [134], is that for properly embedded minimal surfaces in R?/G,
G # {identity}, the conditions of finite total curvature and finite topology are
equivalent

Theorem 2.12 (Meeks, Rosenberg [137] 131 134] 135]). A complete, embedded
minimal surface in a non—simply connected, complete, flat three-manifold has finite
topology if and only if it has finite total curvature. Furthermore, if ¥ denotes a
compact surface of non-positive curvature and M C ¥ x R is a properly embedded
minimal surface of finite genus, then M has finite topology, finite index of stabilit
and its finite total curvature is equal to 2w times the Euler characteristic of M.

13 This equivalence does not hold for properly embedded minimal surfaces in R3, as demon-
strated by the helicoid.
14See Definition 223 for the definition of index of stability.
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The second statement in the above theorem was motivated by a result of
Meeks [109], who proved that every properly embedded minimal surface in T? x R
has a finite number of ends; hence, in this setting, finite genus implies finite total
curvature.

Meeks and Rosenberg [131] [134] also studied the asymptotic behavior of com-
plete, embedded minimal surfaces with finite total curvature in R3/G. Under this
condition, there are three possibilities for the ends of the quotient surface: all ends
must be simultaneously asymptotic to planes (as in the Riemann minimal exam-
ples, see Section 2.5} such ends are called planar ends), to ends of helicoids (called
helicoidal ends), or to flat annuli (as in the singly or doubly periodic Scherk minimal
surfaces; for this reason, such ends are called Scherk-type ends).

2.5. Some interesting examples of complete minimal surfaces. We will now
use the Weierstrass representation for introducing some of the most celebrated
complete minimal surfaces. Throughout the presentation of these examples, we
will freely use Collin’s Theorem [[.3] and Colding-Minicozzi’s Theorem [L5l

The plane. M = C, g(z) = 1, dh = dz. It is the only complete, flat minimal
surface in R3.

The catenoid. M = C — {0}, g(z) = z, dh = . In 1741, Euler [53] discovered
that when a catenary xy; = coshxjs is rotated around the x3-axis, one obtains a
surface which minimizes area among surfaces of revolution after prescribing bound-
ary values for the generating curves. This surface was called the alysseid or since
Plateau, the catenoid. In 1776, Meusnier verified that the catenoid is a solution of
Lagrange’s equation ([Il). This surface has genus zero, two ends and total curvature
—A4m. Together with the plane, the catenoid is the only minimal surface of revolution
(Bonnet [10]) and the unique complete, embedded minimal surface with genus zero,
finite topology and more than one end (Lépez and Ros [104], Collin [38], Colding-
Minicozzi [37]). Also, the catenoid is characterized as being the unique complete,
embedded minimal surface with finite topology and two ends (Schoen [I8§]). See
Figure[d] left.

The helicoid. M = C, g(z) = ¢*, dh = idz. This surface was first proved to be
minimal by Meusnier in 1776 [146]. When viewed in R®, the helicoid has genus
zero, one end and infinite total curvature. Together with the plane, the helicoid is
the only ruled minimal surface (Catalan [I7]) and is the unique simply connected,
complete, embedded minimal surface (Meeks and Rosenberg [136], Colding and
Minicozzi [37]). The vertical helicoid can also be viewed as a genus-zero surface
with two ends in a quotient of R3 by a vertical translation or by a screw motion.
See Figure[I] center. The catenoid and the helicoid are conjugate minimal surfaces,
in the sense of the following definition.

Definition 2.13. Two minimal surfaces in R? are said to be conjugate if the
local coordinate functions of one of them are the harmonic conjugates of the local
coordinate functions of the other one.

Note that in the case of the helicoid and catenoid, we consider the catenoid to be
defined on its universal cover e*: C — C — {0} in order for the harmonic conjugate
of x3 to be well defined. Equivalently, both surfaces share the Gauss map e* and
their height differentials differ by multiplication by i = /—1.
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FIGURE 1. Left: The catenoid. Center: The helicoid. Right: The
Enneper surface. Images courtesy of M. Weber.

The Enneper surface. M = C, g(z) = z, dh = zdz. This surface was discov-
ered by Enneper [52] in 1864, using his newly formulated analytic representation
of minimal surfaces in terms of holomorphic data, equivalent to the Weierstrass
representation This surface is non-embedded, has genus zero, one end and total
curvature —47. It contains two horizontal orthogonal lines (after cutting the sur-
face along either of these lines, one divides it into two embedded pieces bounded
by a line) and the entire surface has two vertical planes of reflective symmetry. See
Figure [I right. Every rotation of the coordinate z around the origin in C is an
(intrinsic) isometry of the Enneper surface, but most of these isometries do not
extend to ambient isometries. The catenoid and Enneper’s surface are the unique
complete minimal surfaces in R? with finite total curvature —4m (Osserman [163]).
The implicit form of Enneper’s surface is

2 2 3 2 2 2
Yt - 25, 2 Yy - 1 5 5 8 5 2
— -] —6 - — — -] =0.
( P —I-gz +3> ( P 4(1‘ +y +92)+9

The Meeks minimal Mébius strip. M = C — {0}, g(z) = 22 (”1), dh =

z—1

i (Zzzgl) dz. Found by Meeks [I06], the minimal surface defined by this Weier-
strass data double covers a complete, immersed minimal surface M; C R? which
is topologically a Mobius strip. This is the unique complete, minimally immersed
surface in R3 of finite total curvature —6m. It contains a unique closed geodesic
which is a planar circle and also contains a line bisecting the circle; see Figure [2]

left.

The bent helicoids. M = C — {0}, g(z) = —2 £+, dh = =5>—"dz. Discovered
by Meeks and Weber [I40] and independently by Mira [I49], these are complete,
immersed minimal annuli f[n CNRs with two non-embedded ends and finite total
curvature; each of the surfaces H,, contains the unit circle S! in the (x1, x2)-plane,
and a neighborhood of S' in ﬁn contains an embedded annulus H,, which approx-
imates, for n large, a highly spinning helicoid whose usual straight axis has been
periodically bent into the unit circle S' (thus the name of bent helicoids); see Fig-
ure @ right. Furthermore, the H,, converge as n — oo to the foliation of R? minus
the x3-axis by vertical half-planes with boundary the xs-axis, and with S' as the

15For this reason, the Weierstrass representation is also referred to in the literature as the
Enneper-Weierstrass representation.
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FI1GURE 2. Left: The Meeks minimal Mobius strip. Right: A bent
helicoid near the circle S!, which is viewed from above along the
rz-axis. Images courtesy of M. Weber.

singular set of C''-convergence. The method applied by Meeks, Weber and Mira
to find the bent helicoids is the classical Bjorling formula [160] with an orthogonal
unit field along S' that spins an arbitrary number n of times around the circle. This
construction also makes sense when n is half an integer; in the case n = %, Hyo
is the double cover of the Meeks minimal Mobius strip described in the previous
example. The bent helicoids H, play an important role in proving the converse
of Meeks’ C'!-Regularity Theorem (Theorem below) for the singular set of
convergence in a Colding-Minicozzi limit minimal lamination (for this converse, see
Meeks and Weber [140]).

For the next group of examples, we need to introduce some notation. Given
EeN, k>1and a € R—{0,—1}, we define the compact genus-k surface M;W =
{(z,w) € (CU {o0})? | wht! = GRVCEZY qet ary , = My, — {(~1,0), (00, 00),
(a,0)} and

Zw mz + 1
mz+1’ Ahkam = (z+1)(z—a) 4z,
where A € R — {0}. Given k € N and a € (0, 00), there exist m = m(a) € R and
A = A(a) € R—{0} such that the pair (gx,q,m(a),A(a)> Wk,a,m(a)) is the Weierstrass
data of a well-defined minimal surface X : M}, , — R?® with genus k and three ends
(Hoffman, Karcher [4]). Moreover, m(1) = 0 for any k € N. With this notation,
we have the following examples.

gk,a,m,A(za w) =A

The Costa torus. M = M1, g = g1,1,0,4¢1), dh = dh11,0. Perhaps the most
celebrated complete minimal surface in R? since the classical examples from the
nineteenth centuryE was discovered in 1982 by Costa [4I 42] This is a thrice
punctured torus with total curvature —12m, two catenoidal ends and one planar
middle end. Costa [42] demonstrated the existence of this surface but only proved
its embeddedness outside a ball in R?. Hoffman and Meeks [78] demonstrated its
global embeddedness, thereby disproving a long-standing conjecture that the only

161t also should be mentioned that Chen and Gackstatter [I9] 20] found in 1981 a complete
minimal immersion (not embedded) of a once-punctured torus in R3, obtained by adding a handle
to the Enneper surface. This surface was really a direct ancestor of the Costa torus and the
Costa-Hoffman-Meeks surfaces; see Hoffman [73] for geometric and historical connections between
these surfaces.
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F1GURE 3. Left: The Costa torus. Center: A Costa-Hoffman-
Meeks surface of genus 20. Right: Deformed Costa. Images cour-
tesy of M. Weber.

complete, embedded minimal surfaces in R3 of finite topological type are the plane,
catenoid and helicoid. The Costa surface contains two horizontal straight lines l1, [o
that intersect orthogonally and has vertical planes of symmetry bisecting the right
angles made by Iy, l5; see Figure [3], left.

The Costa-Hoffman-Meeks surfaces. For any k > 2, take M = My, g =
91,1,0,A(1)s dh = dhy19. These examples generalize the Costa torus (given by
k =1), and are complete, embedded, genus k& minimal surfaces with two catenoidal
ends and one planar middle end. Both existence and embeddedness were given by
Hoffman and Meeks [79]. The symmetry group of the genus-k example is generated
by 180°-rotations about k41 horizontal lines contained in the surface that intersect
at a single point, together with the reflective symmetries in vertical planes that
bisect those lines. As k — oo, suitable scalings of the M), ; converge either to the
singular configuration given by a vertical catenoid and a horizontal plane passing
through its waist circle, or to the singly periodic Scherk minimal surface for 6 = 7/2
(Hoffman-Meeks [80]). Both of these limits are suggested by Figure 3 center.

The deformation of the Costa torus. The Costa surface is defined on a square
torus M 1, and admits a deformation (found by Hoffman and Meeks, unpublished)
where the planar end becomes catenoidal. For any a € (0,00), take M = M,
(which varies on arbitrary rectangular tori), g = 91.4,m(a),A(a)> @0 = dh1 q,m(a); SCC
Figure B right. Thus, a = 1 gives the Costa torus. The deformed surfaces are
easily seen to be embedded for a close to 1. Hoffman and Karcher [74] proved the
existence and embeddedness of these surfaces for all values of a; see also the survey
by Lépez and Martin [103]. Costa [43], [44] showed that any complete, embedded
minimal torus with three ends must lie in this family.

The deformation of the Costa-Hoffman-Meeks surfaces. For any k£ > 2 and
a € (0,00), take M = My a, 9§ = Gi,a,m(a),A(a)s A = dhi g m(a)- When a = 1, we
find the Costa-Hoffman-Meeks surface of genus k and three ends. As in the case
of genus 1, Hoffman and Meeks discovered this deformation for values of a close
to 1. A complete proof of existence and embeddedness for these surfaces is given
in [74] by Hoffman and Karcher. These surfaces are conjectured to be the unique
complete, embedded minimal surfaces in R? with genus k& and three ends.

The genus-one helicoid. Now M is conformally a certain rhombic torus T minus
one point E. If we view T as a rhombus with edges identified in the usual manner,
then FE corresponds to the vertices of the rhombus, and the diagonals of T are
mapped into perpendicular straight lines contained in the surface, intersecting at a
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P —

FIGURE 4. Left: The genus-one helicoid. Center and Right: Two
views of the (possibly existing) genus-two helicoid. The arrow in
the figure at the right points to the second handle. Images courtesy
of M. Schmies (Left, Center) and M. Traizet (Right).

single point in space. The unique end of M is asymptotic to a helicoid, so that one
of the two lines contained in the surface is an azis (as in the genuine helicoid). The
Gauss map ¢ is a meromorphic function on T — {E} with an essential singularity
at E, and both dg/g and dh extend meromorphically to T; see Figure [ left. This
surface was discovered in 1993 by Hoffman, Karcher and Wei [75] [76]. Using flat
structures, Hoffman, Weber and Wolf [83] proved the embeddedness of a genus one
helicoid, obtained as a limit of singly periodic “genus one” helicoids invariant by
screw motions of arbitrarily large angles Later Hoffman and White [85] gave a
variational proof of the existence of a genus-one helicoid. There is computational
evidence pointing to the existence of a unique complete, embedded minimal sur-
face in R® with one helicoidal end for any positive genus (Traizet, unpublished,
Bobenko [7], Bobenko and Schmies [8], Schmies [I86]; also see Figure H), but both
the existence and the uniqueness questions remain unsolved (see Conjecture [[1.6]).

The singly periodic Scherk surfaces. M = (CU {oo}) — {#e*%/2}, g(2) = 2,
dh = ﬁ, for fixed 6 € (0,7/2]. Discovered by Scherk [I85] in 1835, these
surfaces denoted by Sy form a 1-parameter family of complete, embedded, genus-
zero minimal surfaces in a quotient of R? by a translation, and have four annular
ends. Viewed in R3, each surface Sy is invariant under reflection in the (xy,x3)
and (2, z3)-planes and in horizontal planes at integer heights, and can be thought
of geometrically as a desingularization of two vertical planes forming an angle of
6. The special case Sy /2 also contains pairs of orthogonal lines at planes of half-
integer heights and has an implicit equation sin z = sinh z sinh y; see Figure [ left.
Together with the plane and catenoid, the surfaces Sp are conjectured to be the
only connected, complete, immersed, minimal surfaces in R? whose area in balls of
radius R is less than 27 R? (Conjecture[[T12). See the paper by Meeks and Wolf for

TThese singly periodic “genus-one” helicoids have genus one in their quotient spaces and
were discovered earlier by Hoffman, Karcher and Wei [T7] (case of translation invariance) and by
Hoffman and Wei [84] (case of screw-motion invariance).
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FIGURE 5. Singly periodic Scherk surface with angle 6 = 7 (left),
and its conjugate surface, the doubly periodic Scherk surface
(right). Images courtesy of M. Weber.

a solution on this conjecture under the additional hypothesis of infinite symmetry,

and also see [110].

The doubly periodic Scherk surfaces. M = (C U {oo}) — {#e®/2}, ¢(z) =
z, dh = W, where 6 € (0,7/2] (the case § = 7 has implicit equation
e®cosy = cosx). These surfaces, also discovered by Scherk [I85] in 1835, are the
conjugate surfaces of the singly periodic Scherk surfaces, and can be thought of
geometrically as the desingularization of two families of equally spaced vertical
parallel half-planes in opposite half-spaces, with the half-planes in the upper family
making an angle of # with the half-planes in the lower family; see Figure [l right.
These surfaces are doubly periodic with genus zero in their corresponding quotient
T? x R, and were characterized by Lazard-Holly and Meeks [100] as being the
unique properly embedded minimal surfaces with genus zero in any T? x R. It
has been conjectured by Meeks, Pérez and Ros [122] that the singly and doubly
periodic Scherk minimal surfaces are the only complete, embedded minimal surfaces
in R® whose Gauss maps miss four points on S? (Conjecture [T.I8). They also
conjecture that the singly and doubly periodic Scherk minimal surfaces, together
with the catenoid and helicoid, are the only complete, embedded minimal surfaces
of negative curvature (Conjecture [[T.17]).

The Schwarz Primitive triply periodic surface. M = {(z,w) € (CU{oc})? |
w? = 28 — 142* + 1}, g(z,w) = 2z, dh = Zwﬂ. Discovered by Schwarz in the
1880s, this minimal surface has a rank-three symmetry group and is invariant by
translations in Z3. Such a structure, common to any triply periodic minimal surface
(TPMS), is also known as a crystallographic cell or space tiling. Embedded TPMS
divide R? into two connected components (called labyrinths in crystallography),
sharing M as boundary (or interface) and interweaving each other. This property
makes TPMS objects of interest to neighboring sciences, such as material sciences,
crystallography, biology and others. For example, the interface between single
calcite crystals and amorphous organic matter in the skeletal element in sea urchins
is approximately described by the Schwarz Primitive surface [3], 50l [I56]. The piece
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of a TPMS that lies inside a crystallographic cell of the tiling is called a fundamental
domain; see Figure

In the case of the Schwarz Primitive surface, one can choose a fundamental do-
main that intersects the faces of a cube in closed geodesics which are almost circles.
In fact, the Schwarz Primitive surface has many more symmetries than those com-
ing from the spatial tiling: some of them are produced by rotation around straight
lines contained in the surface, which by the Schwarz reflection pm’nciplE divide the
surface into congruent graphs with piecewise linear quadrilateral boundaries. Other
interesting properties of this surface are that it divides space into two congruent
three-dimensional regions (as do many other TPMSs), and the quotient surface in
the three-torus associated to the above crystallographic cells is a compact hyperel-
liptic Riemann surface with genus three (in fact, any TPMS ¥ with genus three is
hyperelliptic, since by application of the Gauss-Bonnet formula, the corresponding
Gauss map g: ¥ — S? is holomorphic with degree two). Its conjugate surface, also
discovered by Schwarz, is another famous example of an embedded TPMS, called
the Schwarz Diamond surface. In the 1960s, A. Schoen [I87] made a surprising
discovery: another associate surfacd™ of the Primitive and Diamond surface is an
embedded TPMS, and he named this surface the Gyroid.

The Primitive, Diamond and Gyroid surfaces play important roles as surface
interfaces in material sciences, in part since they are stable in their quotient tori
under volume-preserving variations (see Ross [I84]). Furthermore, these surfaces
have index of stability one, and Ros [I80] has shown that any orientable, embedded
minimal surface of index one in a flat three-torus must have genus three. He con-
jectures that the Primitive, Diamond and Gyroid are the unique index-one minimal
surfaces in their tori, and furthermore, that any flat three-torus can have at most
one embedded, orientable minimal surface of index one. We refer the interested
reader to Karcher [93, [04], Meeks [108] and Ros [I79] for further examples and
properties of triply periodic minimal surfaces. We remark that Traizet [199] has
shown that every flat three-torus contains an infinite number of embedded minimal
surfaces of genus g > 3, which are prime in the sense that they do not descend to
minimal surfaces in another three-torus.

The Riemann minimal examples. This is a one-parameter family of surfaces,
defined in terms of a parameter A > 0. Let My = {(z,w) € (CU{x})? | w? =
z(z — A)(Az + 1)} — {(0,0), (00, 0)}, g(z,w) = 2, dh = Ay%, for each A > 0,
where A, is a non-zero complex number satisfying A3 € R. Discovered by Riemann
(and posthumously published, Hattendorf and Riemann [I75, [170]), these examples
are invariant under reflection in the (a1, z3)-plane and by a translation 7). The
induced surfaces M) /T in the quotient spaces R? /Ty have genus one and two planar
ends; see [124] for a more precise description. The Riemann minimal examples
have the amazing property that every horizontal plane intersects each of these
surfaces in a circle or in a line; see Figure [l The conjugate minimal surface of the

18 A minimal surface that contains a straight line segment [ (resp. a planar geodesic) is invariant
under the rotation of angle 180° about ! (resp. under reflection in the plane that contains 7). Both
assertions follow directly from the general Schwarz reflection principle for harmonic functions.

19The family of associate surfaces of a simply connected minimal surface with Weierstrass data,
(g, dh) are those with the same Gauss map and height differential edh, 6 € [0,27). In particular,
the case 6 = /2 is the conjugate surface. This notion can be generalized to non—simply connected
surfaces, although in that case the associate surfaces may have periods.
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FIGURE 6. Left: A fundamental domain of the Schwarz P-surface,
with a graphical quadrilateral. Right: A bigger piece of the corre-
sponding space tiling. Images courtesy of M. Weber.

FIGURE 7. Two Riemann minimal examples (for different values
of the parameter \). Images courtesy of M. Weber.

Riemann minimal example for a given A > 0 is the Riemann minimal example for
the parameter value 1/\ (the case A = 1 gives the only self-conjugate surface in
the family). Meeks, Pérez and Ros [124] showed that these surfaces are the only
properly embedded minimal surfaces in R3 of genus zero and infinite topology (see

Section [T0]).

The KMR doubly periodic tori. Given (6,«,3) € (0,%) x

(o, B) # (0,0), we consider the rectangular torus 3y = {(z,w) € (CU{o0})? | w? =

(22 4+ A% (2% + A72)}, where A = cot . Then M = £y — g=1({0, 00}),
z(icos(aQ;B)—l—cos C“T"'B)> —|—sin(a—;’8)+isin(%) d

g(Z,’LU): , and dh:,u' )
cos(o‘Qi) +icos(2E2) — 2 (z sin(azi) + sin(”‘—‘gﬁ))

w

where 4 = 1 or v/—1. This Weierstrass data gives rise to a three-dimensional family
of doubly periodic minimal surfaces in R?, that in the smallest quotient in some
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FIGURE 8. Two examples of doubly periodic KMR surfaces. Im-
ages taken from the 3D-XplorMath Surface Gallery.

T? x R have four parallel Scherk-type ends and total curvature —8m. Furthermore,
the conjugate surface of any KMR surface also lies in this family. The first KMR
surfaces were found by Karcher [92] in 1988 (he found three subfamilies, each one
with dimension one, and named them toroidal half-plane layers). One year later,
Meeks and Rosenberg [I31] found examples of the same type as Karcher’s, although
the different nature of their approach made it unclear what the relationship was
between their examples and those by Karcher. In 2005, Pérez, Rodriguez and
Traizet [169] gave a general construction that produces all possible complete, em-
bedded minimal tori with parallel ends in any T? x R and proved that this moduli
space reduces to the three-dimensional family of surfaces defined by the Weierstrass
data given above; see Figure[8 It is conjectured that the only complete, embedded
minimal surfaces in R® whose Gauss map misses exactly 2 points on S? are the
catenoid, helicoid, Riemann examples, and these KMR examples.

The singly periodic Callahan-Hoffman-Meeks surfaces. In 1989, Callahan,
Hoffman and Meeks [15] generalized the Riemann minimal examples by construct-
ing for any integer £ > 1 a singly periodic, properly embedded minimal surface
M, C R3? with infinite genus and an infinite number of horizontal planar ends
at integer heights, invariant under the orientation-preserving translation by vector
T = (0,0,2), such that My /T has genus 2k + 1 and two ends. They not only
produced the Weierstrass data of the surface (see [I5] for details), but also gave
an alternative method for finding this surface, based on blowing up a limiting sin-
gularity of a sequence of compact minimal annuli with boundaries. This rescaling
process was a prelude to the crucial role that rescaling methods play nowadays in
minimal surface theory and that we will treat in some detail in this survey. Other
properties of the surfaces M}, are the following ones.

(1) Every horizontal plane at a non-integer height intersects M}, in a simple
closed curve.

(2) Every horizontal plane at an integer height intersects My, in k + 1 straight
lines that meet at equal angles along the x3-axis.

(3) Every horizontal plane at half-integer heights n-+3 is a plane of symmetry of
M., and any vertical plane whose reflection leaves invariant the horizontal
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Ficure 9. Callahan-Hoffman-Meeks surfaces My, for £ = 1
(left, image courtesy of M. Weber) and k = 2 (right, from
the Scientific Graphics Project at http://www.msri.org/about/
sgp/SGP/index.html). The dotted lines correspond to a vertical
plane of symmetry of Ms.

lines on M}, described in item 2 is also a plane of symmetry. For pictures
of My, with k = 1,2, see Figure[d

2.6. Monotonicity formula and classical maximum principles. As we will
see in Section [Z3] the conformal type of a minimal surface in R? is strongly influ-
enced by its area growth in extrinsic balls. The first result along these lines comes
from the coarea formula applied to the distance function to a given point p € R3.
The following statement of the coarea formula appears in [I§]; see [56] for a more
general version.

Proposition 2.14 (Coarea Formula). Let Q be a domain with compact closure in
a Riemannian n-manifold M and f: Q — R a function in C°(Q) N C>(Q) with
flaa = 0. For any regular value t of |f|, we let T'(t) = |f|~1(t) and let A(t) denote
the (n — 1)-dimensional area of T'(t). Then, for any function ¢ € L*(£2), we have

/Q¢|Vf|dV= /OOo (/F(t)¢dAt> dt,

where V f is the gradient of f in M and dV,dA; are respectively the volume elements
in M and T'(t).

Theorem 2.15 (Monotonicity Formula [25, 96]). Let X: M — R? be a connected,
properly immersed minimal surface. Given p € R3, let A(R) be the area of the
portion of X (M) inside a ball of radius R > 0 centered at p. Then, A(R)R™? is
non-decreasing. In particular, limg oo A(R)R™2 > 7 with equality if and only if
M is a plane.

One of the consequences of the fact that minimal surfaces can be viewed locally as
solutions of the partial differential equation () is that they satisfy certain maximum
principles. We will state them for minimal surfaces in R3, but they also hold when
the ambient space is any Riemannian three-manifold.
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Theorem 2.16 (Interior Maximum Principle [I88]). Let My, My be connected min-
imal surfaces in R and p an interior point to both surfaces, such that T,M; =
T, My = {x3 = 0}. If My, My are locally expressed as the graphs of functions us, ug
around p and uy < us in a neighborhood of p, then My = Ms in a neighborhood
of p.

A beautiful application of Theorem is the following result by Hoffman and
Meeks.

Theorem 2.17 (Half-space Theorem [82]). Let M C R3 be a proper, connected,
possibly branched, non-planar minimal surface without boundary. Then M cannot
be contained in a half-space.

More generally, one has the following result of Meeks and Rosenberg based on

earlier partial results in [22] [82] O8] [132] [192].

Theorem 2.18 (Maximum Principle at Infinity [I38]). Let My, My C N be disjoint,
connected, properly immersed minimal surfaces with (possibly empty) boundary in
a complete flat three-manifold N .

i) If OM, # @ or OMsy # &, then after possibly reindexing, the distance be-
tween My and My (as subsets of N ) is equal to inf{dist(p,q) | p € OM;, q €
My},

1) If OMy = OMs = @, then My and My are flat.

We now come to a beautiful and deep application of the general maximum prin-
ciple at infinity. The next corollary appears in [138] and a slightly weaker variant
of it in Soret [192].

Corollary 2.19 (Regular Neighborhood Theorem). Suppose M C N is a properly
embedded minimal surface in a complete flat three-manifold N, with the absolute
value of the Gaussian curvature of M at most 1. Let Ny(M) be the open unit
interval bundle of the normal bundle of M given by the normal vectors of length
strictly less than 1. Then, the corresponding exponential map exp: Ny(M) — N s
a smooth embedding. In particular:

1. M has an open, embedded tubular neighborhood of radius 1.
2. There exists a constant C' > 0 such that for all balls B C N of radius 1,
the area of M N B is at most C times the volume of B.

2.7. Ends of properly embedded minimal surfaces. One of the fundamen-
tal problems in classical minimal surface theory is to describe the behavior of a
properly embedded minimal surface M C R? outside a large compact set in space.
This problem is well understood if M has finite total curvature (see Theorem 2.1T]),
because in this case, each of the ends of M is asymptotic to an end of a plane or a
catenoid. Theorem [[4] states that if M has finite topology but infinite total curva-
ture (thus M has exactly one end by Collin’s Theorem [[3]), then M is asymptotic
to a helicoid. More complicated asymptotic behaviors can be found in periodic
minimal surfaces in R3, although this asymptotic behavior is completely under-
stood when the periodic minimal surface has finite topology in the corresponding
quotient ambient space (thus the quotient surface has finite total curvature by The-
orem [ZT2); in this setting, only planar, helicoidal or Scherk-type ends can occur;
see Section 241
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We next consider the question of understanding the asymptotics of a general
properly embedded minimal surface in R3. A crucial point is the notion of topolog-
ical end, which we now explain. Let M be a non-compact connected manifold. We
define an equivalence relation in the set A = {«a: [0,00) = M | « is a proper arc},
by setting oy ~ aq if for every compact set C' C M, aq, as lie eventuallyl™] in the
same component of M — C.

Definition 2.20. Each equivalence class in E(M) = A/ is called an end of M. If
e € E(M), a € e is a representative proper arc and €2 C M is a proper subdomain
with compact boundary such that o C 2, then we say that the domain Q) represents
the end e.

The space £(M) has the following natural Hausdorff topology. For each proper
domain ) C M with compact boundary, we define the basis open set B(2) C £(M)
to be those equivalence classes in £(M) which have representatives contained in €.
With this topology, £(M) is a totally disconnected compact space which embeds
topologically as a subspace of [0, 1] C R. On pages 288-289 of [I17], we gave a short
proof of this embedding result for (M), which works even in the more general case
where M is a manifold or a finite-dimensional simplicial complex. In the case that
M is a properly embedded minimal surface in R? with more than one end, there
is also a natural topological embedding of £(M) into [0, 1] which uses the relative
heights of the ends of M; see the Ordering Theorem [G.21

Definition 2.21. Any isolated point e € £(M) is called a simple end of M. If
e € E(M) is not a simple end (equivalently, if it is a limit point of £(M) C [0, 1]),
we will call it a limit end of M.

When M has dimension 2, then an elementary topological analysis using compact
exhaustions shows that an end e € £(M) is simple if and only if it can be represented
by a proper subdomain 2 C M with compact boundary which is homeomorphic to
one of the following models:

(a) S' x [0,00) (this case is called an annular end).

(b) S' x [0,00) connected sum with an infinite number of tori where the nth
connected sum occurs at the point (1,n) € S' x [0,00), n € N (this case is
called a simple end of infinite genus).

For limit ends there are similar notions: a limit end e € £(M) is said to have
genus zero if it can be represented by a proper subdomain Q C M with compact
boundary and genus zero. If a limit end e does not have genus zero, then we say that
it has infinite genus; in this case, every proper subdomain with compact boundary
representing e has infinite genus.

We will devote Section[fto the Ordering Theorem for ends of properly embedded
minimal surfaces in R?; this theorem is the starting point for the theory of prop-
erly embedded minimal surfaces with more than one end. Concerning one-ended
minimal surfaces, the classical example in this family is the helicoid. Also, one has
the newer examples of helicoids with handles (rigorously proven to exist only for
the case of one handle); see Figure [ Theoretically, Theorem [[4] insures that any
non-planar, properly embedded, one-ended, minimal surface with finite topology
must be necessarily asymptotic to a helicoid with finitely many handles, and it can

20Throughout the paper, the word eventually for proper arcs means outside a compact subset
of the parameter domain [0, c0).



350 WILLIAM H. MEEKS III AND JOAQUIN PEREZ

be described analytically by meromorphic data (dg/g,dh) on a compact Riemann
surface by means of the classical Weierstrass representation. Regarding one-ended
surfaces with infinite topology, Callahan, Hoffman and Meeks [16] showed that any
non-flat, doubly or triply periodic minimal surface properly embedded in R3 must
have infinite genus and only one end.

2.8. Second variation of area, index of stability and Jacobi functions. Let
M C R3 be an oriented minimal surface and Q C M a subdomain with compact
closure. Any smooth normal deformation of the inclusion X: M — R? which is
compactly supported in € can be written as X + tulN, where N is the Gauss map
of M and u € C3°(£2). By equation [2l), the area functional A = A(t) for this
deformation has A’(0) = 0. The second variation of area can be easily shown to be

(see [160])
(11) A"(0) = —/ u(Au — 2Ku) dA,
Q

where K is the Gaussian curvature function of M and A its Laplace operator.
Formula (I can be viewed as the bilinear form associated to the linear elliptic
L2-self-adjoint operator L = A — 2K = A + |[VN|?, which is usually called the
Jacobi operator or stability operator.

Definition 2.22. A C?-function v: M — R satisfying Au—2Ku = 0 on M is called
a Jacobi function. We will let J (M) denote the linear space of Jacobi functions
on M.

Classical elliptic theory implies that given a subdomain 2 C M with compact
closure, the Dirichlet problem for the Jacobi operator in ) has an infinite discrete
spectrum { A} renugoy of eigenvalues with Ay 400 as k goes to infinity, and each
eigenspace is a finite-dimensional linear subspace of C°°(Q) N Hg (), where Hg (£2)
denotes the usual Sobolev space of L2-functions with L? weak partial derivatives and
trace zero. Since any normal variation by minimal surfaces has vanishing second
derivative of the area functional, it follows that the normal parts of variational
fields coming from Killing or dilatation vector fields of R? produce elements in
J(M). For instance, when the Killing field is a translation by a vector v € R3,
then the corresponding Jacobi function is (N, v) (called a linear Jacobi function).
Similarly, rotations around an axis of direction v € R3 produce the Jacobi function
det(p, N,v) (here p denotes the position vector) and homotheties give rise to the
support function (p, Ny € J(M).

A particularly interesting Jacobi function, which can be defined when the mini-
mal surface is transverse to a family of horizontal planes, is the Shiffman function,
which is proportional to the derivative of the curvature of each planar section with
respect to a parameter of such a section (this parameter is not the arclength of
the section; see equation (I3))). Thus, the condition of vanishing identically for the
Shiffman function means that the surface is foliated by planar curves of constant
curvature, i.e., lines or circles. This argument can be used to prove that every com-
pact minimal annulus A in R? whose boundary consists of circles in parallel planes
I1;, I, is foliated by circles which lie in planes parallel to IT; (see Shiffman [190]).
By classical results of Riemann [I75], [I76], it follows that such an annulus A must
be contained in a catenoid or in one of the Riemann minimal examples discussed
in Section The Shiffman function and its connection with the Korteweg-de
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Vries equation plays a fundamental role in the characterization by Meeks, Pérez
and Ros [124] of the Riemann minimal examples as the only properly embedded
minimal surfaces in R? with their topology (see Theorem [[2]and Section [0.3)). For
more details about the Shiffman function, see [54] [55] 17, (164, [167].

Definition 2.23. Let 2 C M be an orientable subdomain with compact closure.
The index of stability of € is the number of negative eigenvalues of the Dirichlet
problem associated to L in 2. The nullity of Q is the dimension of J(2) N H}(Q).
Q is called stable if its index of stability is zero, and strictly stable if both its index
and nullity are zero.

Elliptic theory also implies that € is strictly stable provided that it is sufficiently
small, which justifies the Definition of minimal surface as a local minimum of
area. Another consequence of elliptic theory is that ) is stable and orientable if
and only if it carries a positive Jacobi function. Since the Gauss map N of a graph
defined on a domain in a plane II has image set contained in an open half-sphere, the
inner product of N with the unit normal to II provides a positive Jacobi function,
from where we conclude that any minimal graph is stable. Stability makes sense
for non-compact minimal surfaces, as we next explain.

Definition 2.24. A minimal surface M C R3 is called stable if any subdomain
Q C M with compact closure is stable. For orientable minimal surfaces, stability
is equivalent to the existence of a positive Jacobi function on M (Proposition 1 in
Fischer-Colbrie [59]). M is said to have finite indez if outside of a compact subset
it is stable. The index of stability of M is the supremum of the indices of stability
of subdomains with compact closure in M.

By definition, stable surfaces have index zero. The following theorem explains
how restrictive is the property of stability for complete minimal surfaces. It was
proved independently by Fischer-Colbrie and Schoen [60], do Carmo and Peng [49],
and Pogorelov [I74] for orientable surfaces. Later, Ros [I80] proved that a complete,
non-orientable minimal surface in R? is never stable.

Theorem 2.25. If M C R? is a complete, immersed, stable minimal surface, then
M is a plane.

A short elementary proof of Theorem in the orientable case is given in
Section 4 of [I17] and also in [I14]; also see the proof of Lemma [I0.5] below.

A crucial fact in minimal surface theory is that stable, minimally immersed sur-
faces with boundary in R? have curvature estimates up to their boundary. These
curvature estimates were first obtained by Schoen for two-sided surfaces in homo-
geneously regular three-manifolds (see Definition below) and later improved
by Ros to the one-sided case, and are a simple consequence of Theorem [Z.25] after
a rescaling argument.

Definition 2.26. A Riemannian three-manifold N is homogeneously reqularif there
exists an € > 0 such that e-balls in N are uniformly close to e-balls in R? in the
C?%-norm. In particular, if N is compact, then N is homogeneously regular.

Theorem 2.27 (Schoen [I88], Ros [I80]). For any homogeneously regular three-
manifold N there exists a universal constant ¢ > 0 such that for any stable, mini-
mally immersed surfac M in N, the absolute value | K| of the Gaussian curvature

21For a two-sided minimal surface M in a general three-manifold N with unit normal vector
v: M — TN, the second derivative of the area functional along a compactly supported normal
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of M satisfies
|K (p)| distyx (p, 0M)* < ¢ for all p € M,
where disty denotes distance in N and OM is the boundary of M.

We remark that Rosenberg, Souam and Toubiana [I83] have obtained a version
of Theorem valid in the two-sided case when the ambient three-manifold has
a bound on its sectional curvature.

If we weaken the stability hypothesis in Theorem 225 to finite index of stability
and we allow compact boundary, then completeness and orientability also lead to
a well-known family of minimal surfaces.

Theorem 2.28 (Fischer-Colbrie [59]). Let M C R3 be a complete, orientable,
minimally immersed surface in R3, with possibly empty compact boundary. Then
M has finite index of stability if and only if it has finite total curvature.

A similar result to Theorem [2.2§] for non-orientable, complete minimal surfaces
is not known to hold; see Conjecture [1.241

By the conformal invariance of the Dirichlet integral, both the index and nullity
of the Jacobi operator L = A + |VN|? remain constant under a conformal change
of metric. Recall that the Huber-Osserman Theorem PTT] asserts that every com-
plete, orientable, immersed minimal surface M C R? with finite total curvature is
conformally equivalent to a finitely punctured compact Riemann surface M, and
the Gauss map N of M extends meromorphically to M. In this case, it can be

9 I
shown (Pérez and Ros [I70]) that there exists a smooth metric ds° on M such
that the metric ds? on M induced by the inner product of R? can be expressed as

ds® = ;L%Q, where 1 is a positive smooth function which blows up at the ends of
M. Furthermore, both the index and nullity of L can be computed as the index
and nullity of the operator L = A + [VN|? on M, where a bar means that the

corresponding object refers to %2. Note that L is nothing more than the clas-
sical Schrédinger operator associated to the meromorphic extension of N to M.
The subspace K(M) of bounded Jacobi functions on M can be identified with the
eigenspace associated to the eigenvalue 0 of the operator L. Inside (M), we have
the subspace of linear functions £(M) = {(N,v) | v € R3} (which are the normal
parts of variational fields of deformations by translations). If additionally all the
ends of M are parallel say horizontal, then the function det(p, N,es) € K(M),
where e3 = (0,0, 1), is a bounded Jacobi function (it is the normal part of the varia-
tional field of the deformation of M by rotations around the x3-axis). In particular,
K (M) has dimension at least 4 for any complete, embedded minimal surface of finite
total curvature in R? (except for the catenoid and the plane, where det(p, N, e3)
vanishes).

Montiel and Ros found a beautiful relationship between bounded Jacobi func-
tions and branched minimal immersions with prescribed Gauss map. For a complete

variation with variational field uv, is A”(0) = — [, u(Au+(Ric(v)+|o|?)u) dA, where Ric denotes
the Ricci curvature of N and |o|? is the squared length of the second fundamental form of M in
N. M is called stable if A”(0) > 0 for all u € C§°(M), and unstable otherwise. If M is one-sided
(i-e., has a non-trivial normal bundle), then stability imposes A”(0) > 0 on the two-sided covering
M of M, for all functions u € 080(1\7) which anti-commute with the natural 2 : 1 covering map
M — M. When the ambient manifold N is orientable, two-sidedness is equivalent to orientability
of M.
22This occurs, for instance, when M is embedded.
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minimal surface M C R3 with finite total curvature and conformal compactifica-
tion M, let B(N) C M be the set of branch points of the extended Gauss map and
M(N) the linear space of all complete, branched minimal immersions (including
the constant maps) X: M — B(N) — R3 with the same Gauss map N as M.

Theorem 2.29 (Montiel, Ros [I50]). Let M C R3 be a complete, immersed minimal
surface with finite total curvaturel*] Then there exists a linear map u € K(M) —
Xu € M(N) such that the support functiod of X, is u, and u € L(M) if and
only if X, is constant. Furthermore, this linear map gives rise to an isomorphism

between the quotient spaces IC(M)/L(M) and M(N)/{constants }.

Among the admissible conformal metrics which can be used to express questions
related with the Jacobi operator, a particularly interesting choice comes from con-
sideration of the pullback metric ds%; through the Gauss map N: M — S? from the
standard spherical metric on S?. The metric ds% has singularities at the branch
points of NV, and the Jacobi operator transforms into Ly = An + 2, where Ay is
the Laplace operator of ds%;. Eigenvalues and eigenfunctions of Ly are well defined
by a variational approach (Tysk [203]). In particular, the index of stability of a
subdomain @ C M with compact closure is equal to the number of eigenvalues
of An which are strictly less than 2, and the nullity of € is the multiplicity of 2
as an eigenvalue of Ay. Using these ideas, Montiel and Ros gave some estimates
for the index and nullity under different geometrical assumptions, among which we
emphasize the following one.

Theorem 2.30 (Montiel, Ros . Let M C R3 be a complete, immersed minimal
surface with finite total curvature = If all the branch values of the Gauss map of M
lie on an equator of S?, then the dimension of K(M) is 3 and M has index 2d — 1,
where d is the degree of the extended Gauss map.

2.9. Barrier constructions. Barrier constructions allow one to construct com-
pact and non-compact stable minimal surfaces in R? that are constrained to lie in
subdomains of R? whose boundaries have non-negative mean curvature. To illus-
trate this construction, we next give an example. Consider two disjoint, connected,
properly embedded minimal surfaces M;, My in R? and the closed connected re-
gion W of R with W = M; U M,;. We now show how to produce compact,
stable, embedded minimal surfaces in W. First note that W is a complete flat
three-manifold with boundary OW, and OW has mean curvature zero. Meeks
and Yau [I45] proved that W embeds isometrically in a homogeneously regular
Riemannian three-manifold (W,@, with W diffeomorphic to the interior of W.
Morrey [I51] proved that in a homogeneously regular manifold, one can solve the
classical Plateau problem and other area-minimizing problems. In particular, if I'
is an embedded 1-cycle in W that bounds an orientable chainP in W, then by
standard results in geometric measure theory [56], I' is the boundary of a com-

pact, least-area embedded surface ¥r(g) C W. Meeks and Yau proved that the
metric g on W can be approximated by a family of homogeneously regular metrics

23Theorems and [Z30 remain valid for complete minimal surfaces in any quotient of R3
where the Gauss map makes sense, and which have finite total curvature in the quotient.

24The support function u of an immersion X: M — R3 is u(p) = (p, N(p)), where N is the
normal unit vector field of X; note that u is the normal part of the variational field of X by
homotheties.

25We are considering here a finite sum of differentiable simplices.
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{gn }nen on W, which converges smoothly on compact subsets of W to g, and each

gn satisfies a convexity condition outside of W C W, which forces the least-area
surface Xr(g,) to lie in W if T lies in W. A subsequence of the Xr(g,) converges
to a smooth minimal surface Xp of least area in W with respect to the original flat
metric, thereby finishing our description of the barrier construction.

We now use this barrier construction to prove the following theorem due to
Hoffman and Meeks [82], from which Theorem 2.I7] follows directly.

Theorem 2.31 (Strong Half-space Theorem [82]). If My and My are two disjoint,
proper, possibly branched minimal surfaces in R3, then My and My are parallel
planes.

Proof. Let W be the closed complement of M; U M, in R? that has portions of
both M; and Mj; on its boundary. As explained above, the surface OW is a good
barrier for solving Plateau-type problems in W. Let M;(1) C --- C Mi(n) C

be a compact exhaustion of M; and let ¥1(n) be a least-area surface in W with
boundary OM;(n). Let a be a compact arc in W which joins a point in M; (1) to
a point in W N Ms. By elementary intersection theory, « intersects every least-
area surface 31(n). By compactness of least-area surfaces, a subsequence of the
surfaces Y1 (n) converges to a properly embedded area-minimizing surface ¥ in W
with a component ¥y which intersects «; this proof of the existence of ¥ is due
to Meeks, Simon and Yau [139]. Since Xy separates R3, ¥ is orientable and so
by Theorem 28] ¥ is a plane. Hence, M; and Ms lie in closed half-spaces of
R3. Then, the height function of My, M, over their separating plane is a positive
harmonic function, which must be constant provided that M, and M are recurrent
(see Definition and Proposition [[4]). The fact that M; and M, are recurrent
will be proved in Theorem [.7] below. Hence, M7 and M, must be planes 0

Another useful application of the barrier construction is the following. Suppose
I is an extremal simple closed curve in R3, i.e., that I' lies on the boundary of
its convex hull B. We first assume that dB is smooth. By the Jordan Curve
Theorem, I' is the boundary of two disks Dy, Dy C OB. Suppose I' bounds two
different compact, branched minimal immersions and let ¥ denote their union. By
the convex hull property > C B. Let Wy, W, be the geodesic completlonﬂ of
the two components of B — ¥ that contain the disks D, Ds. In this case, W,
and OW5 consist of smooth pieces with non-negative mean curvature and convex
corners. Meeks and Yau [I45] proved that such boundaries are good barriers for
solving least-area problems. In fact, in this case they proved that I' bounds a least-
area embedded disk D1 C Wi and a different least-area embedded disk D2 c Ws.
Similarly, if I" bounds a unique, branched minimal surface which is not an embedded
stable minimal disk, then with this barrier argument, we can produce two different

26The original proof of the Strong Half-space Theorem uses the Half-space Theorem (Theo-
rem [2.I7) to conclude that Mi, M are planes, once one knows that 3¢ is a separating plane.
Here we have used Proposition [T-4] since we wanted to deduce the Half-space Theorem 217 as a
consequence of Theorem 2311

27This property states that any compact minimal surface with boundary lies in the convex
hull of its boundary. It works in much more generality than for minimal surfaces; in fact, Osser-
man [I62] characterized the surfaces in R? all of whose precompact subdomains lie in the convex
hull of their boundaries, as those surfaces with non-positive Gaussian curvature.

28The geodesic completion of a Riemannian manifold is the completion of the underlying in-
trinsic metric space structure defined by the infimum of the lengths of curves in that manifold.



THE CLASSICAL THEORY OF MINIMAL SURFACES 355

embedded minimal disks with boundary I". If 9B is not assumed to be smooth, then
one can use an approximation argument by convex smooth boundaries to obtain
the same conclusion (see, e.g., [144]).

On the other hand, Nitsche [I59] proved that a regular, analytic Jordan curve
in R? whose total curvature is at most 47 bounds a unique minimal disk. The
hypothesis of analyticity for the boundary curve in Nitsche’s Theorem comes from
consideration of boundary branch points. When I is of class C? and extremal, there
are never boundary branch points, as shown in [I45]; one uses here Hildebrandt’s
boundary regularity results [70]. The last two paragraphs can be summarized in
the following statement.

Theorem 2.32 (Meeks, Yau [145]). If I' C R?® is a C?%-extremal curve with to-
tal curvature at most 4w, then I' is the boundary of a unique, compact, branched
minimal surface and this surface is an embedded minimal disk of least area.

3. MINIMAL SURFACES WITH FINITE TOPOLOGY AND MORE THAN ONE END

Collin’s Theorem stated in the introduction is a key result which reduces
the study of properly embedded minimal surfaces in R? with finite topology and
at least two ends (see Definition for the general definition of end) to the
family of surfaces with finite total curvature. As mentioned in Section 23] the
powerful theory of compact Riemann surfaces applies to these last surfaces, which
has helped to make possible a rather good understanding of them. In this section
we have two goals: to mention the main construction methods that are used to
produce complete, embedded minimal surfaces of finite total curvature, and to
state uniqueness and non-existence results for these kinds of surfaces. We will start
with this last goal.

3.1. Classification results for embedded minimal surfaces of finite total
curvature. The Jorge-Meeks formula (equation (@) relates the total curvature,
genus and number of ends of a complete, embedded minimal surface with finite
total curvature. Consequently, it is natural to look for classification and non-
existence results fixing two of these numbers, or even better, fixing only one of the
three. The first deep result along these lines is due to Schoen, who proved the
following theorem in 1983 as an application of the Alexandrov reflection technique
(see Alexandrov [2] and Hopf [86] for a description of this classical technique).

Theorem 3.1 (Schoen [I88]). The catenoid is the unique complete, immersed min-
imal surface in R3 with finite total curvature and two embedded ends.

Eight years later, Lopez and Ros classified the embedded genus-zero examples
of finite total curvature. The main ingredients in the proof of the result below are
the Lépez-Ros deformation explained in Section together with the maximum
principle for minimal surfaces.

Theorem 3.2 (Lépez, Ros [104]). The plane and the catenoid are the only com-
plete, embedded minimal surfaces in R3 with genus zero and finite total curvature.

Costa [43] [44] showed that any complete, embedded minimal surface in R?® with
genus one and three ends either is the Costa surface or lies in the Hoffman-Meeks
deformation discussed in Section 2.5l with the moduli space of complete, embed-
ded, minimal, thrice-punctured tori being diffeomorphic to an open interval. This
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was the first time that a space of complete, embedded minimal surfaces with a
prescribed topology had an explicit description as a manifold of finite positive di-
mension. Concerning moduli spaces of minimal surfaces with finite total curvature
and prescribed topology, Pérez and Ros [I70] gave general conditions on the space
M(g,r) whose elements are the complete, embedded minimal surfaces in R® with
finite total curvature, genus g and r ends, to have a structure of a real analytic
manifold of dimension r — 2 around a given minimal surface M € M(g,r), and
they called such conditions on M the non-degeneracy of the surface. This term
comes from the fact that the manifold structure on M(g,r) follows from an ap-
plication of the Implicit Function Theorem, which needs a certain derivative to be
surjective (also sometimes called non-degenerate). The non-degeneracy condition
is expressed in terms of the bounded Jacobi functions on M (see Section 228 for the
definition of Jacobi function). They also identified the tangent space to M(g,r) at
a non-degenerate minimal surface M with the set of Jacobi functions on M which
have at most logarithmic singularities at the ends. Other compactness results for
moduli spaces of complete, embedded minimal surfaces with finite total curvature
have been given by Ros [I77], Traizet [I98] and by Meeks, Pérez and Ros [119] [129].
We will explain in Section some further advances in this area; see specifically
Theorem stated in the Introduction.

3.2. Methods for constructing properly embedded minimal surfaces of
finite total curvature. The Weierstrass representation gives a direct method
for constructing minimal surfaces of finite total curvature, starting from an input
which is a compact Riemann surface M and three meromorphic 1-forms ¢, ¢2, ¢3
on M satisfying >;¢? = 0. One then defines the (stereographically projected)
Gauss map as g = ¢1¢f’;. 5 and the height differential as dh = ¢3. The degrees of
freedom to work with come from the moduli space of conformal structures for a
given genus, together with the points which correspond to the ends (poles of ¢;,
i =1,2,3). Avoiding branch points for the induced metric (condition i) in Theo-
rem 27T0) amounts to a rather simple problem of adjusting the canonical divisors of
the 1-forms ¢1, ¢a, ¢3. The first main task is to solve the period problem (condition
i1) in Theorem 2.I0]). Since the extrinsic symmetries of a minimal surface simplify
the period calculations with the Weierstrass data, the period problem is sometimes
tackled by assuming enough symmetries; in this way, the constraint equations in ({])
reduce to a sufficiently small number of closed curves in M = M — {ends}, so that
one can adjust the remaining free parameters, often by continuity or degree-type
arguments, and solve the period problem. A variant of this idea is to express the
period problem as a Teichmiiller theory issue (we will explain more about this be-
low; see the method of Weber and Wolf). An even more serious difficulty appears
when we try to obtain an embedded example, since the Weierstrass data gives no
direct information on this matter. A useful technique for proving embeddedness
is to decompose M into congruent pieces (which are fundamental domains of the
action of the symmetry group of M, so we need again to assume enough symmetries
here), and to prove that each piece is embedded.

Another remarkable method to produce examples is to perturb singular configu-
rations (i.e., minimal surfaces with singularities, modeled on Riemann surfaces with
nodes) via the Implicit Function Theorem, which is the main idea of the method
of Traizet, or to desingularize configurations of smooth minimal surfaces, first by
constructing a surface of mean curvature approximately zero, and then by applying
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a fixed point theorem to obtain a nearby minimal surface (method of Kapouleas).
Next we will explain a bit more about these three different methods. If we were to
follow the historical order, then Kapouleas’s method would be first; nevertheless,
we will leave it to the end of this section since the other two methods rely on the
Weierstrass representation (which we started this section with), while Kapouleas’s
method uses PDE and functional analysis arguments.

The method of Weber and Wolf. The goal is to produce a surface with pre-
scribed topology and symmetries via the Weierstrass representation, although this
method has interesting features that differ from the general presentation given
above. The key idea is an original viewpoint to solve the period problem, based on
flat structures. If o is a meromorphic 1-form on a Riemann surface R, then |a|?
defines a flat metric on R — a~1({0,00}). In particular, we can develop R locally
as a domain Q, in C (so that the usual holomorphic differential dz pulls back to
«), except around a zero or pole of a, where the developing map produces a cone
point (i.e., a generalized sector with edges identified, whose aperture angle is neither
necessarily less than 27 nor a rational multiple of 7), whose cone angle depends
explicitly on the order of the zero or pole of a. The line element |«| associated to
the metric |a|? is called a flat structure on R.

Once we understand the concept of flat structure, the method is easy to follow.
One starts by assuming that the desired minimal surface M exists and computes
the divisors of the 1-forms gdh and g~'dh (as usual, g is the Gauss map and dh
the height differential of M this divisor information can be read from the expected
shape of the surface). Assuming enough symmetry, one supposes that a fundamen-
tal piece of the action of the symmetry group of M is a disk D with boundary
and develops D as two domains £ gy, 2,14, With piecewise smooth boundary in
C as we explained above for a. The periods of gdh and ¢g~'dh transform into
integrals of dz along paths in C, and the complex period condition in equation
([BD)-left is equivalent to the fact that the developing domains in C associated to
gdh and ¢! dh are conjugate in a natural sense. This period condition is, thus,
automatically satisfied by taking appropriate pairs of developing domains. The real
period condition in equation (B)-right is also easy to fulfill, since it reduces to an
algebraic condition on the sum of the cone angles. The reader could think that the
period problem has been magically solved, but in reality we have only exchanged
it with another problem in Teichmiiller theory: find a pair of conjugate developing
domains €y gp,, 24-14y, so that they match up to give a well-defined Riemann surface
on which gdh, g~dh both exist (once this difficulty is solved, the Weierstrass data
(g,dh) is easily recovered from gdh, g~'dh). This task is done by studying the
moduli space of pairs of conjugate domains and using specific tools of Teichmiiller
theory, such as extremal length.

Weber and Wolf have used this method in several different situations [204] [205].
For instance, they produced for all odd genera g, a complete minimal surface
M(g) C R?® with finite total curvature, genus g, two catenoidal ends and g pla-
nar horizontal ends. Furthermore, M(g) is embedded outside a compact set*] and
the symmetry group of M(g) is generated by reflective symmetries about a pair
of orthogonal vertical planes and a rotational symmetry about a horizontal line.
The surface M (g) also has theoretical importance, since if it were proved to be

29The conjecture that the surfaces M(g) are all embedded is supported by graphical and
numerical evidence.
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embedded, then it would represent the borderline case for Conjecture [1.5 below.
Also, the surfaces M (g) might be used to produce as a limit as g — 0o, a properly
embedded minimal surface in R? with exactly one limit end and infinite genus.

The method of Traizet. Again this method is based on the Weierstrass repre-
sentation, but with a different flavor from the preceding one. The technique also
applies to construct minimal surfaces with infinite total curvature, but we will focus
here on the finite total curvature case. The key point is that certain continuous
families of embedded minimal surfaces M () (here 6 is a multi-parameter) with the
same topology and total curvature have a weak limit as 6 approaches a point 6., in
the boundary of the range of allowed parameters. A weak limit is a finite collection
of minimal surfaces {M1 ;- .., M} o0} such that:

e For cach i, M; - is a smooth limit of suitable rescalings of the M () as
0 — 0.

e The topology and total curvature of the M () can be recovered as a sum
of the ones of all the M, o, i =1,... k.

This phenomenon allows one to model the weak limit as being a compact Riemann
surface with nodesPY Now the method allows one to go backwards: starting from a
finite configuration of minimal surfaces M o, ..., M}, oo with finite total curvature
modeled over a compact Riemann surface with nodes R(0), one studies how to de-
form R(0) by opening slightly its nodes, creating in this way an analytic family R(¢)
of compact Riemann surfaces without nodes, where t is a vector-valued complex
parameter around ¢ = 0. At the same time, the collection of Weierstrass representa-
tions (¢ 00; dhi o) Of the M; o on R(0) deform analytically to a global Weierstrass
representation (g, dh:) on R(t), and we want to find some subfamily of parameters
t such that the period problem for the triple (R(t), g¢, dh;) is solved. To solve this
period problem, one writes its solutions as the zeros of an analytic map P from
the t-domain into certain C™. Furthermore, P(0) = 0 since the M ..., M}
are real minimal surfaces. The desired family of zeros of P passing through t = 0
is then obtained by application of the Implicit Function Theorem, provided that
a certain non-degeneracy condition holds for the limit configuration (namely, the
differential of P at t = 0 must be surjective).

It is remarkable that Traizet’s method makes no restrictions a priori either on
the genus of the surfaces to be constructed, or on their symmetry groups. In fact,
Traizet applied this method to produce the first example of a complete, embed-
ded minimal surface with finite total curvature in R? and trivial symmetry group;
see [I97]. For this result, Traizet desingularized a configuration of planes and tiny
catenoids. One limitation of the method is that, by its nature, it only produces
examples which are close to the boundary of their corresponding moduli spaces.
As said before, the method also works for surfaces of infinite total curvature. For
instance, Traizet and Weber [201] have used these ideas to perturb weak limits of
planes and helicoids, thereby producing the first non-classical examples of minimal
parking garage surfaces (see the comments after Theorems and B 7F also see
the survey [I16] for a more detailed explanation of this concept). Very recently,
Traizet [200] has applied this method to produce a properly embedded minimal sur-
face in R? with infinite genus and one limit end; see Footnote B for the importance
of this new example.

30See [88] page 245] for the definition of a Riemann surface with nodes.
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We also remark that according to Traizet [197], his technique was inspired on
a clever modification of an argument due to Meeks, Pérez and Ros [125], used in
proving the uniqueness of the Riemann minimal examples in their natural periodic
moduli space, around a weak limit given by infinitely many catenoids and planes.

The method of Kapouleas. This method differs in an essential manner from
the preceding ones, since it is not based on the Weierstrass representation but on
PDE theory and functional analysis techniques. One starts by considering a finite
collection F of horizontal planes and catenoids with axis the zs-axis. The goal is
to desingularize F to obtain a complete minimal surface M C R? of finite total
curvature. By desingularization, we mean here that each circle C' of intersection
of the planes and/or catenoids in F is replaced in a first stage by a suitably bent,
slightly deformed and appropriately scaled down singly periodic Scherk minimal
surface Sp, in the same way that Sy can be viewed as the desingularization of a
pair of planes intersecting at angle 6 (see Figure [ center for an indication of the
geometry of the replaced neighborhood near C' when 6 = 7/2). The fact that
one desingularizes a circle instead of a straight line can be overcome by thinking
of a line as the limit of a circle with arbitrarily large radius, or equivalently, by
scaling down and slightly bending the Scherk connection piece. The removing of
all the intersection circles decomposes the catenoids and planes in F into bounded
pieces (namely discs and annuli) and annular ends, all of which, after being slightly
perturbed, glue to the wings of the bent Scherk pieces. In this way, one constructs
a smooth (non-minimal) surface M7, which is the base of the second stage of the
method: perturb M; by small normal graphs, to find a minimal surface M which
is the final goal of the method. Since the surface M; has a large number of handles
(depending on the precision of the desingularization in the first stage), one does
not have a control on a lower bound for the genus of the final minimal surface M.
The annular ends of the original configuration F, viewed as graphs of logarithmic
growth over the (z1, z2)-plane, change after the perturbation in the second stage, to
give ends of the minimal surface M with slightly different logarithmic growths and
positions from the original ones. In particular, planar ends may become asymptotic
to catenoids of small logarithmic growths. But this change is not explicit, since the
second stage is solved by an application of a fixed point theorem in a suitable space
of functions. In order to insure embeddedness of M, one must then start from a
configuration F having all its ends with different logarithmic growths (in particular,
F contains at most one plane). For details, see Kapouleas [90].

A good example for understanding the essence of this method is to consider
the Costa-Hoffman-Meeks surfaces M}, ; described in Section Hoffman and
Meeks [80] proved that after suitable normalizations, the M}, ; converge as k — oo
to the following two limits:

e The union of a catenoid and a plane passing through its waist circle (this
limit is attained by fixing the logarithmic growth of the catenoidal ends of
My 1).

e The singly periodic Scherk minimal surface Sg— /o (after normalizing the
maximal absolute curvature of M}, 1 to be some fixed positive number).

This phenomenon for the surfaces M} ; with £ large motivated the question of
whether it is possible to desingularize the intersection set I of two transversely
intersecting minimal surfaces, by replacing neighborhoods of I with necklaces of
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singly periodic Scherk minimal surfaces Pl Kapouleas used his method in [90] to
perform this desingularization under the assumption of coaxial symmetry. In [9T],
he announced a general theorem for intersecting minimal surfaces in Riemannian
three-manifolds, without symmetry assumptions, based on the same method.

4. SEQUENCES OF EMBEDDED MINIMAL SURFACES
WITHOUT UNIFORM LOCAL AREA BOUNDS

Two central problems in minimal surface theory are to understand the possible
geometries or shapes of embedded minimal surfaces in R? of finite genus, as well
as the structure of limits of sequences of embedded minimal surfaces with fixed
genus. The classical theory deals with these limits when the sequence has uniform
local area and curvature bounds, since in this case one can reduce the problem
of taking limits of minimal surfaces to taking limits of solutions of the minimal
surface equation (for this reduction, one uses the local curvature bound in order to
express the surfaces as local graphs of uniform size, and the local area bound to
constrain locally the number of such graphs to a fixed finite number), which follows
from the classical Arzela-Ascoli theorem; see, e.g., [I71]. Hence, we will concentrate
here on the case where we do not have such estimates. The understanding of these
problems starts with the analysis of the local structure in a fixed extrinsic ball,
an issue tackled by Colding and Minicozzi in a series of papers where they study
the structure of a sequence of compact, embedded minimal surfaces M, with fixed
genus and no area bounds in balls B,, C R?, whose radii tend to infinity as n — oo
and with boundaries OM,, C 0B,,, n € N.

4.1. Colding-Minicozzi theory for locally simply connected sequences of
minimal surfaces. As we said above, a main goal of the Colding-Minicozzi theory
is to understand the limit objects for a sequence of compact, embedded minimal
surfaces M,, with fixed genus but not a priori area bounds, each one with bound-
ary contained in the boundary sphere of a Euclidean ball centered at the origin,
say with radius R,, > 0. Typically, one finds minimal lamination£] as limits of
subsequences of the M,,. Nevertheless, we will see in Theorems .2 and [L7] versus
Example II of Section f.2] that the behavior of the limit lamination changes dra-
matically depending on whether R, diverges to oo or stays bounded, in the sense
that the limit lamination can develop removable or essential singularities. This phe-
nomenon connects with another main problem in the current state of the theory of
minimal surfaces: finding removable singularity theorems for minimal laminations,
or equivalently, finding extension theorems for minimal laminations defined outside
of a small set. The interested reader can find details about removable singularity
results in Meeks, Pérez and Ros [122]; also see Conjectures [[0.4] and below.
Coming back to the Colding-Minicozzi results, the most important structure
theorem in this theory is when the M,, are disks whose Gaussian curvature blows
up near the origin. The basic example in this setting is a sequence of rescaled
helicoids M,, = A\, H = {\,z | © € H}, where H is a fixed vertical helicoid with
axis the zz-axis and A\, € R*, \,, \, 0. The curvature of the sequence {M,, }, blows
up along the xs-axis and the M,, converge away from the axis to the foliation £ of

3LA related interesting question is if one could use a model different from a singly periodic
Scherk minimal surface, to desingularize two intersecting embedded minimal surfaces. This open
problem is closely related to Conjecture [1.12] below.

32See Definition FA4] for the concept of minimal lamination.
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R3 by horizontal planes. The x3-axis is the singular set of C''-convergence S(L) of
M, to L (i.e., the M,, do not converge C* to the leaves of £ along the x3-axis), but
each leaf L of L extends smoothly across LN S(L) (i.e., S(£) consists of removable
singularities of £).

Definition 4.1. In polar coordinates (p,f) on R? — {0} with p > 0 and 0 € R,
a k-valued graph on an annulus of inner radius v and outer radius R, is a single-
valued graph of a function u(p, d) defined over {(p,0) | r < p < R, 0| < kn}, k
being a positive integer. The separation between consecutive sheets is w(p,0) =
u(p, 0+ 2m) —u(p,0) € R.

With this notation at hand, the statement of the so-called Limit Lamination
Theorem for Disks (Theorem 0.1 of [34]) can be easily understood. Given p € R?
and R > 0, we denote by B(p, R) = {z € R® | ||z — p|| < R}, B(R) = B(0, R) and
Ky the Gaussian curvature function of a surface M.

Theorem 4.2 (Limit Lamination Theorem for Disks, Colding and Minicozzi [34]).
Let M,, C B(R,) be a sequence of embedded minimal disks with OM, C OB(R,)
and R, — oo. If sup |Kyr, ~p(1)| — 00, then there exists a subsequence of the My,
(denoted in the same way) and a Lipschitz curve S: R — R3 such that up to a
rotation of R3:

1. z3(S(t)) =t for allt € R.

2. Each M, consists of exactly two multigraphs away from S(R) (which spiral
together).

3. For each o € (0, 1), the surfaces M, — S(R) converge in the C*-topology to
the foliation L = {x5 = t}icr by horizontal planes.

4. sup | Ky, rB(s(t),r)| — 00 as n — 0o, for any t € R and r > 0.

Theorem 4.2l has two main ingredients in its proof, which we explain very roughly.
The first ingredient is that the embedded minimal disk M,, with large curvature at
some interior point can be divided into building blocks, each one being a multival-
ued graph u,(p,0) defined on an annulus, and that these basic pieces fit together
properly. In particular, Colding and Minicozzi proved that the number of sheets
of u,(p,0) rapidly grows as the curvature blows up as n goes to infinity and at
the same time, the sheets of u, do not accumulate in a half-space. This is ob-
tained by means of sublinear and logarithmic bounds for the separation w,(p,6)
(see Definition [T]) as a function of p — oo; by these bounds we mean the follow-
ing inequalities; see Corollary 11.2 in Colding and Minicozzi [30] and Theorem 0.8

in [27]:

B
P2 1 Wn, (p’ O)
unl(p2,0) < lanl(1,0) (2) ) o < 2R < Clos,
where 8 € (0,1) , C' > 0 are constants independent of n.

Another consequence of these bounds is that by allowing the inner radius r of the
annulus where the multigraph is defined to go to zero, the sheets of the multigraphs
uy, collapse (i.e., |w,(p,8)] = 0 as n — oo for p, O fixed); thus a subsequence of the
Uy, converges to a smooth minimal graph through r = 0. The fact that the R, go
to oo then implies that this limit graph is entire and, by Bernstein’s Theorem [6],
it is a plane.
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FIGURE 10. The one-sided curvature estimate.

The second main ingredient in the proof of Theorem is the so-called one-
sided curvature estimate, a scale-invariant bound for the Gaussian curvature of any
embedded minimal disk in a half-space.

Theorem 4.3 (Colding and Minicozzi [34]). There exists an € > 0 such that the
following holds. Given r > 0 and an embedded minimal disk M C B(2r)N{xzs > 0}
with OM C OB(2r), then for any component M’ of M NB(r) which intersects B(er),

sup | Kpr| <72
M/
(See Figure [I01)

The hypothesis on M to be simply connected in Theorem [£3] is necessary, as
the catenoid demonstrates (see Figure [[3] left). Actually the 1-sided curvature
estimate is equivalent to the property that every component of M N B(r) which
intersects B(er) is a graph of small gradient over its projection on the (z1,z2)-
plane. This result is needed in the proof of Theorem in the following manner:
once it has been proven that an embedded minimal disk M contains a highly sheeted
double multigraph M, then M plays the role of the plane in the one-sided curvature
estimate, which implies that reasonably large pieces of M consist of multigraphs
away from a cone with axis “orthogonal” to the double multigraph. The proofs
of Theorems and are long and delicate. References [28, 29] [30] [35], 36] by
Colding and Minicozzi are reading guides for the complete proofs of these results,
which go through various papers [31], 32} [34].

Theorems and 23] have been applied to obtain a number of results, among
which we highlight three: Meeks and Rosenberg [136] proved that the helicoid and
the plane are the unique properly embedded, simply connected minimal surfaces in
R3 (see Theorem[T4]); Meeks, Pérez and Ros used Colding-Minicozzi theory to study
properly embedded minimal surfaces in R? with finite genus and infinitely many
ends, proving that such a surface M has necessarily two limit ends (Theorem [[0.3]
below); finally, the same authors proved (Theorem 1 in [120]) that if the genus of
M is zero, then its absolute Gaussian curvature function is bounded. These are key
properties in the classification of the properly embedded, minimal planar domains
in R (Theorem [L2)). We will discuss other applications of the Colding-Minicozzi
results, such as Theorem [L.6]

We have mentioned the importance of understanding limits of sequences of em-
bedded minimal surfaces with fixed (or bounded) genus but no a priori area bounds
in a three-manifold N, a situation of which Theorem is a particular case. This
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result shows that one must consider limit objects other than minimal surfaces, such
as minimal foliations or, more generally, minimal laminations of N. We next define
these objects in the case that N is an open subset of R?, although the reader can
easily extend the following definition to other ambient spaces.

Definition 4.4. A lamination of an open subset U C R? is the union of a collection
of pairwise disjoint, connected, injectively immersed surfaces, with a certain local
product structure. More precisely, it is a pair (£, .A) satisfying:

1. L is a closed subset of U.
2. A={ps: Dx(0,1) = Ug}g is a collection of coordinate charts of R? (here
D is the open unit disk, (0,1) the open unit interval and Ug an open subset
of U).
3. For each S, there exists a closed subset C of (0, 1) such that apgl(Ug NnL) =
D x Cﬁ.
We will simply denote laminations by £, omitting the charts ¢g in A. A lamination
L is said to be a foliation of U if L = U. Every lamination £ naturally decomposes
into a union of disjoint connected surfaces, called the leaves of L. As usual, the
regularity of £ requires the corresponding regularity on the change of coordinate
charts. A lamination is minimal if all its leaves are minimal surfaces.

Each leaf of a minimal lamination £ is smooth, and if C is a compact sub-
set of a limit leaffd L € L, then the leaves of £ converge smoothly to L over C
(i.e., they converge uniformly in the C*-topology on C for any k). In general, a
codimension-one minimal lamination of a Riemannian manifold is of class C%! (see
Proposition B.1 in Colding and Minicozzi [34] for the proof of this result when the
leaves are two-dimensional). In particular, a codimension-one minimal foliation of
a Riemannian manifold is of class C%! and furthermore, the unit normal vector
field is C%1 as well (see Solomon [191]).

The following result concerns the behavior of limit leaves for a minimal lam-
ination, which generalizes some statements in Lemma A.1 in Meeks and Rosen-

berg [137].

Theorem 4.5 (Meeks, Pérez, Ros [130]). Any limit leaf L of a codimension-one
minimal lamination of a Riemannian manifold is stable for the Jacobi opemtor
More strongly, every two-sided cover of such a limit leaf L is stable. Therefore,
the collection of stable leaves of a minimal lamination L has the structure of a
sublamination containing all the limit leaves of L.

We next return to our discussion about Theorem 4.2l Using the regularity Theo-
rem [2.6] below, one can replace the Lipschitz curve in Theorem 2] by a vertical line,
which on large balls, yields what we refer to as a limiting parking garage structure
on R? with one column. We will find again a limiting parking garage structure
in Theorem 7] below, but with two columns instead of one. In a parking garage
structure one can travel quickly up and down the horizontal levels of the limiting

33 A point p € L is said to be a limit point if for some 3, gpgl(p) = (z,y) € D x Cg, with y
being a limit point of C (this definition does not depend on the local chart). A leaf L of L is
called a limit leaf if it contains a limit point, which is equivalent to consisting entirely of limit
points.

34 The Jacobi operator of a two-sided minimal surface M in a Riemannian three-manifold N
is L = A + (Ric(v) + |o|?), where we are using the same notation as in Footnote 2T}
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surfaces only along the (helicoidal) columns, in much the same way that some park-
ing garages are configured for traffic flow, hence, the name parking garage structure.
We refer the reader to [I106] for further study of limiting parking garage structures.

Theorem does not hold if we exchange the hypothesis that “the radii R,, of
the balls go to 0c0” by “R,, equals a constant”, as demonstrated by a counterexample
due to Colding and Minicozzi [29]; see also Example II in Section 2 below. They
constructed a sequence of embedded minimal disks M,, C B(1) with 9M,, C 9B(1),
all passing through the origin 0, and with Gaussian curvature blowing up only at 0.
This sequence produces a limit lamination of B(1) — {0} with an isolated singularity
at the origin. The limit lamination consists of three leaves, one of them being the
flat horizontal punctured disk (which extends through 6), and the other two being
non-proper multigraphs with this flat disk as limit set (see Figure [[3] right for a
similar example). In particular, both smoothness and properness of the leaves of the
limit lamination fail for this local example. We refer the reader to the survey [116],
where we will consider the general question of extending a minimal lamination £
of R? — A, for certain closed subsets A of R3, and also to Conjectures [0.4] and (T3]
below.

Theorem deals with limits of sequences of disks, but it is also useful when
studying more general situations, as for instance, locally simply connected sequences
of minimal surfaces, a notion which we now define.

Definition 4.6. Suppose that {M, },, is a sequence of embedded minimal surfaces
(possibly with boundary) in an open set U of R*. If for any p € U there exists a
number 7(p) > 0 such that B(p, r(p)) C U and for n sufficiently large, M,, intersects
B(p, r(p)) in compact disks whose boundaries lie on 9B(p,r(p)), then we say that
{My}n is locally simply connected in U. If {M,}, is a locally simply connected
sequence in U = R? and the positive number r(p) can be chosen independently of
p € R3, then we say that {M,,}, is uniformly locally simply connected.

There is a subtle difference between our definition of uniformly locally simply
connected and that of Colding and Minicozzi [24], which may lead to some con-
fusion. Colding and Minicozzi define a sequence {1, },, to be uniformly locally
simply connected in an open set U C R3 if for any compact set K C U, the number
r(p) in Definition can be chosen independently of p € K. It is not difficult to
check that this concept coincides with our definition of a locally simply connected
sequence in U.

The Limit Lamination Theorem for Disks (Theorem [12]) admits a generalization
to a locally simply connected sequence of non-simply connected planar domains,
which we now explain since it will be useful for our goal of classifying minimal planar
domains. Instead of the scaled-down limit of the helicoid, the basic example in this
case is an appropriate scaled-down limit of Riemann minimal examples My, A > 0,
defined in Section 25 To understand this limit, one considers the fluz F'(\) of My,
which is the flux vector along any compact horizontal section, MyN{x3 = constant },
normalized so that the third component of this vector equals one. The fact that
M, is invariant by reflection in the (x1,x3)-plane II forces F(\) to be contained
in II for each A. Furthermore, A — F = F()) is a bijection that parameterizes
the whole family of Riemann minimal examples, with F' running from horizontal to
vertical (with monotonically increasing slope function). When F tends to vertical,
then it can be proved that My ) converges to a vertical catenoid with waist circle

1

of radius 5-. When F' tends to horizontal, one can shrink M)y so that F' tends
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FIGURE 11. Three views of the same Riemann minimal example,
with large horizontal flux and two oppositely handed vertical he-
licoids forming inside solid almost vertical cylinders, one at each
side of the vertical plane of symmetry.

to (4,0,0), and in that case the Mgy converge to the foliation of R3 by horizontal
planes, outside of the two vertical lines {(0,+1,23) | 3 € R}, along which the
surface My(p) approximates two oppositely handed, highly sheeted, scaled-down
vertical helicoids; see Figures [l and With this basic family of examples in
mind, we state the following result by Colding and Minicozzi.

Theorem 4.7 (Limit Lamination Theorem for Planar Domains [24], [TI1]). Let
M, C B(R,) be a locally simply connected sequence of embedded minimal planar
domains with OM, C 0B(R,), R, — oo, such that M, N B(2) contains a com-
ponent which is not a disk for any n. If sup |Ky;, npa)y| — oo, then there exists
a subsequence of the M, (denoted in the same way) and two vertical lines Sy, S,
such that:

(a) M, converges away from Sy U Sy to the foliation F of R® by horizontal
planes.

(b) Away from S U Sy, each M, consists of exactly two multivalued graphs
spiraling together. Near S1 and Sa, the pair of multivalued graphs forms
two double spiral staircases with opposite handedness at S and Sy. Thus,
circling only S1 or only Sy results in going either up or down, while a path
circling both Sy and So closes up; see Figure [[21

Theorem F7 shows a second example of a limiting parking garage structure
on R? (we obtained the first example in Theorem f2 above), now with two columns
which are (4, —)—handed just as in the case of the Riemann minimal examples
M, discussed before the statement of Theorem 77l We refer the reader to [116] for
more details about parking garage structures on R3.

To finish this section, we want to mention that the one-sided curvature estimate
of Colding and Minicozzi (Theorem [3]) can be used to solve an important problem

35Here + (resp. —) means that the corresponding forming helicoid or multigraph is right-
handed (resp. left-handed).
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singular lines
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Sy!

NN

limit foliation by planes

FIGURE 12. Left: Two oppositely handed double spiral staircases.
Right: The limit foliation by parallel planes and the singular set
of convergence S; U Ss.

in classical minimal surface theory, known as the Generalized Nitsche Conjecture.
In 1962, Nitsche [I57] conjectured that if a minimal surface in R meets every
horizontal plane in a Jordan curve, then it must be a catenoid (he also proved
this conjecture with the additional assumption that every horizontal section of the
surface is a star-shaped curve). In 1993, Meeks and Rosenberg [133] showed that
if a properly embedded minimal surface M C R? has at least two ends, then any
annular end E C M either has finite total curvature or it satisfies the hypotheses
of the following conjecture.

Conjecture 4.8 (Generalized Nitsche Conjecture, Collin’s Theorem [38]). Let E C
{z3 > 0} be a properly embedded minimal annulus with OF C {xs = 0}, such that
E intersects each plane {x3 = t}, t > 0, in a simple closed curve. Then, E has
finite total curvature, and so, E is asymptotic to a plane or to an end of a catenoid.

This problem was originally solved by Collin [38] before the Colding-Minicozzi
results, with a beautiful and long proof. Later on, Colding and Minicozzi gave an
alternative proof of Conjecture L8] as a short application of Theorem that can
be found in detail in [26] and in a survey by Rosenberg [I82]. We will only state
here a consequence of the one-sided curvature estimate by Colding and Minicozzi,
which implies directly the Generalized Nitsche Conjecture. Given € € R, we denote

by C. the conical region {z3 > e\/z% + z3}.

Theorem 4.9 (Colding, Minicozzi [26]). There exists a 6 > 0 such that any properly
embedded minimal annular end E C C_s has finite total curvature.

4.2. Examples of minimal laminations with isolated singularities. A funda-
mental theoretical question deals with finding appropriate conditions under which
a minimal lamination of a three-manifold N minus a closed subset A C N extends
across A. In this section, we first describe examples in B(1) = IB%(@, 1) C R3 with
the origin as the unique non-removable singularity. We then indicate how these
examples lead to related singular minimal laminations in the homogeneous spaces
H? and H? x R (here H" denotes the n-dimensional hyperbolic space).
ExaMpPLE I. Catenoid type laminations. Consider the sequence of horizontal
circles C,, = S> N {z3 = %}, n > 2. Note that each pair Coy, Cogy1
bounds a compact unstable piece of a catenoid M (k) and that
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FI1GURE 13. Left: A catenoid type lamination, which explains why
the hypothesis of simply connectedness of Theorem [.3]is necessary.
Right: A Colding-Minicozzi type lamination in a cylinder.

ExampLE II.

ExAamMpLE III.

M(E)NM(K') = @it k # k’. The sequence { M (k)}) converges with
multiplicity two outside the origin 0 to the closed horizontal disk D
of radius 1 centered at 0. Thus, {M (k) —dM(k)},U{D—{0}}is a
minimal lamination of B(1) — {0}, which does not extend through
the origin; see Figure [[3] left.

Colding-Minicozzi examples. In their paper [29], Colding and Mini-
cozzi constructed a sequence of compact, embedded minimal disks
D,, € B(1) with boundary in S? that converge to a singular mini-
mal lamination Z of the closed ball B(0,1) which has an isolated
singularity at 0. The related lamination £ of B(1) — {0} consists
of a unique limit leaf which is the punctured open disk D — {0},
together with two non-proper leaves that spiral into D — {6} from
opposite sides; see Figure [[3] right.

Consider the exhaustion of H? (naturally identified with B(1)
through the Poincaré model) by hyperbolic balls of hyperbolic ra-
dius n centered at the origin, together with compact minimal disks
with boundaries on the boundaries of these balls, similar to the
compact Colding-Minicozzi disks. We conjecture that these ex-
amples produce a similar limit lamination of H® — {0} with three
leaves, one of which is totally geodesic and the other two of which
are not proper and that spiral into the first one. We remark that
one of the main results of the Colding-Minicozzi theory, Theo-
rem[£2]above, insures that such an example cannot be constructed
in R3.

Catenoid-type laminations in H® and in H? xR. Consider the same
circles Cy, as in Example I, where S? is now viewed as the bound-
ary at infinity of H3. Then each pair of circles Coy, Copyq is the
asymptotic boundary of a properly embedded, unstable minimal
annulus M (k), which is a surface of revolution called a catenoid.
The sequence {M (k)}, converges with multiplicity two outside of
0 to the horizontal, totally geodesic subspace D at height zero.
Thus, {M (k) — dM (k)} U {D — {0}} is a minimal lamination of
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H? — {0}, which does not extend through the origin. A similar
catenoidal construction can be done in H? x R, where we consider
H? with the Poincaré disk model of the hyperbolic plane. Note
that the Half-space Theorem 217 excludes this type of singular
minimal lamination in R3.

5. THE STRUCTURE OF MINIMAL LAMINATIONS OF R?

The goal of this section is to give a description of the structure of a general
minimal lamination of R3. This description is a crucial tool to study limits of
embedded minimal surfaces, and it will be used in the proofs of Theorems [T
and [[2

In his beautiful survey on minimal surfaces, Rosenberg [I82] introduced the
subject of his paper (and of this section) through a question asked to him by
Haefliger about thirty years ago: Is there a foliation of R® by minimal surfaces,
other than a foliation by parallel planes?

Any leaf L of a minimal foliation of R3 is a complete limit leaf, and by Theo-
rem [0 it is stable. Now Theorem 225l implies that L is a plane. Thus, the answer
to Haefliger’s question is no. Immediately one is tempted to extend this question
to minimal laminations.

Question 5.1. What are the minimal laminations of R3?

There are only two known types of minimal laminations of R?, both rather
simple: a lamination with exactly one leaf which is a properly embedded minimal
surface, or a lamination consisting of a closed set of parallel planes. Rosenberg [130]
has conjectured that these are the unique possible examples. To the contrary, Meeks
has conjectured that there exists a minimal lamination £ of R? with two planar
leaves and a non-flat leaf which is proper in the open slab between these two planes
in £. Since every leaf of a minimal lamination of R? is complete, the above question
is closely related to the following one, known as the embedded Calabi-Yau problem
in R? (see also Conjecture [T.20):

Question 5.2. When is a complete, embedded minimal surface M C R? proper?

Given a minimal lamination £ of R?, the function that assigns to each point p in
L the Gaussian curvature of the leaf L € £ passing through p is continuous in the
subspace topology. Since the intersection of £ with any closed ball is compact, we
conclude that the intersection of any leaf I € £ with a ball has Gaussian curvature
bounded from below by a constant that only depends on the ball (in other words,
L has locally bounded Gaussian curvature). Reciprocally, if M is a complete, em-
bedded minimal surface in R? with locally bounded Gaussian curvature, then the
closure M of M is a minimal lamination of R® (Lemma 1.1 in [I36]). With this per-
spective, it is natural to study complete, embedded minimal surfaces M C R3 with
locally bounded Gaussian curvature, as a first stage for answering Questions [B.1]
and If M is such a minimal surface and it is not proper, then M — M may or
may not be non-empty, but since M has locally bounded curvature, £ = M is a
non-trivial minimal lamination of R3. Since M is not proper, then some leaf L € £
must be a limit leaf, and hence stable by Theorem Now an argument similar
to the one we used to answer Haefliger’s question at the beginning of this section
insures that L is a plane; so in this case, M — M is always non-empty. This can be
stated as follows.
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Lemma 5.3 (Meeks, Rosenberg [136]). Let M C R3 be a connected, complete,
embedded minimal surface with locally bounded Gaussian curvature. Then, exactly
one of the following statements holds:
(1) M is properly embedded in R3.
(2) M is properly embedded in an open half-space, with limit set consisting of
the boundary plane of this half-space.
(8) M is properly embedded in an open slab, with limit set consisting of the
boundary planes of this slab.

It should be mentioned that in a previous work, Xavier [209] proved that a
complete, immersed, non-flat minimal surface of bounded curvature in R3 cannot
be contained in a half-space. This result together with Lemma gives a partial
answer to Question

Corollary 5.4 (Meeks, Rosenberg [136]). If M C R3 is a connected, complete,
embedded minimal surface with bounded Gaussian curvature, then M is proper.

The next step in the study of complete, embedded, non-proper minimal sur-
faces consists of understanding how they accumulate to the limit set described in
Lemma 5.3

Lemma 5.5 (Meeks, Rosenberg [136]). Let M C R3 be a connected, complete,
embedded minimal surface with locally bounded Gaussian curvature. Suppose that
M is not proper and let I1 be a limit plane of M. Then, for any € > 0, the closed
e-neighborhood of 11 intersects M in a path connected set.

Outline of the proof. The argument is by contradiction. Without loss of generality,
we may assume that IT = {3 = 0} and that M limits to II from above. Assuming
that the statement fails, one can find an € > 0 and a stable minimal surface %
between two components of the intersection of M with the slab {0 < xz3 < €} by
the usual barrier construction argument discussed in Section 29l Since X satisfies
curvature estimates away from its boundary (Theorem 227), we conclude that
for sufficiently small 6 € (0,¢), the orthogonal projection 7 to II, restricted to
a component X(0) of ¥ N {0 < x5 < J}, is a local diffeomorphism. A topological
argument shows that 7|54y is in fact a diffeomorphism between X(§) and its image.
This implies that 3(d) is a graph, and so, it is properly embedded in the slab
{0 < 23 < 6}. By Theorem [L7] below, ¥(6) is a parabolic surface but z3|5s) is a
non-constant, bounded harmonic function with constant boundary value §, which
gives a contradiction and proves Lemma [5.5] O

A refinement of the argument in the previous paragraph gives the following
result.

Lemma 5.6 (Meeks, Rosenberg [136]). Let M C R? be a connected, complete, non-
proper, embedded minimal surface with locally bounded Gaussian curvature, which
limits to the plane II = {x3 = 0} from above. Then, for any € > 0, the Gaussian
curvature of M N {0 < z3 < e} is not bounded from below.

Let M C R? satisfy the hypotheses of Lemma[5.6l Then, there exists a sequence
{pn}n C M such that z3(p,) \, 0 and the curvature function Kjp; of M satisfies
|Knr(pn)| — o0 as n goes to infinity. Such a sequence must diverge in space because
Ky is locally bounded. If we additionally assume M has finite topology, then an
application of the Colding-Minicozzi one-sided curvature estimate (Theorem [13))
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contradicts that | Ky (py)| — oco. This is a rough sketch of the proof of the following
statement.

Theorem 5.7 (Meeks, Rosenberg [136]). If M C R3 is a connected, complete,
embedded minimal surface in R® with finite topology and locally bounded Gaussian
curvature, then M is proper.

Meeks, Pérez and Ros (Theorem 5 in [126]) have combined the last statement
with deeper arguments using the results of Colding and Minicozzi, which let us
exchange the finite topology assumption by the weaker hypothesis of finite genus.

Theorem 5.8 (Meeks, Pérez, Ros [126]). If M C R3 is a connected, complete,
embedded minimal surface in R® with finite genus and locally bounded Gaussian
curvature, then M is proper.

In conclusion, we state the following descriptive result for minimal laminations
of R3, by Meeks and Rosenberg [136] as generalized by Meeks, Pérez and Ros [126].

Theorem 5.9 (Structure Theorem for Minimal Laminations of R?). For a given
minimal lamination £ of R3, one of the following possibilities holds.

i) L has ezactly one leaf, which consists of a properly embedded minimal sur-
face in R3.

it) L has more than one leaf and consists of the disjoint union of a non-
empty closed set of parallel planes P C L together with a collection of
complete minimal surfaces of unbounded Gaussian curvature and infinite
genus, which are properly embedded in the open slabs and half-spaces of
R3 —P. Furthermore, each of the open slabs and half-spaces in R> —P con-
tains at most one leaf of L, and every plane parallel to but different from
the planes in P intersects at most one of the leaves of L and separates such
an intersecting leaf into exactly two components.

There are no known examples of laminations of R3 as described in item i) of
the last theorem; see item 1 in Conjecture [[T.20

6. THE ORDERING THEOREM FOR THE SPACE OF ENDS

The study of the ends of a properly embedded minimal surface M C R? with
more than one end has been extensively developed. Callahan, Hoffman and
Meeks [16] showed that in one of the closed complements of M in R3, there ex-
ists a non-compact, properly embedded minimal surface ¥ with compact boundary
and finite total curvature. By the discussion following Theorem 211l the ends of
Y are of catenoidal or planar type, and the embeddedness of ¥ forces its ends to
have parallel normal vectors at infinity.

Definition 6.1. In the above situation, the limit tangent plane at infinity of M is
the plane in R? passing through the origin, whose normal vector equals (up to sign)
the limiting normal vector at the ends of ¥. Such a plane is unique [16], in the sense
that it does not depend on the finite total curvature minimal surface ¥ C R? — M.

The limit tangent plane at infinity is a key notion for studying the way in which
a minimal surface with more than one end embeds properly in space.

Theorem 6.2 (Ordering Theorem, Frohman, Meeks [61]). Let M C R3 be a
properly embedded minimal surface with more than one end and horizontal limit
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tangent plane at infinity. Then, the space E(M) of ends of M is linearly ordered
geometrically by the relative heights of the ends over the (x1,x9)-plane, and embeds
topologically in [0, 1] in an ordering preserving way. Furthermore, this ordering has
a topological nature in the following sense: If M is properly isotopic to a properly
embedded minimal surface M' with horizontal limit tangent plane at infinity, then
the associated ordering of the ends of M' either agrees with or is opposite to the
ordering coming from M.

Given a minimal surface M C R? satisfying the hypotheses of Theorem B2 we
define the top end e of M as the unique maximal element in £(M) for the ordering
given in this theorem (recall from Section 27 that £(M) C [0, 1] is compact; hence
er exists). Analogously, the bottom end e of M is the unique minimal element in
E(M). If e € E(M) is neither the top nor the bottom end of M, then it is called a
middle end of M.

Rather than sketching the proof of the Ordering Theorem, we will be content
to explain how one obtains the linear ordering. Suppose M C R? is a minimal
surface in the hypotheses of Theorem and let A C £(M) be the set of annular
ends of M. In this setting, Collin’s Theorem insures that every proper annular
representative of an end e € A has finite total curvature and thus, it is asymptotic
to a horizontal plane or to a half-catenoid. Since the ends in A are all graphs over
complements of compact subdomains in the (z1,xz2)-plane, we see that A has a
natural linear ordering by relative heights of its ends over the (z1, z2)-plane. Hence
the Ordering Theorem is proved when A = E(M).

We next indicate how to extend the above linear ordering to £(M) — A. By
Theorem 2228 any end of M which can be represented by a proper subdomain that
is stable can also be represented by a surface of finite total curvature and so, it
can be represented by an annulus. Let e; = [a1] € E(M) be an end which is not
annular. Such an end can always be represented by a proper subdomain E; C M
with the following two properties (recall we are assuming M has at least two ends):

e [ is unstable, and 0F; is compact and connected.
e M — F; is unstable and non-compact.

Let W1, W5 be the two closed complements of M in R3. Note that we can consider
F to lie on the boundary of both of these complete flat three-manifolds Wy, W,
and that their boundaries W7, dWy are good barriers for solving Plateau-type
problems. Since F; and M — F; are both non-compact, elementary separation
properties for proper surfaces in R? imply that OF; is not homologous to zero in
one of the domains Wy, Ws; suppose that dF; is not homologous to zero in Wj.
Since JE; bounds the locally finite 2-chain F; in W7, the barrier argument in
Section shows that OF; is the boundary of a properly embedded, orientable,
least-area surface ¥ in Wi, which is non-compact since dF; is not homologous
to zero in Wi. Similarly, 0F; is the boundary of a least-area (possibly compact)
surface 35 in W5. Since E; and M — E; are unstable, the maximum principle
implies that (X1 UXy) N M = OFy; see Figure [4

Let Ry be the closed complement of ¥; U X5 in R? which contains E; and let
R5 be the other closed complement. Since Fy and M — E; are both non-compact
and M is properly embedded in R3, then R; and R, are both non-compact. It
follows from Theorem that outside a large ball containing JF;, the boundary
of Ry, which equals 31 UYs = ORs, consists of a finite positive number of graphical
ends which are asymptotic to ends of horizontal planes and vertical catenoids. Let
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FIGURE 14. The least-area surfaces 1, Ys. Wy is the shaded re-
gion, and R, lies above %1 U Xs.

es = [ag] € E(M) be an end with a proper subdomain representative Ey C M
which is disjoint from Fj (note that any two distinct ends can be chosen to have
disjoint representatives). Next we define when [a1] < [ae] or vice versa in the linear
ordering of Theorem The proper arcs ai, as which represent eq, es eventually
lie in Ry, Ry and so, exactly one of the following cases holds:

e « eventually lies in the open region between two successive graphical ends
of Ry, and as eventually lies above or below this region.

e o eventually lies in the open region above the top graphical end of ORy,
and as eventually lies below this region.

e o7 eventually lies in the open region below the bottom graphical end of
OR;y, and ag eventually lies above this region.

In particular, there is a topological plane P which is a graph over the (z1, z2)-plane
and whose end is one of the ends of dR;y, such that eventually a; and «s lie at
opposite sides of P. If o eventually lies below P and «s eventually lies above P,
then [a] < [az] in the linear ordering given by the Ordering Theorem; otherwise,
[az] < [a1]. The ordering we have just described can be proven to be a well-defined
linear ordering; see [6I] for more details.

7. CONFORMAL STRUCTURE OF MINIMAL SURFACES

7.1. Recurrence and parabolicity for manifolds. The conformal structure of
a complete minimal surface has a strong influence on its global properties. For this
reason, an important conformal question is to decide the so-called type problem for
a minimal surface M in R3, in the sense of classical Riemann surfaces, i.e., whether
M 1is hyperbolic or paraboli@ (the elliptic or compact case is impossible for such
a minimal surface by the maximum principle for harmonic functions). It turns out
that parabolicity for Riemann surfaces without boundary is equivalent to the recur-
rence of Brownian motion on such surfaces. This field lies in the borderline between
several branches of mathematics such as Riemannian geometry, stochastic analysis,
partial differential equations and potential theory. A particularly interesting source,

36(lassically, a Riemann surface without boundary is called hyperbolic if it carries a non-
constant positive superharmonic function, and parabolic if it is neither elliptic (i.e., compact) nor
hyperbolic. The reader should be aware that we will use the concept of parabolicity for Riemannian
manifolds with boundary (see Definition[TI]) and reserve the word recurrent for manifolds without
boundary (Definition [[:2)). For Riemannian manifolds, the relationship between parabolicity and
recurrence will become clear soon.
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where the reader can find an excellent introduction to these questions, is the survey
of recurrence and Brownian motion on Riemannian manifolds by Grigor’yan [60].

The goal of this section is to introduce some key concepts which are useful
when dealing with these conformal questions. Instead of using concepts related to
probability (such as random walks or Brownian motion), in this paper we will follow
an alternative way to define recurrence and parabolicity that is slightly different
from Grigor’yan’s approach; our approach is well known and is explained in greater
detail in the notes by the second author [I66]. Most of the results stated in this
section are proved in [66] or [166].

Definition 7.1. Let (M™, g) be an n-dimensional Riemannian manifold with non-
empty boundary. M is parabolic if every bounded harmonic function on M is
determined by its boundary values.

Definition 7.2. Let (M™,g) be an n-dimensional Riemannian manifold without
boundary. M is recurrent if for any non-empty open set U C M (U # M) with
smooth boundary, M — U is parabolic. M is called transient if it is not recurrent.

Given a Riemannian manifold (M, g) with boundary OM # & and a point p €
Int(M), the harmonic measure p, with respect to p can be defined as follows. Let
I C OM be a non-empty open set with smooth boundary. Consider a compact
exhaustion My C My C --- of M. Given k € N, let hy: M) — [0,1] be the
(bounded) harmonic function on M}, with boundary values 1 on the interior of
I'N M, and 0 on OMy, — I. After extending hy, by zero to M, we can view {hy}x
as an increasing sequence of subharmonic functions, bounded from above by 1.
The functions hy limit to a unique bounded harmonic function hy: M — [0,1]
(defined except at countably many points in I C 9M). In this situation, we define
pp(I) = hr(p). It turns out that u, extends to a Borel measure u, on OM. For
another interpretation of u, related to Brownian motion, see Grigor'yan [66] and
also [116].

Parabolicity and harmonic measure are closely related, as states the following
elementary result.

Proposition 7.3. Let (M, g) be a Riemannian manifold with OM # &. Then, the
following statements are equivalent:

1. M is parabolic.
2. There exists a point p € Int(M) such that the harmonic measure i, s full;

i€, [on tp = 1.
3. Given any p € Int(M) and any bounded harmonic function f: M — R,

then f(p) = faM I tp-
4. The universal covering of M is parabolic.

Furthermore, if there exists a proper, non-negative superharmonic function on M,
then M is parabolic. When M is simply connected and two-dimensional, then the
existence of such a function is equivalent to being parabolic.

We note that the parabolicity of a Riemannian manifold with boundary is not
affected by adding compact sets or by removing interiors of compact sets, and if
a manifold M can be decomposed as the union of two parabolic domains with
compact intersection, then M is parabolic (or recurrent, depending on whether
OM is empty or not). Since the closed unit disk D is parabolic and z € R2 — D
log |z| is a proper, non-negative harmonic function, then it follows that R? — D is
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parabolic and R? is recurrent. On the other hand, for n € N, n > 3, the function
r € R" — {|z| < 1} — |2|*~™ is bounded and harmonic with constant boundary
values. So, R” — {|z| < 1} is not parabolic and R™ is transient if n > 3.

Note that if h: M — R is a non-constant, positive harmonic function on a
recurrent Riemannian manifold, then for any positive regular value t € R of h, the
closed subset M; = h=1((0,t]) is parabolic and k|, is a bounded harmonic function
with constant boundary value t. By Proposition [[3] h|ys, is the constant function
t, which contradicts that t is a regular value of h. This contradiction completes the
proof of the following well-known result.

Proposition 7.4 (Liouville Theorem). Every positive harmonic function on a re-
current Riemannian manifold is constant.

7.2. Universal superharmonic functions and parabolicity of minimal sur-
faces. As we mentioned before, the knowledge of the conformal type of a minimal
surface M is crucial when tackling uniqueness questions. Sometimes it is useful
to decompose M in pieces and study the conformal structure of each piece as a
Riemann surface with boundary. For instance, the proof by Meeks and Rosenberg
of the uniqueness of the helicoid rests on the non-trivial fac] that a simply con-
nected, properly embedded minimal surface M C R? must admit a plane which
intersects M transversely in a single proper arc . Each of the two closed com-
plements of v in M is contained in a closed half-space. Hence, from Theorem [T.7]
below, both halves are parabolic, and one then uses this information to prove that
M is conformally C. A key ingredient in the proof of Theorem [Z.7] is the construc-
tion of a function defined on a certain region of space, whose restriction to any
minimal surface contained in that region is superharmonic. This construction leads
us to the following definition.

Definition 7.5. Given a region W C R?, a function h: W — R is said to be a
universal superharmonic function on W if its restriction to any minimal surface
M C W is superharmonic.

Examples of universal superharmonic functions on all of R? include coordinate
functions such as x; or the function —2%. Collin, Kusner, Meeks and Rosenberg
proved the following useful inequality (Lemma 2.2 in [39]) valid for any immersed
minimal surface in R3:

\V4 2
(12) [Alnr| < ‘TL;J in M — (zs-axis),
where r = /2% + 23 and V, A denote the intrinsic gradient and Laplacian on M.
Using the estimate (2, it is easy to check that the following statements hold.

Lemma 7.6.
i) The function Inr — 3 is a universal superharmonic function in the region
{r*>3}.
ii) The function Inr — z3arctan s + 1 In(z% + 1) is a universal superharmonic
function in the region {r? > z3 + 1}.

Let M be a properly immersed minimal surface in a closed half-space. If OM =
@, then M is planar by the Half-space Theorem 217 (and hence, M is recurrent);

37See the third paragraph in the sketch of the proof of Theorem [IL1]in Section [l
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if OM # @, then M is parabolic by a direct application of the following general
theorem.

Theorem 7.7 (Collin, Kusner, Meeks, Rosenberg [39]). Let M be a connected, non-
planar, properly immersed minimal surface in R3, possibly with boundary. Then,
every component of the intersection of M with a closed half-space is a parabolic
surface with boundary. In particular, if M has empty boundary and intersects some
plane in a compact set, then M is recurrent.

Proof. Up to a rotation, it suffices to check that any component C' of M(+4) =
M N {z3 > 0} is parabolic. For fixed n € N, let C,, = C' Nx3*([0,n]). By part
i) of Lemma [Z.6 the function h = Inr — 23 is superharmonic and proper when
restricted to Cy, N {r? > 3}. Furthermore, h is positive outside a compact domain
on C,,, which by Proposition [33] implies that C,, N {r? > %} is parabolic. Since M
is proper and {r? < 1} N{0 < z3 < n} is compact, we deduce that C,, — {r? > 1}
is a compact subset of C),. Since parabolicity is not affected by adding compact
subsets, it follows that C,, is parabolic.

We now check that C' is parabolic. Fix a point p € C' with z3(p) > 0 and let ,ug
be the harmonic measure of C' with respect to p. For n large enough, p lies in the
interior of C),. Since z3 is a bounded harmonic function on the parabolic surface
C,, part & of Proposition insures that

CCS(P):/ $3MZZTL/ My
ac, 9C,Nzy (n)

where (1) is the harmonic measure of C,, with respect to p. Since py is full on 9C,,,
it follows that

/ =1 _/ i1 z3(p) (n=se) |
p —1 p -1 n
0C, —x5  (n) oC, Nzy  (n)

Suppose now that M and N are Riemannian manifolds with M C N, 0 is a
component of M NIN,p € Int(M) and u;,” and ,uIJ,V are the respective harmonic
measures. Then it follows immediately from the definition of harmonic measure
that [, ub? < [, pl < 1. By letting M = Cp,, N = C and 0 = 9C,, — z3'(n), the
above-displayed inequality implies that lim,, [ 9C—a3" () g
conclude that [, 50 ,ug = 1 and the proof is complete. O

> 1, from where we

There are several problems and results about parabolicity of properly immersed
minimal surfaces with boundary in R? (see Conjecture IT.24] below). Concerning
these problems, it is worth mentioning the following results due to Neel.

Theorem 7.8. 1. (Neel [I55]) Let M be a properly embedded minimal sur-
face of bounded curvature in R®. Then M has no non-constant bounded
harmonic functions.

2. (Neel [154]) Let M be a non-flat complete, embedded minimal surface with
boundary in R?. Assume that, outside of a compact subset of M, the Gauss
map image of M is contained in an open, hyperbolic subset of S*. Then
M is parabolic. In particular, every minimal graph with boundary over a
domain in a plane is parabolic.
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7.3. Quadratic area growth and middle ends. In this section, we will state a
result by Collin, Kusner, Meeks and Rosenberg that constrains both the geometry
and the topology of any properly embedded minimal surface in R* with more than
one end. This theorem has been used in an essential way by Meeks, Pérez and Ros
in the proofs of their classification results in Theorems [[.2] and

The Ordering Theorem in Section [0 represents the first step in trying to un-
derstand the geometry of a properly embedded minimal surface in R?® with more
than one end. By the proof of the Ordering Theorem, every middle end of such a
surface M C R? with horizontal limit tangent plane at infinity can be represented
by a proper subdomain E C M with compact boundary such that E “lies between
two half-catenoids”. This means that E is contained in a neighborhood S of the
(21, x2)-plane, S being topologically a slab, whose width grows at most logarithmi-
cally with the distance from the origin. The next result shows that a middle end
of a properly embedded minimal surface is never a limit end. More precisely:

Theorem 7.9 (Collin, Kusner, Meeks, Rosenberg [39]). Let M C R? be a properly
embedded minimal surface with more than one end and horizontal limit tangent
plane at infinity. Then, any limit end of M must be a top or bottom end of M. In
particular, M can have at most two limit ends, each middle end is simple and the
number of ends of M is countable. Furthermore, for each middle end E of M there
exists a positive integer m(E) such that

. Area(ENB(R))
Rh—r>noo mR2

The parity of m(E) is called the parity of the middle end E.

=m(E).

We refer the interested reader to [I16] for an explanation of the proof of The-
orem We will content ourselves here with pointing out that the universal
superharmonic functions mentioned in Lemma are used in the proof, in con-
junction with the fact that E is trapped between two catenoids, to show that the
area of E in balls B(R) grows quadratically with R.

Theorem and the Ordering Theorem (Theorem [Bl) are crucial tools in the
topological classification of properly embedded minimal surfaces in R? by Frohman
and Meeks [62]. For a detailed discussion, see [I16].

We should remark that embeddedness is crucial in showing that the surface M in
the last theorem has a countable number of ends, as follows from the construction
by Alarcén, Ferrer and Martin [I] of a genus zero, properly immersed minimal
surface in R? whose space of ends is a Cantor set. In particular, every end of their
surface is a limit end.

Collin, Kusner, Meeks and Rosenberg [39] were also able to use universal super-
harmonic functions to control the geometry of properly embedded minimal surfaces
with exactly two limit ends. Their proof of the following theorem is motivated by
the proof of a similar theorem by Callahan, Hoffman and Meeks [I6] in the classical
singly periodic setting.

Theorem 7.10 (Collin, Kusner, Meeks, Rosenberg [39]). Let M C R? be a properly
embedded minimal surface with two limit ends and horizontal limit tangent plane
at infinity. Then there exists a proper collection {P,, | n € Z} of horizontal planes
in R3, ordered by heights, such that each plane P, intersects M transversely in a
finite number of simple closed curves. Furthermore, the closed slab S,, bounded by
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P, U P, 11 intersects M in a non-compact domain which represents the nth end of
M. In particular, by Theorem [[, M is recurrent.

8. UNIQUENESS OF THE HELICOID I: THE PROPER CASE

The goal of this section is to outline the arguments by Meeks and Rosenberg [1306]
in their proof of the uniqueness of the helicoid, which is Theorem [[.4] stated in the
introduction. We remark that this result is stated under the assumption that the
surface in question is proper, instead of merely complete. We will postpone the
proof of this more general version (i.e., in the complete setting; see Theorem [L.T))
to Section

Sketch of the proof of Theorem [}, assuming properness. Let M be a properly em-
bedded, non-flat, simply connected minimal surface in R3. Consider any sequence
of positive numbers {\, },, which decays to zero and let M (n) = A\, M be the sur-
face scaled by A,. By the Limit Lamination Theorem for Disks (Theorem [2)),
a subsequence of these surfaces converges on compact subsets of R? to a minimal
foliation £ of R3 by parallel planes, with singular set of C*-convergence S(L) being
a Lipschitz curve that can be parametrized by the height over the planes in £. Part
of the proof of Theorem depends on a unique extension result for the forming
multigraphs, which in our case implies that for n large, the almost flat multigraph
which starts to form on M (n) near the origin extends all the way to infinity. From
this extension result, one can deduce that the limit foliation £ is independent of
the sequence {A,},. After a rotation of M and replacement of the M(n) by a
subsequence, we can suppose that the M (n) converge C! to the foliation £ of R3
by horizontal planes, on compact subsets outside of the singular set of convergence
given by a Lipschitz curve S(L£) parameterized by its z3-coordinate. Note that this
last property implies that S(L£) intersects each horizontal plane exactly once.

The next sketched argument shows that M intersects transversely each of the
planes in £. After a translation, we may assume that the origin lies in M. Since
the origin is a singular point of convergence of the M (n) to £ and S(£) is Lipschitz,
it follows that S(L£) passes through the origin and is contained in the solid cone
C. = {23 > &*(2? + 23)}, where € > 0 only depends on the one-sided curvature
estimate in Theorem FE3l Let A be the solid cylinder {z? + 23 < 1, |z3| < e}. The
two flat horizontal multigraphs M (n), Ma(n) referred to in item 2 of Theorem [£.2]
intersect the cylindrical sides of QA almost orthogonally along two long spiraling
arcs which are multigraphs over the unit circle S' in the (1, 22)-plane, possibly
together with a finite number of open arcs, starting and finishing at the top (resp.
bottom) planar disks of A, which are graphs over their projections in S'. Both
spirals lie on the compact component D(n) of M (n)N A which contains the origin.
After a slight perturbation A(n) of A near the top and bottom boundary disks
of A and replacing A by A(n), it can be shown that the boundary of D(n)
consists of the two spiraling arcs on the boundary of the cylinder together with
two arcs which connect them, one on each of the boundary disks in A(n); in this
replacement, the new top and bottom disks in JA(n) are minimal although not
necessarily flat. Without much difficulty, one can extend the top and bottom disks
of A(n) to an almost-horizontal, product minimal foliation of A(n) by graphical
minimal disks, such that every boundary circle of these (not necessarily planar)
disks intersects each of the two spiraling curves in D(n) at a single point. Since at
a point of tangency, two minimal surfaces intersect hyperbolically (negative index),
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Morse theory implies that each leaf of the minimal disk foliation of A(n) intersects
D(n) transversely in a simple arc. When n — oo, these foliations converge to the
restricted foliation £ N A by flat horizontal disks. This last statement, together
with the openness of the Gauss map of the original surface M, implies that M is
transverse to L, as desired. Therefore, the stereographical projection of the Gauss
map g: M — CU {00} can be expressed as g(z) = e/(*) for some holomorphic
function f: M — C.

The next step in the proof is to check that the conformal structure of M is C
and that its height differential can be written as dh = dz, z € C. This part of
the proof is longer and delicate and depends on a finiteness result for the number
of components of a minimal graph over a possibly disconnected, proper domain in
R? with zero boundary valuesl>§ Note that the non-existence of points in M with
vertical normal vector implies that the intrinsic gradient of xz3: M — R has no
zeros on M. Through a series of geometric and analytic arguments that use both
the double multigraph convergence of the M(n) to £ outside the cone C. and the
above finiteness result for graphs over proper domains of R2, one eventually proves
that none of the integral curves of Vzg are asymptotic to a plane in £ and that
every such horizontal plane intersects M transversely in a single proper arc. Then
a straightforward argument using Theorem [7] implies that M is recurrent, and
thus M is conformally C. The non-existence of points in M with vertical normal
vector and the connectedness of its horizontal sections force the height differential
to be dh = dxs + idxi = dz in a conformal parameterization of M. In particular,
the third coordinate z3: C — R is x3(z) = R(z), the real part of z.

To finish the proof, it only remains to determine the Gauss map g of M. Recall
that we have already indicated how to show that g(z) = ef (2) If the holomorphic
function f(z) is a linear function of the form az + b, then the Weierstrass data
(ef(3) dz) for M shows that M is an associate surface to the helicoid. Since none
of the non-trivial associate surfaces to the helicoid are injective as mappings, then
M must be the helicoid itself when f(z) is linear. Thus, it remains to show that
f(z) is linear. The formula (1) in Section for the Gaussian curvature K and
an application of Picard’s Theorem imply that f(z) is linear if and only if M has
bounded curvature. This fact completes the proof of the theorem in the special
case that K is bounded. However, Theorem [£2] and a clever blow-up argument on
the scale of curvature reduces the proof that f(z) is linear in the general case to the
case where K is bounded, and so M is a helicoid. For further details, see [I36]. O

Remark 8.1. The first two main steps in the proof outlined above (the second and
third paragraphs) can be simplified by using the fact that any embedded minimal
multigraph with a large number of sheets contains a submultigraph which can be
approximated by the multigraph of a helicoid with an additional logarithmic term,
an approximation result which appears as Corollary 14.3 in Colding and Mini-
cozzi [30]. Bernstein and Breiner [5], as well as Meeks and Pérez [I15], verified that
for the double multigraph appearing in the above-sketched proof, this approxima-
tion property, together with estimates by Colding and Minicozzi for the separation
of the sheets of the multigraph, is sufficient to prove that the surface M intersects
each horizontal plane transversely in a single proper arc, which as we observed
above, is a delicate step in the proof of Theorem [[LJl An important detail is that

38We will discuss this finiteness property in more detail in Section [T} see Conjecture [1.41
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this simplification does not need the hypothesis of simply connectedness and works
in the case of proper minimal annuli with one compact boundary curve and infinite
total curvature, giving that such an annulus intersects transversely some horizontal
plane in a single proper arc. For details, see [4] [ [T15].

Theorem [I[] solves a long-standing conjecture about the uniqueness of the he-
licoid among properly embedded, simply connected minimal surfaces in R3. Very
little is known about genus-g helicoids with ¢ > 1. We have already mentioned
Theorem [[4] on the asymptotic behavior and conformal structure of every such
minimal surface. It is conjectured that the genus-one helicoid of Hoffman, Karcher
and Wei [75] [70], discussed in Section 28] is the unique complete, embedded min-
imal example with this topology. Also, Hoffman and White [85] have given a new
approach to the proof of the existence of the genus-one helicoid, which holds the
promise of proving the existence of a genus-g helicoid for any g € N. It is expected
(Conjecture [[T.6) that for every non-negative integer g, there exists a unique non-
planar, properly embedded minimal surface in R?® with genus g and one end.

9. MINIMAL LAMINATIONS REVISITED
AND THE EMBEDDED CALABI-YAU PROBLEM

In the above sections we have seen that minimal laminations constitute a key
tool in the understanding of the global behavior of embedded minimal surfaces in
R3. In this section, we will present some results about the existence and struc-
ture of minimal laminations, which have deep consequences in various aspects of
minimal surface theory, including the general three-manifold setting. For example,
we will give a natural condition under which the closure of a complete, embedded
minimal surface in a Riemannian three-manifold has the structure of a minimal
lamination. From this analysis, we will deduce, among other things, that certain
complete, embedded minimal surfaces are proper, a result which is used to prove
the uniqueness of the helicoid in the complete setting (Theorem [[T]) by reducing it
to the corresponding characterization assuming properness.

9.1. Uniqueness of the helicoid II: The complete case. In the introduction we
mentioned the result, proved in [136] by Meeks and Rosenberg, that the closure of a
complete, embedded minimal surface M with locally bounded Gaussian curvatur

in a Riemannian three-manifold N, has the structure of a minimal lamination. The
same authors have demonstrated that this result still holds true if we substitute
the locally bounded curvature assumption by a weaker hypothesis, namely that the
injectivity radius of M is positive

Definition 9.1. Let ¥ be a complete Riemannian manifold. The injectivity radius
function Is,: ¥ — (0,00] is defined at a point p € ¥ to be the supremum of the
radii of disks centered at the origin in 7,3, such that the exponential map at p,
restricted to each of these disks, is a diffeomorphism onto its image. The injectivity
radius of 3 is the infimum of Iy.

39This means that for every p € N, there exists a neighborhood of p in N where M has
bounded Gaussian curvature.

40 Actually, the hypothesis is that for every p € N, there exists a neighborhood Dy of pin N
where the injectivity radius function Ips restricted to M N D, is bounded away from zero.
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If M is an immersed surface in a three-manifold N, then p € N is a limit point
of M if either p € M — M or p € M and there is a sequence {p,}, C M which
converges to p in N but does not converge to p in the intrinsic topology on M. We
let L(M) denote the (closed) set of limit points of M in N.

The next theorem was proved by Meeks and Rosenberg [137].

Theorem 9.2 (Minimal Lamination Closure Theorem). Let M be a complete, em-
bedded minimal surface of positive injectivity radius in a Riemannian three-manifold
N (not necessarily complete). Then, the closure M of M in N has the structure of
a CY%-minimal lamination L, some of whose leaves are the connected components
of M.

Furthermore:

1. If N is homogeneously regqular, then there exist positive constants C' and &
depending on N and on the injectivity radius of M, such that the absolute
Gaussian curvature of M in the e-neighborhood of any limit leaf of M is
less than C'.

2. If M is connected, then exactly one of the following three statements holds:
(a) M is properly embedded in N (hence, L(M) = &).

(b) The limit set L(M) C L is non-empty and disjoint from M, and M is
properly embedded in the open set N — L(M).
(¢) L(M) = L and L contains an uncountable number of leaves.

In the particular case N = R?, more can be said. Suppose M C R? is a con-
nected, complete, embedded minimal surface with positive injectivity radius. By
Theorem [@2] the closure of M has the structure of a minimal lamination of R3.
If item 2(a) in Theorem does not hold for M, then the sublamination of limit
points L(M) C M contains some leaf L. By Theorem ELF L is stable; hence L is
a plane by Theorem Now Theorem insures that M has bounded curva-
ture in some e-neighborhood of the plane L, which contradicts Lemma This
contradiction proves the following result.

Corollary 9.3 (Meeks, Rosenberg [137]). Every connected, complete, embedded
minimal surface in R® with positive injectivity radius is properly embedded.

Remark 9.4. Corollary is no longer true if we replace R?® by H® given that
Coskunuzer [40] has constructed a complete embedded minimal plane in H3 which
is not proper; see especially the last paragraph in [40] for a discussion of the role
of this example in H? in relation to Theorem above.

Suppose M is a complete, embedded minimal surface of finite topology in R3.
If the injectivity radius of M is zero, then there exists a divergent sequence of
embedded geodesic loops v, C M (i.e., closed geodesics with at most one corner)
with lengths going to zero. Since M has finite topology, we may assume the ~,, are
all contained in a fixed annular end F of M. By the Gauss-Bonnet formula, each
v, 18 homotopically non-trivial, and so, the cycles v, U~1, n > 2, bound compact
annular subdomains in F, whose union is a subend of E. However, the Gauss-
Bonnet formula implies that the total curvature of this union is finite (greater than
—47). Hence, E is asymptotic to an end of a plane or of a half-catenoid, which is
absurd. This argument proves that the following result holds.

Corollary 9.5 (Colding-Minicozzi [37]). A connected, complete, embedded minimal
surface of finite topology in R3 is properly embedded.
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The above corollary fails to hold if the surface is allowed to have self-intersections,
since there exists a complete minimal disk contained in the unit ball (Nadirashvili
[152]). Colding and Minicozzi obtained Corollary from a deep analysis of the
relation between intrinsic and extrinsic distances for an embedded minimal disk in
R? (see [37]), and the proof of Theorem is inspired by this previous work of
Colding and Minicozzi.

To finish this section, we remark that one of the central results in this survey
article, Theorem [T follows directly from its validity in the proper case and from
Corollary

9.2. The regularity of the singular sets of convergence of minimal lami-
nations. In Sections and [Tl we mentioned a regularity result for the singular
set of convergence of a Colding-Minicozzi limit minimal lamination. We next state
this result.

Theorem 9.6 (C!'l-regularity of S(£), Meeks [111], [112]). Suppose {M,}, is a
locally simply connected sequence of properly embedded minimal surfaces in a three-
manifold N that converges C*, o € (0,1), to a minimal lamination L of N, outside
a locally finite collection of Lipschitz curves S(L) C N transverse to L (along
which the convergence fails to be C*). Then, L is a CY'-minimal foliation in a
neighborhood of S(L), and S(L) consists of C*'-curves orthogonal to the leaves of
L.

To give an idea of the proof of Theorem [0.0] first note that the nature of this
theorem is purely local, so it suffices to consider the case of a sequence of properly
embedded minimal disks M, in the unit ball B(1) = B(0,1) of R (the general
case follows from adapting the arguments to a three-manifold). After passing to a
subsequence, one can also assume that the surfaces M,, converge to a C%!-minimal
foliation] £ of B(1) and the convergence is C*, a € (0, 1), outside of a transverse
Lipschitz curve S(£) that passes through the origin. Since the unit normal vector
field N to L is Lipschitz (Solomon [I91]), then the integral curves of N, are of
class C*!. Then the proof consists of demonstrating that S(£) is the integral curve
of N, passing through the origin. To do this, one first proves that S(L) is of class
C'; hence it admits a continuous tangent field 7', and then one shows that 7T is
orthogonal to the leaves of £. Crucial in this proof is the uniqueness of the helicoid
(Theorem [[)), since it gives the local picture of the minimal disks M,, near the
origin as being closely approximated by portions of a highly sheeted helicoid near
its axis.

10. EMBEDDED MINIMAL SURFACES OF FINITE GENUS

10.1. The Hoffman-Meeks conjecture. By Theorem [[L5] every complete, em-
bedded minimal surface in R? with finite topology is proper, and hence, orientable.
Until the early eighties of the last century, no complete embedded minimal surfaces
of finite topology other than the plane, the helicoid (both with genus zero, one
end) and the catenoid (genus zero, two ends) were known. For a long time, some
geometers supported the conjecture that no other examples of finite topology would
exist. The discovery in 1982 of a new genus-one, three-ended embedded example
(Costa [42], Hoffman and Meeks [78]) not only disproved this conjecture, but also

41 Any codimension-one minimal foliation is of class C%! and its unit normal vector field is
CO1 as well; see Solomon [191].
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revitalized enormously the interest of geometers in classical minimal surface theory.
Since then, a number of new embedded examples have appeared, sometimes even
coming in multiparameter families [72 [74] [79] 90, 197 205].

For complete embedded minimal surfaces with finite topology, there is an in-
teresting dichotomy between the one-end case and those surfaces with more than
one end: surfaces in this last case always have finite total curvature (Collin’s The-
orem [[3). Only the simplest finite topologies with more than one end have been
characterized: the unique examples with genus zero and finite topology are the plane
and the catenoid (L6pez and Ros’s Theorem[B3.2)), the catenoid is the unique example
with finite genus and two ends (Schoen’s Theorem 1), and Costa [43] [44] showed
that the examples with genus one and three ends lie inside the one-parameter family
of surfaces {Mi,, | 0 < a < oo} that appears in Section Today we know many
more examples of more complicated finite topologies and more than one end, and
up to this date all known examples support the following conjecture.

Conjecture 10.1 (Finite Topology Conjecture, Hoffman, Meeks). A connected
surface of finite topology, genus g and r ends, r > 2, can be properly minimally
embedded in R3 if and only if r < g + 2.

Meeks, Pérez and Ros [119] proved the existence of an upper bound for the
number of ends of a minimal surface as in the above conjecture solely in terms of
the genus; see Theorem [0l stated in the Introduction. We next give a sketch of the
proof of this result. The argument is by contradiction. The failure of Theorem
to hold would produce an infinite sequence { M, },, of complete, embedded minimal
surfaces in R? with fixed finite genus g and a strictly increasing number of ends, and
which are properly embedded in R? since they have finite total curvature. Then
one analyzes the non—simply connected limits of subsequences of {M,,},,. The key
idea used to achieve these limits is to normalize M, by a translation followed by
a homothety on the scale of topology. What we mean here is that we assume
that each renormalized surface intersects the closed unit ball of R?® centered at
the origin in some non—simply connected component, but that every open ball of
radius 1 intersects the surface in simply connected components.

Using the uniformly locally simply connected property of the renormalized se-
quence {M,}, and the fact that the M,, have genus g, we analyze what are the
possible limits of sequences of {M,,},; these limits are either properly embedded,
non—simply connected minimal surfaces with genus at most g and possibly infin-
itely many ends, or parking garage structures on R? with exactly two columns.
The limits which are surfaces with infinitely many ends are then discarded by an
application of either a descriptive theorem for the geometry of any properly embed-
ded minimal surface in R? with finite genus and two limit ends (Meeks, Pérez and
Ros [124]), or a non-existence theorem for properly embedded minimal surfaces in
R? with finite genus and one limit end (Meeks, Pérez and Ros [127] or Theorem [0.3]
below). The parking garage structure limits are also discarded, by a modification
of the argument that eliminates the two-limit-ended limits. Hence, any possible
limit M., of a subsequence of {M,}, must be a non—simply connected minimal
surface, which either has finite total curvature or is a helicoid with positive genus
at most g. Then, a surgery argument allows one to modify the surfaces M,, by
replacing compact pieces of M, close to the limit M by a finite number of disks,
obtaining a new surface M, with strictly simpler topology than M,, and which is
not minimal in the replaced part. A careful study of the replaced parts during the
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sequence allows one to iterate the process of finding non-simply connected minimal
limits of the modified surfaces M,,. The fact that all the M,, have the same finite
genus allows one to arrive at a stage in the process of producing limits from which
all subsequent limits have genus zero, and so they are catenoids. From this point
in the proof, one shows that there exists a large integer n such that M, contains a
non-compact planar domain 2 C M,, whose boundary consists of two convex planar
curves I'y,I's in parallel planes, such that each I'; separates M,, and has flux or-
thogonal to the plane that contains I';. In this setting, the Lopez-Ros deformation
defined in Section [2.2] (see [104] [I71]) applies to €2, giving the desired contradiction.
This finishes the sketch of the proof of Theorem

Recall that the Jorge-Meeks formula (equation (@) in Section 23) relates the
degree of the Gauss map of a complete, embedded minimal surface with finite total
curvature in R3, with its genus and number of ends. Since the finite index of
stability of a complete minimal surface of finite total curvature can be estimated
from above in terms of the degree of its Gauss map (Tysk [203]), Theorem [L@ has
the following important theoretical consequence.

Corollary 10.2 (Meeks, Pérez, Ros [119]). For every g € N U {0}, there exists
an integer i(g) such that if M C R? is a complete, embedded minimal surface with
genus g and a finite number of ends greater than 1, then the index of stability of M
is at most i(g).

The above paragraphs deal with complete, embedded minimal surfaces of finite
topology and more than one end. The case of one-ended surfaces of finite genus was
covered by Theorems [Tl and [[L4} see also the discussion about genus-k helicoids in
Section and Conjecture below.

10.2. Non-existence of examples with one limit end and finite genus. Next
we consider properly embedded minimal surfaces with finite genus and infinite
topology. Note that we have included the hypothesis “proper” instead of “complete”
since we can no longer apply Theorem in this setting Since the number of
ends of such a surface M C R? is infinite and the set of ends (M) of M is compact
(see Section 27), then M must have at least one limit end. Up to a rotation, we
can assume that the limit tangent plane at infinity of M (Section [f) is horizontal.
Theorem insures that M has no middle limit ends; hence either it has one limit
end (this one being the top or the bottom limit end) or both top and bottom ends
are the limit ends of M, as in a Riemann minimal example. Meeks, Pérez and
Ros [127] have discarded the one limit end case through the following result.

Theorem 10.3 (Meeks, Pérez, Ros [127]). If M C R3 is a properly embedded
minimal surface with finite genusE then M cannot have exactly one limit end.
Furthermore, M is recurrent.

Sketch of the proof. Assume M is a properly embedded minimal surface in R? with
finite genus and exactly one limit end. After a rotation, we can suppose that M
has horizontal limit tangent plane at infinity and its set of ends, linearly ordered by

42However, a result of Meeks, Pérez and Ros [120] states that a connected, complete, embedded
minimal surface of finite genus in R? which has at most a countable number of limit ends is always
properly embedded.

43 The hypothesis on finite genus is essential here, since there exist properly embedded minimal
surfaces in R3 with infinite genus and just one limit end (Traizet [200]).
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increasing heights (see the Ordering Theorem[6.2), is E(M) = {e1,ea,..., 00} With
the limit end of M being its top end es. One first needs a previous description
of the asymptotic behavior of M by Meeks, Pérez and Ros (Theorem 2 in [126]):
each non-limit end e, € £(M) is asymptotic to a graphical annular end E,, of a
vertical catenoid with negative logarithmic growth a, satisfying a; < --- < a, <
-+ < 0. The next step consists of a detailed analysis of the limits (after passing
to a subsequence) of homothetic shrinkings {\,M},,, where {\,}, C RT is any
sequence of numbers decaying to zero; one first shows that {\, M}, is locally simply
connected in R3—{0}. This is a difficult technical part of the proof, where the results
of Colding and Minicozzi again play a crucial role. Then one proves that the limits
of subsequences of {\, M}, consist of (possibly singular) minimal laminations £ of
H(x) = {x3 > 0} — {0} C R® containing dH () as a leaf. Subsequently, one checks
that every such limit lamination £ is smooth and that the singular set of convergence
S(L) of A\, M to L is empty (we will discuss this step a bit more after this sketched
proof). In particular, taking A, = [|p,| !, where p, is any divergent sequence
on M, the fact that S(£) = @ for the corresponding limit minimal lamination £
insures that the Gaussian curvature of M decays at least quadratically in terms
of the distance function to the origin. Meeks, Pérez and Ros [122] proved that if
an embedded minimal surface has quadratic decay of curvature, then it has finite
total curvature. This is impossible in our situation with infinitely many ends and
finishes the outline of the proof of the first statement of Theorem

In order to finish the sketch of the proof, it only remains to check that M is
recurrent. If M has exactly one end, then M is conformally a compact Riemann
surface minus one point (Theorem [[4)) and so, M is recurrent. If M has a finite
number of ends greater than one, then M has finite total curvature (Theorem [[3)).
By the Huber-Osserman Theorem 2.11], M is conformally a compact Riemann sur-
face minus a finite number of points; thus it is again recurrent. Finally, if M has
infinitely many ends, then M has exactly two limit ends; see the paragraph just
before the statement of Theorem In this situation, Theorem [Z.10] asserts that
M is recurrent, thereby finishing our sketch of the proof. O

There is a crucial point in the above sketch of the proof of Theorem which
should be emphasized. We mentioned above that any limit lamination £ of H(x)
obtained as a limit of (a subsequence of) homothetic shrinkings {\, M}, with
An N\ 0, has no singularities and empty singular set of convergence S(L). These
properties are consequences of what we call the Stability Lemma (see Lemma [[0.5]),
which we want to explain now. If such a lamination £ had singularities or if S(L)
were non-empty for a given sequence of shrinkings of M, then we would find some
smooth limit leaf L of £, and hence L would be stable. The difficulty in discarding
this possibility lies in the fact that the stable leaves of L, while perhaps proper
in {x3 > 0}, may not be complete and so, we do not know they must be planes.
It is not difficult to prove that the smooth stable leaves in £ in fact satisfy the
hypotheses of the Stability Lemma below, and so they are planes. Once one
has that the smooth stable leaves in L are planes, then the proof of Theorem
leads to a contradiction, thereby showing that £ has no singularities and S(L£) is
empty.

We include below the proof of the Stability Lemma for three reasons:
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(1) To illustrate how one can obtain information on the conformal structure of
possibly incomplete minimal surfaces by studying conformally related met-
rics, and then how to apply such information to constrain their geometry.

(2) Because Theorem is a direct consequence of Lemma [I0.5

(3) Because the short proof of Lemmal[l0H below indicates some new techniques
and insights for possibly solving the following famous conjecture, due to
Gulliver and Lawson (also note that the following conjecture is a special
case of the Fundamental Singularity Conjecture [[T.3)).

Conjecture 10.4 (Isolated Singularity Conjecture). The closure of a properly em-
bedded minimal surface in the punctured closed unit ball B(1) — {0} is a compact
embedded minimal surface.

The next lemma by Meeks, Pérez, Ros [122] was also found independently by
Colding and Minicozzi [24], and it is motivated by a similar result of Meeks, Pérez
and Ros in [127].

Lemma 10.5 (Stability Lemma). Let L ¢ R*—{0} be a stable, orientable, minimal
surface which is complete outside the origin. Then its closure L is a plane.

Proof. Consider the metric g = # g on L, where g is the metric induced by the
usual inner product (,) of R3. Note that if L were a plane through 0, then § would
be the metric on L of an infinite cylinder of radius 1 with ends at 0 and at infinity.
We will show that, in general, this metric is complete on L and that the assumption
of stability can be used to show that (L, g) is flat. Since (R*—{0},§) with § = 2(,)
is isometric to S? x R and L is complete outside 0, then (L,g) C (R? — {0},3) is
complete.

We now prove that (L, g) is flat. The Laplacians and Gauss curvatures of g, g are
related by the equations A =R?A and K = R*(Kp + Alog R). Since Alog R =
72(1_9521%”2) > 0, then

~A+ K =R)(-A+ K+ AlogR) > R*(—A + K).

Since K;, < 0 and (L, g) is stable, —A+ K; > —A 42K}, > 0, and so, A+ K >0
on (L,q). As g is complete, the universal covering of L is conformally C (Fischer-
Colbrie and Schoen [60]). Since (L,g) is stable, there exists a positive Jacobi
function u on L (Fischer-Colbrie [59]). Passing to the universal covering L, Ati =

2K;u <0, and so,  is a positive superharmonic on C, and hence constant. Thus,
0=Au—2K,u=—2Kpu on L, which means that K; = 0. ]

10.3. Uniqueness of the Riemann minimal examples. If a properly embedded
minimal surface M C R? has finite genus and infinite topology, then Theorems
and[[0.3imply that M has two limit ends which are its top and bottom ends (after a
rotation so that the limit tangent plane at infinity of M is horizontal). The classical
model in this setting is any of the surfaces in the one-parameter family of Riemann
minimal examples; see Section 25l Meeks, Pérez and Ros [124] have characterized
these last surfaces as the unique properly embedded minimal surfaces in R? with
genus zero and infinite topology (Theorem below), a uniqueness result that,
together with Theorems [[L3] [L4] and B2} finishes the classification of all properly
embedded minimal planar domains in R? stated in Theorem We will explain
the main steps in the proof of this characterization below; see also [I18] for further
details.
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Theorem 10.6. Every properly embedded, minimal planar domain M C R? with
infinite topology is a Riemann minimal example.

Sketch of the proof. We first rotate M in R? to have horizontal limit tangent plane
at infinity. Next, we rescale M by a suitable homothety so that the vertical compo-
nent of the flux vector of M along a compact horizontal section M N{x3 = constant}
is equal to 1. At this point we need a previous analytic and geometric description
of M (Theorem 1 in Meeks, Pérez and Ros [126]):

(A) M can be conformally parametrized by the cylinder C/(i) (here i = \/—1)
punctured in an infinite discrete set of points {p;, ¢; }jez which correspond
to the planar ends of M.

(B) The stereographically projected Gauss map g: (C/(i)) —{p;,¢;}jez = CU
{oo} extends through the planar ends of M to a meromorphic function g
on C/(i) which has double zeros at the points p; and double poles at the
q;-

(C) The height differential of M is dh = dz with z being the usual conformal
coordinate on C; hence the third coordinate function of M is z3(z) = R(z).

(D) The planar ends of M are ordered by their heights so that R(p;) < R(g;) <
R(pj+1) for all j with R(p,;) — oo (resp. R(p;) = —o0) when j — oo (resp.
Jj — —00).

(E) The flux vector F' of M along a compact horizontal section has non-zero
horizontal component; hence after a suitable rotation around the xs-axis,
F = (h,0,1) for some h > 0.

(F) With the normalizations above, the Gaussian curvature of M is bounded
and the vertical spacings between consecutive planar ends are bounded
from above and below by positive constants, with all these constants de-
pending only on h. This is a non-trivial application of Colding-Minicozzi
theory [126].

(G) For every divergent sequence {z;}r C C/(i), there exists a subsequence
of the meromorphic functions gi(z) = g¢(z + zr) which converges uni-
formly on compact subsets of C/(i) to a non-constant meromorphic function
Joo: C/(i) — CU {0} (we will refer to this property by saying that g is
quasiperiodic). In fact, go, corresponds to the Gauss map of a minimal
surface M, satisfying the same properties as M, which is the limit of a
related subsequence of translations of M by vectors whose x3-components
are $(zx). Such a limit exists by an application of item (F) above.

Let M be the space of properly embedded, minimal planar domains M C R3
with two limit ends and flux F = (h,0,1) for some h = h(M) > 0, identified up
to translations. Every minimal surface M € M admits a classical Jacobi function
called its Shiffman function Sp;, which measures the curvature variation of the
parallel sections of M. Analytically, Sys is given by

Ok 3 g/)2 q" 1 <g/)2
13 Sy =A =g3(Z(Z) — _ g ,
(1) Moy lQ (g g 1+ \yg

where A is the conformal factor between the induced metric on M by the inner
product of R? and the flat metric in the conformal coordinate z = z + iy, i.e.,
ds? = A%|dz|?, and k.(y) is the planar curvature of the level curve M N {z3 = c}
(¢ € R), which is parameterized by z.(y) = ¢ + iy since x3(z) = R(z) = . The




THE CLASSICAL THEORY OF MINIMAL SURFACES 387

second equality in (I3) expresses Sy; solely as a rational expression of g and its
derivatives with respect to z up to order 2.

Since A is a positive function, the zeros of Sy; coincide with the critical points
of k.(y). Thus, Sy, vanishes identically if and only if M is foliated by circles and
straight lines in horizontal planes. In a posthumously published paper, B. Rie-
mann [I75] [I76] classified all minimal surfaces with such a foliation property: they
reduce to the plane, catenoid, helicoid and the 1-parameter family of Riemann min-
imal examples (which took this name from this discovery of Riemann). Therefore,
a possible approach to proving Theorem is to verify that Sy, = 0, but instead
of proving this fact directly, Meeks, Pérez and Ros demonstrated that Sy, can be
integrated in the following sense:

Given a minimal surface M € M, there exists a one-parameter
family {M;}; C M such that My = M and the normal variational
vector field for this variation, when restricted to each My, is the
Shiffman Jacobi function Sy, multiplied by the unit normal vector
field to M.

In fact, the parameter ¢ of this deformation can be extended to be a complex
number, and ¢ — M, can be viewed as the real part of a complex-valued holomorphic
curve in a certain complex variety. This is a very special integration property for
S, which we refer to by saying that the Shiffman function can be holomorphically
integrated for every surface M € M.

The method for proving that the Shiffman function Sy; can be holomorphically
integrated for every such M is through the Korteweg-de Vries equation (KdV) and
its hierarchy, two fundamental tools in integrable systems theory. We recommend
that the interested reader consult the excellent survey by Gesztesy and Weikard [65]
for an overview of the notions and properties which we will use in the sequel. Briefly,
the way to obtain the KdV equation from the Shiffman function is as follows.

It turns out that Sj; admits a globally defined conjugate Jacobi function™] Sis
on (C/(i)) — B(N), where B(N) denotes the set of branch points of the Gauss map
N of M. Thus, Sy + 1S}, can be viewed as the support function of a holomorphic
map from (C/{(i)) — B(N) into C3, namely Sy +iS%, = (X, +i(X,)*, N). The
holomorphicity of X, +1i(X,)* allows us to identify Sy; +4S}; with an infinitesimal
deformation in the space W of quasiperiodic meromorphic functions on C/ (i) with
double zeros and double poles, i.e., with the derivative gg = %} 41— 9t of a holo-
morphic curve t € D(e) = {t € C | |t| < e} — g» € W with gy = g, which can be
computed from (I3) as

) i ! 1 3 /\3
(14) g5 =5 (0" -3+ SO0,
Therefore, to integrate Sy, holomorphically one needs to find a holomorphic curve
t € D(e) — g+ € W with gg = g, such that for all ¢ the pair (g, dz) is the Weierstrass

. awy \3
data of a minimal surface M, € M and %|tgt =1 (gg" — 3% + %%

Viewing (I4) as an evolution equation (in complex time t), one could apply
general techniques to find solutions g; = g¢(z) defined locally around a point zy €

44The congjugate Jacobi function of a Jacobi function u over a minimal surface M is the (locally
defined) support function u* of the conjugate surface (X,)* of the branched minimal surface X,
associated to u by the Montiel-Ros correspondence; see Theorem In particular, both X,
and (X,)* have the same Gauss map as M, and u* also satisfies the Jacobi equation.
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(C/(i)) — g7 ({0, 00}) with the initial condition gy = g, but such solutions are not
necessarily defined on the whole cylinder, can develop essential singularities, and
even if they were meromorphic on C/(3), it is not clear a priori that they would
have only double zeros and poles and other properties necessary to give rise to
minimal surfaces M; in M. All these problems are solved by arguments related to
the theory of the (meromorphic) KdV equation, as we will next explain.

The change of variables

3¢)% 9"
15 U= — 4+ 2
19) 49> 29
transforms (I4)) into the evolution equation
0
19 P,

which is the KdV equation The reader may wonder why the KdV equation
appears in connection to the Shiffman function. The change of variables x = ¢'/g
transforms the expression (I4) for s into the evolution equation & = £ (2" —2222),
called a modified KdV equation (mKdV). It is well known that mKdV equations
in z can be transformed into KdV equations in u through the so-called Miura
transformations, x — u = ax’+bx? with a, b suitable constants; see for example [65],
page 273. Equation (I3 is nothing but the composition of g — x and a Miura
transformation. The holomorphic integration of the Shiffman function Sy, could
be performed just in terms of the theory of the mKdV equation, but we will instead
use the more standard KdV theory.

Coming back to the holomorphic integration of Sj;, this integration amounts
to solving globally in C/(i) the Cauchy problem for equation (), i.e. finding a
meromorphic solution u(z,t) of ([I8) with z € C/(i) and ¢ € D(e), whose initial
condition is u(z,0) = u(z) given by ([IT). It is a well-known fact in KdV theory (see
for instance [65] and also see Segal and Wilson [I89]) that such a Cauchy problem
can be solved globally producing a holomorphic curve ¢t — wu; of meromorphic
functions u(z,t) = ut(z) on C/(i) (with controlled Laurent expansions in poles of
ut) provided that the initial condition u(z) is an algebro-geometric potential for the
KdV equation. To understand this last notion, one must view (IG) as the case
n = 1 of a sequence of evolution equations in u called the KdV hierarchy,

(7) {2t — 0Pt}

n>0
where P,,11(u) is a differential operator given by a polynomial expression of u and
its derivatives with respect to z up to order 2n. These operators, which are closely
related to Lax Pairs (see Section 2.3 in [65]) are defined by the recurrence law

02 Prnt1 (U) = (0222 +4u 0, + 2u’)73n(u),
Po(u) = %

In particular, P;(u) = u and Pa(u) = u” + 3u? (plugging Pa(u) in ([7) one obtains
the KdV equation). Hence, for each n € NU {0} one must consider the right-hand
side of the nth equation in (I7) as a polynomial expression of u = u(z) and its
derivatives with respect to z up to order 2n + 1. We will call this expression a flow,

(18)

45In the literature one can find different normalizations of the KdV equation, given by different
coefficients for u”/; uu’ in equation (IG)); all of them are equivalent up to a change of variables.
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denoted by (?T“. A function u(z) is said to be an algebro-geometric potential of the

KdV equation if there exists a flow ST“ which is a linear combination of the lower

order flows in the KdV hierarchy.

With all these ingredients, one needs to check that for every minimal surface
M € M, the function v = u(z) defined by equation ([IT)) in terms of the Gauss map
g(z) of M, is an algebro-geometric potential of the KAV equation. This property

follows from a combination of the following two facts:

1. Each flow 6871: in the KdV hierarchy produces a bounded, complex-valued

Jacobi function v,, on C/(i) in a similar manner to the way that g—t“l pro-
duces the complex Shiffman function Sy, + iS3%,.

2. Since the Jacobi functions v,, produced in item 1 are bounded on C/(7),
they can be considered to lie in the kernel of a Schrédinger operator Ly,
on C/(i) with bounded potential; namely, Ly = (Agt + 9?) + Vi, where
C/{i) has been isometrically identified with S* x R endowed with the usual
product metric df? x dt?, and the potential V3, is the square of the norm
of the differential of the Gauss map of M with respect to df? x dt? (Vi
is bounded since M has bounded Gaussian curvature; see property (F)
above). Finally, the kernel of Ly restricted to bounded functions is finite
dimensional; this finite dimensionality was proved by Meeks, Pérez and
Rod™ in [124] and also follows from a more general result by Colding, de
Lellis and Minicozzi [23]).

The aforementioned control on the Laurent expansions in poles of u;, coming from
the integration of the Cauchy problem for the KdV equation, is enough to prove that
the corresponding meromorphic function g; associated to u; by ([T has the correct
behavior in poles and zeros; this property, together with the fact that both Sy, S},
preserve infinitesimally the complex periods along any closed curve in C/ (i), suffices
to show that the Weierstrass data (g;,dz) solves the period problem and defines
M; € M with the desired properties.

Finally, once the holomorphic integrability of Sy, for any M € M by a curve
t — M; € W with My = M is proved, a compactness argument based on the fact
that t — M, preserves the flux along every compact horizontal section gives that
gs given by () vanishes identically, which in turn implies that Sy + iS}, is a
complex-valued linear function of the Gauss map, Sy + 1S3, = (a, N) for some
a € C3. This property can be used to show that M is invariant by a translation
T, inducing a properly embedded minimal torus in some quotient R3 /7T with total
curvature —87. Under these conditions, a previous classification theorem by Meeks,
Pérez and Ros [125] leads to the desired property that M is a Riemann minimal
example, which finishes the sketch of the proof. O

The classification Theorem [I0.6] can be used to analyze the asymptotic behavior
of properly embedded minimal surfaces with finite genus and infinitely many ends.
Roughly speaking, it asserts that if M is a properly embedded minimal surface in
R3 with finite genus g and an infinite number of ends, then M has two limit ends
and each of its limit ends is asymptotic as 3 — 00 to one of the limit ends of the
Riemann minimal example with horizontal tangent plane at infinity and the same
flux vector as M (see Theorem 9.1 in [124] for details).

46This follows arguments by Pacard (personal communication), which in turn are inspired in
a paper by Lockhart and McOwen [102].
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11. OUTSTANDING PROBLEMS AND CONJECTURES

In this last section, we present many of the fundamental conjectures in clas-
sical minimal surface theory. Hopefully, our presentation and discussion of these
problems will speed up their solution and stimulate further interest in this beautiful
subject. We have listed in the statement of each conjecture the principal researchers
to whom the conjecture might be attributed. We consider all of these problems to
be of fundamental importance and we note that they are not listed in order of
significance, difficulty or presumed depth.

Some of these problems and others appear in [110] or in [I13], along with further
discussions. Also see the first author’s 1978 book [105] for a long list of conjectures
in the subject, some of whose solutions we have discussed in our survey presented
here.

Conjecture 11.1 (Convex Curve Conjecture, Meeks). Two convex Jordan curves
in parallel planes cannot bound a compact minimal surface of positive genus.

There are some partial results on the Convex Curve Conjecture, under the as-
sumption of some symmetry on the curves (see Meeks and White [I41], Ros [I78]
and Schoen [I88]). Also, the results of [I41], 142] indicate that the Convex Curve
Conjecture probably holds in the more general case where the two convex planar
curves do not necessarily lie in parallel planes, but rather lie on the boundary of
their convex hull; in this case, the planar Jordan curves are called extremal. Re-
sults by Ekholm, White and Wienholtz [5I] imply that every compact, orientable
minimal surface that arises as a counterexample to the Convex Curve Conjecture
is embedded. Based on work in [51], Tinaglia [194] proved that for a fixed pair of
extremal, convex planar curves, there is a bound on the genus of such a minimal sur-
face. More generally, Meeks [105] has conjectured that if I' = {«, 1, B2, .., Bn} C R3
is a finite collection of planar, convex, simple closed curves with « in one plane and
such that f1, 5o, ..., B, bound a pairwise disjoint collection of disks in a parallel
plane, then any compact minimal surface with boundary I' must have genus zero.

Conjecture 11.2 (47-Conjecture, Meeks, Yau, Nitsche). If T is a simple closed
curve in R® with total curvature at most 4w, then T bounds a unique compact, ori-
entable, branched minimal surface and this unique minimal surface is an embedded

disk.

As partial results to this conjecture, it is worth mentioning that Nitsche [I59]
proved that a regular analytic Jordan curve in R whose total curvature is at
most 47 bounds a unique minimal disk; recall also (Theorem above) that
Meeks and Yau [145] demonstrated the conjecture if I' is a C?-extremal curve (they
even allowed the minimal surface spanned by I' to be non-orientable). Concerning
this weakening of Conjecture [1.2] by removing the orientability assumption on the
minimal surface spanning I', we mention the following generalized conjecture due
to Ekholm, White and Wienholtz [51]:

Besides the unique minimal disk given by Nitsche’s Theorem [159],
only one or two Mébius strips can occur, and if the total curvature
of ' is at most 3w, then there are no such Mobius strip examples.

Passing to a different conjecture, Gulliver and Lawson [68] proved that if ¥ is an
orientable, stable minimal surface with compact boundary that is properly embed-
ded in the punctured unit ball B—{0} of R3, then its closure is a compact, embedded
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minimal surface; also see Conjecture 0.4l above. If ¥ is not stable, then the corre-
sponding result is not known. Nevertheless, Meeks, Pérez and Ros [122] 127] proved
that every properly embedded minimal surface M in B— {0} with M C S? extends
across the origin provided that K|R|? is bounded on M, where K is the Gaussian
curvature function of M and R? = 2% 4+ 23 + 2% (Theorem 227 implies that this in-
equality holds if M is stable). In fact, the boundedness of |K|R? is equivalent to the
removability of the singularity of M at the origin, and this removable singularity re-
sult holds true if we replace R? by an arbitrary Riemannian three-manifold. Meeks,
Pérez and Ros have conjectured that this removable singularity result holds true if
we replace the origin by any closed set in R3 with zero one-dimensional Hausdorff
measure and the surface is assumed to be properly embedded in the complement
of this set; see Conjecture below.

The most ambitious conjecture about removable singularities for minimal sur-
faces is the following one, which deals with lamination instead of with surfaces.
Recall that Examples I, IT and IIT in Section indicate that one cannot expect
the next conjecture to be true if we replace R? by H3, H? x R or by a ball in R3.

Conjecture 11.3 (Fundamental Singularity Conjecture, Meeks, Pérez, Ros). If
A C R? is a closed set with zero 1-dimensional Hausdorff measure and L is a
minimal lamination of R® — A, then L extends to a minimal lamination of R3.

In Section B, we mentioned that a key part of the proof of the uniqueness of
the helicoid by Meeks and Rosenberg relies on a finiteness result for the number of
components of a minimal graph over a proper domain of R? with zero boundary
values. More precisely, they proved that if D is a proper, possibly disconnected
domain of R? and u: D — R is a solution of the minimal surface equation ()
in D with zero boundary values and bounded gradient, then D has at most a
finite number of components where u is non-zero. This technical property can be
viewed as an important partial result in the direction of the solution of the following
conjecture, made by Meeks a number of years earlier.

Conjecture 11.4 (Connected Graph Conjecture, Meeks). A minimal graph in
R? with zero boundary values over a proper, possibly disconnected domain in R?
can have at most two non-planar components. Furthermore, if the graph also has
sublinear growth, then such a graph with no planar components is connected.

Consider a proper, possibly disconnected domain D in R? and a solution u: D —
R of the minimal surface equation with zero boundary values, such that u is non-zero
on each component of D. There are several partial results related to Conjecture[IT.4l
In 1981, Miklyukov [I47] proved that if each component of D is simply connected
with a finite number of boundary components, then D has at most three components
(in fact, with current tools, it can be shown that his method applies to the case that
D has finitely generated first homology group [148]). Earlier, Nitsche observed [158]
that no component of D can be contained in a proper wedge (angle less than ).
Collin [38] proved that at most one component of D can lie in any given half-plane.
Spruck [193] demonstrated that under the assumption of sublinear growth in a
suitably strong sense, D has at most two components. Without any assumption
of the growth of the minimal graph, Li and Wang [I01] proved that the number
of disjointly supported minimal graphs with zero boundary values over an open
subset of R” is at most (n+1)2""!. Later, Tkachev [I95] improved this exponential
bound by a polynomial one, and in the case n = 3, he obtained that the number



392 WILLIAM H. MEEKS III AND JOAQUIN PEREZ

of disjointly supported minimal graphs is at most three. Also, Weitsman [207] has
some related results that suggest that if D has finitely generated first homology
group and wu has sublinear growth, then the number of components of D should be
at most one. We refer the reader to the end of his paper [206], where he discusses
several interesting unsolved problems concerning the growth of u defined on a proper
domain contained in a half-plane.

In the discussion of the conjectures that follow, it is helpful to fix some notation
for certain classes of complete embedded minimal surfaces in R3.

e Let C be the space of connected, Complete, embedded minimal surfaces.
e Let P C C be the subspace of Properly embedded surfaces.
e Let M C P be the subspace of surfaces with More than one end.

Conjecture 11.5 (Finite Topology Conjecture I, Hoffman, Meeks). An orientable
surface M of finite topology with genus g and r ends, r # 0,2, occurs as a topological
type of a surface in C if and only if r < g + 2.

See [74], [79], 197, 205] and the discussion in Section (the method of Weber
and Wolf) for partial existence results which seem to indicate that the existence
implication in the Finite Topology Conjecture holds when r > 2. Recall that
Theorem insures that for each positive genus g, there exists an upper bound
e(g) on the number of ends of an M € M with finite topology and genus g. Hence,
the non-existence implication in Conjecture IT.5lwill be proved if one can show that
e(g) can be taken as g+ 2. Concerning the case r = 2, Theorems and 3.1l imply
that the only examples in M with finite topology and two ends are catenoids. Also,
by Theorems [[3]and 3.2 if M has finite topology, genus zero and at least two ends,
then M is a catenoid.

On the other hand, one of the central results in this article (Theorem [[T]) char-
acterizes the helicoid among complete, embedded, non-flat minimal surfaces in R?
with genus zero and one end. Concerning one-ended surfaces in C with finite positive
genus, first note that all these surfaces are proper by Theorem Furthermore,
every example M € P of finite positive genus and one end has a special analytic
representation on a once-punctured compact Riemann surface, as follows from the
works of Bernstein and Breiner [4] and Meeks and Pérez [115]; see Theorem [l In
fact, these authors showed that any such minimal surface has finite typ and is
asymptotic to a helicoid. This finite type condition could be used to search compu-
tationally for possible examples of genus-g helicoids, g € N. Along these lines, we
have already mentioned the rigorous proofs by Hoffman, Weber and Wolf [83] and
by Hoffman and White [85] of existence of a genus-one helicoid, a mathematical
fact that was earlier computationally indicated by Hoffman, Karcher and Wei [76].
For genera g = 2,3,4,5,06, there are numerical existence results [7, & [186] [196]
as mentioned in Section 5} see also the last paragraph in Section All these
facts motivate the next conjecture, which appeared in print for the first time in the
paper [136] by Meeks and Rosenberg, although several versions of it as questions
were around a long time before appearing in [136].

47A complete minimal surface M C R3 with Weierstrass data (g,dh) is said to be of finite
type if M is conformally diffecomorphic to a finitely punctured, compact Riemann surface M and
after a possible rotation, both dg/g, dh extend meromorphically to M; see Rosenberg [I81] and
Hauswirth, Pérez and Romon [69].
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Conjecture 11.6 (Finite Topology Conjecture II, Meeks, Rosenberg). For every
non-negative integer g, there exists a unique non-planar M € C with genus g and
one end.

The Finite Topology Conjectures I and 11 together propose the precise topological
conditions under which a non-compact orientable surface of finite topology can be
properly minimally embedded in R*. What about the case where the non-compact
orientable surface M has infinite topology? In this case, either M has infinite genus
or M has an infinite number of ends. By Theorem [[.9] such an M must have at
most two limit ends. Theorem states that such an M cannot have one limit
end and finite genus. We claim that these restrictions are the only ones.

Conjecture 11.7 (Infinite Topology Conjecture, Meeks). A non-compact, ori-
entable surface of infinite topology occurs as a topological type of a surface in P if
and only if it has at most one or two limit ends, and when it has one limit end,
then its limit end has infinite genus.

We now discuss two conjectures related to the underlying conformal structure of
a minimal surface.

Conjecture 11.8 (Liouville Conjecture, Meeks). If M € P and h: M — R is a
positive harmonic function, then h is constant.

The above conjecture is closely related to work in [39, 128 138]. For example,
from the discussions in Sections [{ and [0, we know that if M € P has finite genus
or two limit ends, then M is recurrent, which implies that M satisfies the Liouville
Conjecture. From results in [I128], we know that the conjecture holds for all of
the classical examples listed in Section 25l We also remark that Neel [I55] proved
that if a surface M € P has bounded Gaussian curvature, then M does not admit
non-constant bounded harmonic functions. A related conjecture is the following
one:

Conjecture 11.9 (Multiple-End Recurrency Conjecture, Meeks). If M € M, then
M is recurrent.

Assuming that one can prove the last conjecture, the proof of the Liouville
Conjecture would reduce to the case where M € P has infinite genus and one end.
Note that in this setting, a surface could satisfy Conjecture while at the same
time being transient. For example, every doubly or triply periodic minimal surface
with finite topology quotient satisfies the Liouville Conjecture, and these minimal
surfaces are never recurrent (both properties follow from [128]). On the other hand,
every doubly or triply periodic minimal surface has exactly one end (Callahan,
Hoffman and Meeks [I6]), which implies that the assumption in Conjecture
that M € M, not merely M € P, is a necessary one. It should also be noted
that the previous two conjectures need the hypothesis of global embeddedness,
since there exist properly immersed minimal surfaces with two embedded ends and
which admit bounded non-constant harmonic functions [39].

Conjecture 11.10 (Isometry Conjecture, Choi, Meeks, White). If M € C, then
every intrinsic isometry of M extends to an ambient isometry of R3. More gen-
erally, if M is not a helicoid, then it is minimally Tigid, in the sense that any
isometric minimal immersion of M into R® is congruent to M.
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The Isometry Conjecture is known to hold if M € P and either M € M (Choi,
Meeks and White [22]), M is doubly periodic (Meeks and Rosenberg [I31]), M is
periodic with finite topology quotient (Meeks [I08] and Pérez [165]) or M has finite
genus (this follows from Theorem [L4]).

It can be shown that one can reduce the validity of the Isometry Conjecture to
checking that whenever M € P has one end and infinite genus, then there exists a
plane in R? that intersects M in a set that contains a simple closed curve. If M € P
and there exists such a simple closed intersecting curve vy of M with a plane, then
the flux of M along ~y is not zero, and hence, none of the associate surfaces to M are
well defined (see Footnote [ for the definition of associate surface). But Calabi [14]
proved that the associate surfaces are the only isometric minimal immersions from
M into R3, up to congruence.

Since non-zero flux (F # {0} with the notation of the next conjecture) implies
uniqueness of an isometric minimal immersion, the One-Flux Conjecture below
implies the Isometry Conjecture.

Conjecture 11.11 (One-Flux Conjecture, Meeks, Pérez, Ros). Let M € C and let
F={F(v) = f7 Rotgoe (7') | v € Hi(M,Z)} be the abelian group of flux vectors of
M. If F has rank at most 1, then M is a plane, a helicoid, a catenoid, a Riemann
minimal example or a doubly periodic Scherk minimal surface.

Conjecture 11.12 (Scherk Uniqueness Conjecture, Meeks, Wolf). If M is a
connected, properly immersed minimal surface in R® and Area(M NB(R)) < 27 R?
holds in balls B(R) of radius R, then M is a plane, a catenoid or one of the singly
periodic Scherk minimal surfaces.

By the Monotonicity Formula, any connected, properly immersed minimal sur-
face in R? with
lim R™?Area(M NB(R)) < 27

R—o0
is actually embedded. A related conjecture on the uniqueness of the doubly periodic
Scherk minimal surfaces was solved by Lazard-Holly and Meeks [100]; they proved
that if M € P is doubly periodic and its quotient surface has genus zero, then M
is one of the doubly periodic Scherk minimal surfaces. The basic approach used in
[100] was adapted later on by Meeks and Wolf [I43] to prove that Conjecture [T.12]
holds under the assumption that the surface is singly periodic.

Conjecture 11.13 (Unique Limit Tangent Cone at Infinity Conjecture, Meeks).
If M € P is not a plane and has quadratic area growth, then lim;_, . %M exrists
and 1s a minimal, possibly non-smooth cone over a finite balanced configuration of
geodesic arcs in the unit sphere, with common end points and integer multiplicities.
Furthermore, if M has area not greater than 2w R? in balls of radius R, then the
limit tangent cone of M 1is either the union of two planes or consists of a single
plane with multiplicity two passing through the origin.

By unpublished work of Meeks and Wolf, the above conjecture is closely tied to
the validity of the next classical one.

Conjecture 11.14. Let f: M — B — {6} be a proper immersion of a surface with
compact boundary in the punctured unit ball, such that f(OM) C OB and whose
mean curvature function is bounded. Then f(M) has a unique limit tangent cone
at the origin under homothetic expansions.
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If M € C has finite topology, then M has finite total curvature or is asymptotic to
a helicoid by Theorems[[.3] [[Aand[[Hl It follows that for any such surface M, there
exists a constant Cy > 0 such that the injectivity radius function Ip;: M — (0, 0]
satisfies

In(p) = Cullpll, pe M.
Work of Meeks, Pérez and Ros in [121], [122] indicates that this linear growth prop-
erty of the injectivity radius function should characterize the examples in C with
finite topology.

Conjecture 11.15 (Injectivity Radius Growth Conjecture, Meeks, Pérez, Ros). A
surface M € C has finite topology if and only if its injectivity radius function grows
at least linearly with respect to the extrinsic distance from the origin.

The results in [121], 122] and the earlier described Theorems[2land 7 also moti-
vated several conjectures concerning the limits of locally simply connected sequences
of minimal surfaces in R3, such as the following one. See the monograph [116] for
partial results on this conjecture.

Conjecture 11.16 (Parking Garage Structure Conjecture, Meeks, Pérez, Ros).
Suppose M,, C B(R,,) is a locally simply connected sequence of embedded minimal
surfaces with OM,, C OB(R,) and R, — o0 as n — oco. Assume also that the
sequence M, does not have uniformly bounded curvature in B(1). Then:

1. After a rotation and choosing a subsequence, the M, converge to a mini-
mal parking garage structure on R3 consisting of the foliation £ of R by
horizontal planes, with singular set of convergence being a locally finite col-
lection S(L) of wvertical lines which are the columns of the parking garage
structure.

2. For any two points p,q € R®*—S(L), the ratio of the vertical spacing between
consecutive sheets of the double multigraphs defined by M, near p and q
converges to one as n — co. FEquivalently, the Gaussian curvature of the
sequence My, blows up at the same rate along all the columns as n — oo.

We next deal with the question of when a surface M € C has strictly negative
Gaussian curvature. Suppose again that a surface M € C has finite topology, and so,
M either has finite total curvature or is a helicoid with handles. It is straightforward
to check that such a surface has negative curvature if and only if it is a catenoid
or a helicoid (note that if g: M — C U {oco} is the stereographically projected
Gauss map of M, then after a suitable rotation of M in R3, the meromorphic
differential %4 vanishes exactly at the zeros of the Gaussian curvature of M; from
here one deduces easily that if M has finite topology and strictly negative Gaussian
curvature, then the genus of M is zero). More generally, if we allow a surface
M € C to be invariant under a proper discontinuous group G of isometries of
R3, with M /G having finite topology, then M/G is properly embedded in R3/G
by an elementary application of the Minimal Lamination Closure Theorem (see
Proposition 1.3 in [I72]). Hence, in this case, M/G has finite total curvature by
a result of Meeks and Rosenberg [I31] [134]. Suppose additionally that M/G has
negative curvature, and we will discuss which surfaces are possible. If the ends
of M/G are helicoidal or planar, then a similar argument using % gives that M
has genus zero, and so, it is a helicoid. If M/G is doubly periodic, then M is a
Scherk minimal surface; see [123]. In the case that M/G is singly periodic, then
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M must have Scherk-type ends, but we still do not know if the surface must be a
Scherk singly periodic minimal surface. These considerations motivate the following
conjecture.

Conjecture 11.17 (Negative Curvature Conjecture, Meeks, Pérez, Ros). If M € C
has negative curvature, then M is a catenoid, a helicoid or one of the singly or
doubly periodic Scherk minimal surfaces.

Passing to a different question, some of the techniques developed by Meeks,
Pérez and Ros in [122] provide a beginning theory for analyzing and possibly char-
acterizing examples in C whose Gauss maps exclude two or more points on S?. A
classical result of Fujimoto [63] establishes that the Gauss map of any orientable,
complete, non-flat, minimally immersed surface in R? cannot exclude more than 4
points, which improved the earlier result of Xavier [208] that the Gauss map of such
a surface cannot miss more than 6 points. If one assumes that a surface M € C
is periodic with finite topology quotient, then Meeks, Pérez and Ros solved the
next conjecture [I123]. Also see Kawakami, Kobayashi and Miyaoka [95] for related
results on this problem, including some partial results on the conjecture of Osser-
man that states that the Gauss map of an orientable, complete, non-flat, immersed
minimal surface with finite total curvature in R? cannot miss 3 points of S2.

Conjecture 11.18 (Four Point Conjecture, Meeks, Pérez, Ros). If M € C and the
Gauss map of M omits four points on S?, then M is a singly or doubly periodic
Scherk minimal surface.

The following three conjectures are related to the embedded Calabi-Yau problem.

Conjecture 11.19 (Finite Genus Properness Conjecture, Meeks, Pérez, Ros). If
M € C and M has finite genus, then M € P.

In [120], Meeks, Pérez and Ros proved Conjecture under the additional
hypothesis that M has a countable number of ends (recall that this assumption is
necessary for M to be proper in R by Theorem [ZJ)). A stronger conjecture by
Meeks, Pérez and Ros [126] states that if M € C has finite genus, then M has
bounded Gaussian curvature; note that Theorem implies that if M € C has
locally bounded Gaussian curvature in R? and finite genus, then M is properly
embedded.

Conjecture 11.20 (Embedded Calabi-Yau Conjectures, Martin, Meeks, Nadir-
ashvili, Pérez, Ros).

1. There exists an M € C whose closure M has the structure of a minimal
lamination of a slab, with M as a leaf and with two planes as limit leaves.
In particular, P # C.

2. A necessary and sufficient condition for a connected, open topological sur-
face M to admit a complete bounded minimal embedding in R? is that every
end of M has infinite genus.

3. A necessary and sufficient condition for a connected, open topological sur-
face M to admit a proper minimal embedding in every smooth bounded
domain D C R? as a complete surface is that M is orientable and every
end of M has infinite genus.

4. A necessary and sufficient condition for a connected, non-orientable open
topological surface M to admit a proper minimal embedding in some bounded
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domain D C R? as a complete surface is that every end of M has infinite
genus.

The next conjecture deals with the embedded Calabi-Yau problem in a Riemann-
ian three-manifold N. We remark that Conjecture [[1.19] can be shown to follow
from the next conjecture.

Conjecture 11.21 (Finite Genus Conjecture in three-manifolds, Meeks, Pérez,
Ros). Suppose M is a connected, complete, embedded minimal surface with empty
boundary and finite genus in a Riemannian three-manifold N. Let M = M UL(M),
where L(M) is the set of limit point of M. Then, one of the following possibilities
holds.
1. M has the structure of a minimal lamination of N.
2. M fails to have a minimal lamination structure, L(M) is a non-empty min-
imal lamination of N consisting of stable leaves and M is properly embedded

in N — L(M).

Using arguments contained in the proofs of Theorems and [@.2] we believe
that Conjecture [T.2] can be reduced to be a consequence of the next conjecture,
which is motivated by partial results in [37, 120]. Recall that given § > 0, we let
B(0) = {z € R? | |z| < 6}.

Conjecture 11.22 (Chord-Arc Conjecture, Meeks, Pérez, Ros). For any k > 0,
there exists a positive number 6(k) < % such that if ¥ is a compact, embedded
minimal surface with genus k in the closed unit ball B C R® with 0% C 0B and
0 € %, then the component (0,5(k)) of X NB(3(k)) containing 0 satisfies

(0,6(k))  Bs(0, 3),

where By, (6, %) is the intrinsic ball in X of radius % centered at the point 0 € 3.

Our next problem is related to integral curves of harmonic functions. Theo-
rem [.7] implies that for any properly immersed minimal surface M in R3 and for
any t € R, the surface M(t) = M N {x3 < t} is parabolic. In [I13], Meeks used
the parabolicity of M (t) to show that the scalar flux of Vg across M (t) does not
depend on ¢ (this result is called the Algebraic Fluz Lemma). If M were recurrent,
then it is known (Tsuji [202]) that the following stronger property holds: almost all
integral curves of Vag begin at x5 = —oo and end at x3 = co. The next conjecture
is a strengthening of this geometric flux property to arbitrary properly embedded
minimal surfaces in R®.

Conjecture 11.23 (Geometric Flux Conjecture, Meeks, Rosenberg). Let M € P
and h: M — R be a non-constant coordinate function on M. Consider the set I of
integral curves of Vh. Then there exists a countable set C C I such that for any
integral curve o € I — C, the composition hoa: R — R is a diﬁeomorphism

We have seen examples of how one can produce stable minimal surfaces by using
barrier constructions (Section 2X0]), and how these stable minimal surfaces act as
guide posts which are useful for deciphering the structure of complete, embedded
minimal surfaces (e.g., in the proofs of Theorems 23] and [62). Below, we have

48Gee the paragraph just before Theorem [1.2] for the definition of L(M).
49 After a choice of p € a, we are identifying a with the parameterized curve a: R — M such
that «(0) = p and o/ (t) = Vh(a(t)), t € R.
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collected some outstanding problems that concern stable minimal surfaces. Re-
garding item 1 in the next conjecture, Ros (unpublished) proved that a complete,
non-orientable minimal surface without boundary which is stable outside a com-
pact sePd must have finite total curvature. The validity of item 2 implies that
the sublamination of limit leaves of the lamination £ in Conjecture extends
to a lamination of R? by planes. In reference to item 3, we remark that complete,
stable minimal surfaces with boundary are not in general parabolic (see pages 22
and 23 in our survey [I17]). Concerning item 4, Pérez [I68] proved this conjecture
under the additional assumptions that the surface is proper and has quadratic area
growth.

Conjecture 11.24 (Stable Minimal Surface Conjectures). 1. A complete,
non-orientable, stable minimal surface in R with compact boundary has
finite total curvature (Ros).

2. If A C R? is a closed set with zero 1-dimensional Hausdorff measure and
M C R3 — A is a connected, stable, minimally immersed surface which is
complete outside of A, then the closure of M is a plane (Meeks).

3. If M C R3 is a complete, stable minimal surface with boundary, then M is
d-parabolic, i.e., given & > 0, the set M(§) = {p € M | distp(p,OM) > 6}
is parabolic (Meeks, Rosenberg).

4. A complete, embedded, stable minimal surface in R with boundary a straight
line is a half-plane, a half of the Enneper minimal surface or a half of the
helicoid (Pérez, Ros, White).

Any end of a surface M € C with finite total curvature is C?-asymptotic to the
end of a plane or catenoid (equation (I0))). Our last conjecture can be viewed as a
potential generalization of this result.

Conjecture 11.25 (Standard Middle End Conjecture, Meeks). If M € M and
E C M is a one-ended representative for a middle end of M, then E is C°-
asymptotic to the end of a plane or catenoid. In particular, if M has two limit
ends, then each middle end is C°-asymptotic to a plane.

For a non-annular, one-ended middle end representative E (i.e., E has infinite
genus) in the above conjecture, lim;_, o, %E is a plane P passing through the origin
with positive integer multiplicity at least two by Theorem [TOl Also, if M has two
limit ends and horizontal limit tangent plane at infinity, then for such a middle
end representative E, every divergent sequence of horizontal translates of E has a
subsequence which converges to a finite collection of horizontal planes. This limit
collection might depend on the sequence; in this case, it remains to prove there is
only one plane in limit collections of this type.

ABOUT THE AUTHORS

William H. Meeks I1I is the George David Birkhoff Professor of Mathematics at
the University of Massachusetts at Amherst, and Joaquin Pérez is a professor of
the Department of Geometry and Topology at the University of Granada (Spain).
They have collaborated since 1998 with common research interests in minimal and
constant mean curvature surface theory in three-manifolds.

50See Footnote E1] for the definition of stability in the non-orientable case.



THE CLASSICAL THEORY OF MINIMAL SURFACES 399

ACKNOWLEDGMENTS

The authors would like to thank Markus Schmies, Martin Traizet, Matthias
Weber, the Scientific Graphics Project and the 3D-XplorMath Surface Gallery for
contributing the beautiful computer graphics images to Section 20 of examples of
classical minimal surfaces. We would like to thank Tobias Colding, David Hoffman,
Nicos Kapouleas, Hermann Karcher, Rob Kusner, Francisco Martin, Bill Minicozzi,
Nikolai Nadirashvili, Bob Osserman, Antonio Ros, Martin Traizet, Matthias We-
ber, Allen Weitsman and Mike Wolf for detailed suggestions on improving this
article. Finally, we wish to thank the referee for comments and criticisms that have
contributed to the clarity of the exposition.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

REFERENCES

A. Alarcén, L. Ferrer, and F. Martin, Density theorems for complete minimal surfaces in
R3, Geom. Funct. Anal. 18 (2008), no. 1, 1-49. MR2399094

. A. D. Alexandrov, Uniqueness theorems for surfaces in the large I, Vestnik Leningrad Univ.

Math. 11 (1956), no. 19, 5-17. MR0150706

. D. Anderson, C. Henke, D. Hoffman, and E. L. Thomas, Periodic area-minimizing surfaces

in block copolymers, Nature 334 (1988), no. 6184, 598-601, August 18 issue.

. J. Bernstein and C. Breiner, Conformal structure of minimal surfaces with finite topology,

Preprint available at http://arxiv.org/abs/0810.4478v1.
, Helicoid-like minimal disks and uniqueness, Preprint available at http://arxiv.org/
abs/0802.1497.

. S. Bernstein, Uber ein geometrisches Theorem und seine Anwendung auf die partiellen Dif-

ferentialgleichungen vom elliptischen Typus, Math. Z. 26 (1927). 551-558. MR1544873

. A. 1. Bobenko, Helicoids with handles and Baker-Akhiezer spinors, Math. Z. 229 (1998),

no. 1, 9-29. MR1649381

. A. 1. Bobenko and M. Schmies, Computer graphics experiments for helicoids with handles,

Personal communication.

. F. Bonahon, Geometric structures on 3-manifolds, Handbook of geometric topology, North-

Holland, Amsterdam, 2002, pp. 93-164. MR 1886669 |(2003b:57021)

O. Bonnet, Mémoire sur l’emploi d’un nouveau systéme de variables dans ’étude des surfaces
courbes, J. Mathemém. p. appl. 2 (1860), 153-266.

J. C. Borda, Eclaircissement sur les méthodes de trouver les courbes qui jouissent de quelque
propiété du mazimum ou du minimum, Mém. Acad. Roy. Sci. Paris (1770), 551-565, Pre-
sented in 1767.

C. V. Boys, Soap bubbles: Their colours and the forces which mold them, Dover Publications,
New York, 1959.

E. Calabi, Problems in differential geometry, Proceedings of the United States-Japan Seminar
in Differential Geometry, Kyoto, Japan 1965, Nippon Hyoronsha Co. Ltd., Tokyo, 1966,
p. 170. MR0216513/(35:7346)

, Quelques applications de l’analyse complexe aux surfaces d’aire minima, Topics in
Complex Manifolds, Les Presses de ’Université de Montréal, 1967, H. Rossi, editor, pp. 59—
81.

M. Callahan, D. Hoffman, and W. H. Meeks 111, Embedded minimal surfaces with an infinite
number of ends, Invent. Math. 96 (1989), 459-505. MR0996552

, The structure of singly-periodic minimal surfaces, Invent. Math. 99 (1990), 455-481.
MR1032877

E. Catalan, Sur les surfaces réglées dont ['aire est un minimum, J. Mathem. p. appl. 7
(1842), 203—211.

I. Chavel, Riemannian geometry: a modern introduction, Cambridge University Press, 1993.
MR1271141

C. C. Chen and F. Gackstatter, Elliptic and hyperelliptic functions and complete minimal
surfaces with handles, Instituto de Matemética e Estatistica-Universidade de Sao Paulo 27
(1981).



http://www.ams.org/mathscinet-getitem?mr=2399094
http://www.ams.org/mathscinet-getitem?mr=0150706
http://www.ams.org/mathscinet-getitem?mr=1544873
http://www.ams.org/mathscinet-getitem?mr=1649381
http://www.ams.org/mathscinet-getitem?mr=1886669
http://www.ams.org/mathscinet-getitem?mr=1886669
http://www.ams.org/mathscinet-getitem?mr=0216513
http://www.ams.org/mathscinet-getitem?mr=0216513
http://www.ams.org/mathscinet-getitem?mr=0996552
http://www.ams.org/mathscinet-getitem?mr=1032877
http://www.ams.org/mathscinet-getitem?mr=1271141

400

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

WILLIAM H. MEEKS III AND JOAQUIN PEREZ

, Elliptische und Hyperelliptische Functionen und vollstdndige Minimalfldchen von
Enneperschen Typ, Math. Ann. 259 (1982), 359-369. MR0661204

S. S. Chern, The geometry of G-structures, Bull. Amer. Math. Soc. 72 (1966), 167-219.
MR0192436

T. Choi, W. H. Meeks III, and B. White, A rigidity theorem for properly embedded minimal
surfaces in R3, J. Differential Geom. 32 (1990), 65-76. MR1064865

T. H. Colding, C. de Lellis, and W. P. Minicozzi 11, Three circles theorems for Schridinger op-
erators on cylindrical ends and geometric applications, Comm. Pure Appl. Math. 61 (2008),
no. 11, 1540-1602. MR2444375

T. H. Colding and W. P. Minicozzi 11, The space of embedded minimal surfaces of fized genus
i a 3-manifold V; Fized genus, Preprint math.DG /0509647 (2005).

, Minimal surfaces, Courant Lecture Notes in Mathematics, vol. 4, New York Uni-
versity Courant Institute of Mathematical Sciences, New York, 1999. MR1683966

, Complete properly embedded minimal surfaces in R3, Duke Math. J. 107 (2001),
421-426. MR 1823052

, Multivalued minimal graphs and properness of disks, International Mathematical
Research Notices 21 (2002), 1111-1127. MR1904463

, Disks that are double spiral staircases, Notices of the AMS 50 (2003), no. 3, 327-339.
MR 1954009

, Embedded minimal disks: proper versus nonproper - global versus local, Transactions
of the AMS 356 (2003), no. 1, 283-289. MR2020033

, An excursion into geometric analysis, Surveys of Differential Geometry IX. Eigen-
values of Laplacian and other geometric operators, International Press, edited by Alexander
Grigor’yan and Shing Tung Yau, 2004, pp. 83-146. MR2195407

, The space of embedded minimal surfaces of fixed genus in a 3-manifold I; Estimates
off the axis for disks, Ann. of Math. (2) 160 (2004), 27-68. MR2119717

, The space of embedded minimal surfaces of fixed genus in a 3-manifold II; Multi-
valued graphs in disks, Ann. of Math. (2) 160 (2004), 69-92. MR2119718

, The space of embedded minimal surfaces of fized genus in a 3-manifold I1I; Planar
domains, Ann. of Math. (2) 160 (2004), 523-572. MR2123932

, The space of embedded minimal surfaces of fired genus in a 3-manifold IV; Locally
stmply-connected, Ann. of Math. (2) 160 (2004), 573-615. MR 2123933

, Embedded minimal disks, Global theory of minimal surfaces, American Mathemati-
cal Society, Providence, RI, for the Clay Mathematics Institute, Cambridge, MA, edited by
D. Hoffman, 2005, pp. 405-438. MR2167253

, Shapes of embedded minimal surfaces, Proc. National Academy of Sciences 103
(2006), 11106-11111. MR2242650

, The Calabi-Yau conjectures for embedded surfaces, Ann. of Math. (2) 167 (2008),
211-243. MR2373154

P. Collin, Topologie et courbure des surfaces minimales de R3, Ann. of Math. (2) 145-1
(1997), 1-31. MR1432035

P. Collin, R. Kusner, W. H. Meeks III, and H. Rosenberg, The geometry, conformal structure
and topology of minimal surfaces with infinite topology, J. Differential Geom. 67 (2004), 377—
393. MR2153082

B. Coskunuzer, Non-properly embedded minimal planes in hyperbolic 3-space, Preprint, 2011.
C. Costa, Imersdes minimas en R3 de género un e curvatura total finita, Ph.D. thesis, IMPA,
Rio de Janeiro, Brasil, 1982.

, Example of a complete minimal immersion in R3 of genus one and three embedded
ends, Bull. Soc. Bras. Mat. 15 (1984), 47-54. MR0794728

, Uniqueness of minimal surfaces embedded in R® with total curvature 12w, J. Differ-
ential Geom. 30 (1989), no. 3, 597-618. MR1021368

, Classification of complete minimal surfaces in R3 with total curvature 127, Invent.
Math. 105 (1991), no. 2, 273-303. MR1115544

R. Courant, Soap film experiments with minimal surfaces, Amer. Math. Monthly 47 (1940),
167-174. MR0001622

Dr. Crypton, Shapes that eluded discovery, Science Digest (1986), 50-55, 78.

U. Dierkes, S. Hildebrandt, A. Kiister, and O. Wohlrab, Minimal surfaces I, Grundlehren
der mathematischen Wissenschaften 295, Springer-Verlag, 1992. MR1215267



http://www.ams.org/mathscinet-getitem?mr=0661204
http://www.ams.org/mathscinet-getitem?mr=0192436
http://www.ams.org/mathscinet-getitem?mr=1064865
http://www.ams.org/mathscinet-getitem?mr=2444375
http://www.ams.org/mathscinet-getitem?mr=1683966
http://www.ams.org/mathscinet-getitem?mr=1823052
http://www.ams.org/mathscinet-getitem?mr=1904463
http://www.ams.org/mathscinet-getitem?mr=1954009
http://www.ams.org/mathscinet-getitem?mr=2020033
http://www.ams.org/mathscinet-getitem?mr=2195407
http://www.ams.org/mathscinet-getitem?mr=2119717
http://www.ams.org/mathscinet-getitem?mr=2119718
http://www.ams.org/mathscinet-getitem?mr=2123932
http://www.ams.org/mathscinet-getitem?mr=2123933
http://www.ams.org/mathscinet-getitem?mr=2167253
http://www.ams.org/mathscinet-getitem?mr=2242650
http://www.ams.org/mathscinet-getitem?mr=2373154
http://www.ams.org/mathscinet-getitem?mr=1432035
http://www.ams.org/mathscinet-getitem?mr=2153082
http://www.ams.org/mathscinet-getitem?mr=0794728
http://www.ams.org/mathscinet-getitem?mr=1021368
http://www.ams.org/mathscinet-getitem?mr=1115544
http://www.ams.org/mathscinet-getitem?mr=0001622
http://www.ams.org/mathscinet-getitem?mr=1215267

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

THE CLASSICAL THEORY OF MINIMAL SURFACES 401

, Minimal surfaces II, Grundlehren der mathematischen Wissenschaften 296,
Springer-Verlag, 1992. MR1215268

M. do Carmo and C. K. Peng, Stable complete minimal surfaces in R3 are planes, Bulletin
of the AMS 1 (1979), 903-906. MR0546314.

G. Donnay and D. L. Pawson, X-ray diffraction studies of echinoderm plates, Science 166
(1969), 1147-1150.

T. Ekholm, B. White, and D. Wienholtz, Embeddedness of minimal surfaces with total
curvature at most 47, Ann. of Math. (2) 155 (2002), 209-234. MR 1888799

A. Enneper, Analytisch-geometrische Untersuchungen, Z. Math. und Phys. 9 (1864), 96-125.
L. Euler, Methodus inveniendi lineas curvas mazximi minimive propietate gaudeates sive
solutio problematis isoperimetrici latissimo sensu accepti, Harvard Univ. Press, Cambridge,
MA, 1969, Opera omnia(1), 24, Fussli, Turici, 1952. A source book in mathematics, partially
translated by D. J. Struik, see pages 399-406.

Y. Fang, On minimal annuli in a slab, Comment. Math. Helv. 69 (1994), no. 3, 417-430.
MR 1289335

, Minimal annuli in R3 bounded by non-compact complete convex curves in parallel
planes, J. Austral. Math. Soc. Ser. A 60 (1996), no. 3, 369-388. MR 1385149

H. Federer, Geometric measure theory, Springer-Verlag, Berlin-Heidelberg, New York, 1969.
MR0257325

I. Fernandez and P. Mira, Holomorphic quadratic differentials and the Bernstein problem in
Heisenberg space, Trans. Amer. Math. Soc. 361 (2009), 5737-5752. MR2529912

L. Ferrer, F. Martin, and W. H. Meeks III, The existence of proper minimal surfaces of
arbitrary topological type, Preprint available at arXiv.org/abs/0903.4194.

D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in 3-manifolds,
Invent. Math. 82 (1985), 121-132. MR0808112

D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in
3-manifolds of nonnegative scalar curvature, Comm. on Pure and Appl. Math. 33 (1980),
199-211. MR0562550

C. Frohman and W. H. Meeks III, The ordering theorem for the ends of properly embedded
minimal surfaces, Topology 36 (1997), no. 3, 605-617. MR1422427

C. Frohman and W. H. Meeks III, The topological classification of minimal surfaces in R3,
Ann. of Math. (2) 167 (2008), no. 3, 681-700. MR2415385

H. Fujimoto, On the number of exceptional values of the Gauss maps of minimal surfaces,
J. of the Math. Society of Japan 40 (1988), no. 2, 235-247. MR0930599

F. Gackstatter, Uber die Dimension einer Minimalfliche und zur Ungleichung von St. Cohn-
Vossen, Arch. Rational Mech. Anal. 61 (1976), no. 2, 141-152. MR0420447

F. Gesztesy and R. Weikard, FElliptic algebro-geometric solutions of the KdV and AKNS
hierarchies—an analytic approach, Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 4, 271-317.
MR1638298(991:58075)

A. Grigor'yan, Analytic and geometric background of recurrence and non-explosion of
Brownian motion on Riemannian manifolds, Bull. of A.M.S 36 (1999), no. 2, 135-249.
MR1659871

A. Grigor’yan, Y. Netrusov, and S. T. Yau, Eigenvalues of elliptic operators and geometric
applications, Surveys of Differential Geometry IX, International Press, 2004, pp. 147-218.
MR2195408

R. Gulliver and H. B. Lawson, The structure of minimal hypersurfaces near a singularity,
Proc. Symp. Pure Math. 44 (1986), 213-237. MR0840275

L. Hauswirth, J. Pérez, and P. Romon, Embedded minimal ends of finite type, Transactions
of the AMS 353 (2001), 1335-1370. MR1806738

S. Hildebrandt, Boundary behavior of minimal surfaces, Archive Rational Mech. Anal. 35
(1969), 47-81. MR0248650

, The calculus of variations today, Mathematical Intelligencer 11 (1989), no. 4, 50-60.
MR1016107

D. Hoffman, The computer-aided discovery of new embedded minimal surfaces, Mathematical
Intelligencer 9 (1987), no. 3, 8-21. MR0895770

, Computing minimal surfaces, Global theory of minimal surfaces, American Mathe-
matical Society, Providence, RI, for the Clay Mathematics Institute, Cambridge, MA, edited
by D. Hoffman, 2005, pp. 259-282. MR2167253



http://www.ams.org/mathscinet-getitem?mr=1215268
http://www.ams.org/mathscinet-getitem?mr=0546314
http://www.ams.org/mathscinet-getitem?mr=1888799
http://www.ams.org/mathscinet-getitem?mr=1289335
http://www.ams.org/mathscinet-getitem?mr=1385149
http://www.ams.org/mathscinet-getitem?mr=0257325
http://www.ams.org/mathscinet-getitem?mr=2529912
http://www.ams.org/mathscinet-getitem?mr=0808112
http://www.ams.org/mathscinet-getitem?mr=0562550
http://www.ams.org/mathscinet-getitem?mr=1422427
http://www.ams.org/mathscinet-getitem?mr=2415385
http://www.ams.org/mathscinet-getitem?mr=0930599
http://www.ams.org/mathscinet-getitem?mr=0420447
http://www.ams.org/mathscinet-getitem?mr=1638298
http://www.ams.org/mathscinet-getitem?mr=1638298
http://www.ams.org/mathscinet-getitem?mr=1659871
http://www.ams.org/mathscinet-getitem?mr=2195408
http://www.ams.org/mathscinet-getitem?mr=0840275
http://www.ams.org/mathscinet-getitem?mr=1806738
http://www.ams.org/mathscinet-getitem?mr=0248650
http://www.ams.org/mathscinet-getitem?mr=1016107
http://www.ams.org/mathscinet-getitem?mr=0895770
http://www.ams.org/mathscinet-getitem?mr=2167253

402

74

75

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

WILLIAM H. MEEKS III AND JOAQUIN PEREZ

D. Hoffman and H. Karcher, Complete embedded minimal surfaces of finite total curvature,
Encyclopedia of Mathematics, Vol. 90, Geometry V (R. Osserman, ed.), Springer-Verlag,
1997, pp. 5-93. MR1490038

D. Hoffman, H. Karcher, and F. Wei, Adding handles to the helicoid, Bulletin of the AMS,
New Series 29 (1993), no. 1, 77-84. MR1193537,

, The genus one helicoid and the minimal surfaces that led to its discovery, Global
Analysis and Modern Mathematics, Publish or Perish Press, 1993, K. Uhlenbeck, editor,
pp. 119-170. MR1278754

, The singly periodic genus-one helicoid, Comment. Math. Helv. 74 (1999), 248-279.
MR1691949

D. Hoffman and W. H. Meeks III, A complete embedded minimal surface in R® with genus
one and three ends, J. Differential Geom. 21 (1985), 109-127. MR0806705

, Embedded minimal surfaces of finite topology, Ann. of Math. (2) 131 (1990), 1-34.
MR1038356

, Limits of minimal surfaces and Scherk’s fifth surface, Arch. Rat. Mech. Anal. 111
(1990), no. 2, 181-195. MR 1057654

, Minimal surfaces based on the catenoid, Amer. Math. Monthly, Special Geometry
Issue 97 (1990), no. 8, 702-730. MR1072813

, The strong halfspace theorem for minimal surfaces, Invent. Math. 101 (1990), 373—
377. MR1062966

D. Hoffman, M. Weber, and M. Wolf, An embedded genus-one helicoid, Ann. of Math. (2)
169 (2009), no. 2, 347-448. MR2480608.

D. Hoffman and F. Wei, Deforming the singly periodic genus-one helicoid, Experimental
Mathematics 11 (2002), no. 2, 207-218. MR1959264

D. Hoffman and B. White, Genus-one helicoids from a wvariational point of view, Comm.
Math. Helv. 83 (2008), no. 4, 767-813. MR2442963 (2010b:53013)

H. Hopf, Differential geometry in the large, Lecture Notes in Math., vol. 1000, Springer-
Verlag, 1989. MR1013786

A. Huber, On subharmonic functions and differential geometry in the large, Comment. Math.
Helvetici 32 (1957), 181-206. MR0094452

Y. Imayoshi and M. Taniguchi (eds.), An introduction to Teichmiiller spaces, Springer-Verlag,
1992. MR1215481

L. Jorge and W. H. Meeks III, The topology of complete minimal surfaces of finite total
Gaussian curvature, Topology 22 (1983), no. 2, 203—221. MR0683761

N. Kapouleas, Complete embedded minimal surfaces of finite total curvature, J. Differential
Geom. 47 (1997), no. 1, 95-169. MR1601434

, Constructions of mintmal surfaces by gluing minimal immersions, Global theory of
minimal surfaces, American Mathematical Society, Providence, RI, for the Clay Mathematics
Institute, Cambridge, MA, edited by D. Hoffman, 2005, pp. 489-524. MR2167253

H. Karcher, Embedded minimal surfaces derived from Scherk’s examples, Manuscripta Math.
62 (1988), 83-114. MR0958255

, Construction of minimal surfaces, Surveys in Geometry (1989), 1-96, University of
Tokyo, 1989, and Lecture Notes No. 12, SFB256, Bonn, 1989.

, The triply periodic minimal surfaces of Alan Schoen and their constant mean cur-
vature companions, Manuscripta Math. 64 (1989), 291-357. MR1003093

Y. Kawakami, R. Kobayashi, and R. Miyaoka, The Gauss map of pseudo-algebraic min-
tmal surfaces, Mathematische Nachrichten 282 (2009), no. 2, 157-306. MR2479289
(2009m:53020)

N. Korevaar, R. Kusner, and B. Solomon, The structure of complete embedded surfaces with
constant mean curvature, J. Differential Geom. 30 (1989), 465-503. MR1010168

J. L. Lagrange, Essat d’une nouvelle méthode pour determiner les maxima et les minima
des formules integrales indefinies, Miscellanea Taurinensia 2 325 (1760), no. 1, 173-199.

R. Langevin and H. Rosenberg, A mazimum principle at infinity for minimal surfaces and
applications, Duke Math. J. 57 (1988), no. 3, 819-828. MR0975123

H. B. Lawson, Jr., Lectures on minimal submanifolds, Publish or Perish Press, Berkeley,
1980. MR0576752



http://www.ams.org/mathscinet-getitem?mr=1490038
http://www.ams.org/mathscinet-getitem?mr=1193537
http://www.ams.org/mathscinet-getitem?mr=1278754
http://www.ams.org/mathscinet-getitem?mr=1691949
http://www.ams.org/mathscinet-getitem?mr=0806705
http://www.ams.org/mathscinet-getitem?mr=1038356
http://www.ams.org/mathscinet-getitem?mr=1057654
http://www.ams.org/mathscinet-getitem?mr=1072813
http://www.ams.org/mathscinet-getitem?mr=1062966
http://www.ams.org/mathscinet-getitem?mr=2480608
http://www.ams.org/mathscinet-getitem?mr=1959264
http://www.ams.org/mathscinet-getitem?mr=2442963
http://www.ams.org/mathscinet-getitem?mr=2442963
http://www.ams.org/mathscinet-getitem?mr=1013786
http://www.ams.org/mathscinet-getitem?mr=0094452
http://www.ams.org/mathscinet-getitem?mr=1215481
http://www.ams.org/mathscinet-getitem?mr=0683761
http://www.ams.org/mathscinet-getitem?mr=1601434
http://www.ams.org/mathscinet-getitem?mr=2167253
http://www.ams.org/mathscinet-getitem?mr=0958255
http://www.ams.org/mathscinet-getitem?mr=1003093
http://www.ams.org/mathscinet-getitem?mr=2479289
http://www.ams.org/mathscinet-getitem?mr=2479289
http://www.ams.org/mathscinet-getitem?mr=1010168
http://www.ams.org/mathscinet-getitem?mr=0975123
http://www.ams.org/mathscinet-getitem?mr=0576752

100

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.
124.

125.

126.

THE CLASSICAL THEORY OF MINIMAL SURFACES 403

H. Lazard-Holly and W. H. Meeks 111, Classification des surfaces minimales de genre zéro
proprement plongées dans R3/Zz7 Comptes Rendus de I’Académie des Sciences de Paris
(1997), 753-754. MR 1483712

P. Li and J. Wang, Finiteness of disjoint minimal graphs, Math. Research Letters 8 (2001),
no. 6, 771-777. MR1879819

R. B. Lockhart and R. C. McOwen, Elliptic differential operators on noncompact manifolds,
Ann. Scuola Norm. Sup. Pisa 12 (1985), no. 3, 409—447. MR0837256

F. J. Lépez and F. Martin, Complete minimal surfaces in R?, Publ. Mat. 43 (1999), no. 2,
341-449. MR1744617

F. J. Lépez and A. Ros, On embedded complete minimal surfaces of genus zero, J. Differential
Geom. 33 (1991), no. 1, 293-300. MR1085145

W. H. Meeks 111, Lectures on Plateau’s problem, Instituto de Matematica Pura e Aplicada
(IMPA), Rio de Janeiro, Brazil, 1978.

, The classification of complete minimal surfaces with total curvature greater than
—8m, Duke Math. J. 48 (1981), 523-535. MR0630583

, A survey of the geometric results in the classical theory of minimal surfaces, Bol.
Soc. Brasil Mat. 12 (1981), 29-86. MR0671473

, The theory of triply-periodic minimal surfaces, Indiana Univ. Math. J. 39 (1990),
no. 3, 877-936. MR1078743

, The geometry, topology, and existence of periodic minimal surfaces, Proceedings of
Symposia in Pure Math. 54 (1993), 333-374, Part I. MR1216594

, Geometric results in classical minimal surface theory, Surveys in Differential Ge-
ometry, vol. 8, International Press, edited by S.T. Yau, 2003, pp. 269-306. MR2039993

, The regularity of the singular set in the Colding and Minicozzi lamination theorem,
Duke Math. J. 123 (2004), no. 2, 329-334. MR2066941

, The limit lamination metric for the Colding-Minicozzi minimal lamination, Illinois
J. of Math., 49 (2005) no. 2, 645-658. MR2164355 (2006e:53021)

, Global problems in classical minimal surface theory, Global theory of minimal sur-
faces, American Mathematical Society, Providence, RI, for the Clay Mathematics Institute,
Cambridge, MA, edited by D. Hoffman, 2005, pp. 453-470. MR2167253

, Proofs of some classical results in minimal surface theory, Indiana J. of Math. 54
(2005), no. 4, 1031-1045. MR2164416

W. H. Meeks III and J. Pérez, Embedded minimal surfaces of finite topology, Preprint avail-
able at http://www.ugr.es/local/jperez/papers/papers.htm.

, A survey on classical minimal surface theory, Preprint available at
http://wuw.ugr.es/local/jperez/papers/papers.htm.

, Conformal properties in classical minimal surface theory, Surveys of Differential
Geometry IX - Eigenvalues of Laplacian and other geometric operators, International Press,
edited by Alexander Grigor’yan and Shing Tung Yau, 2004, pp. 275-336. MR2195411

, Properly embedded minimal planar domains with infinite topology are Riemann
minimal examples, Current Developments in Mathematics 2008 Conference Proceedings, In-
ternational Press, edited by David Jenson, Barry Mazur, Tornasz Mrowka, Wilfried Schmid,
Richard P. Stanley, Shing-Tung Yau, 2008.

W. H. Meeks III, J. Pérez, and A. Ros, Bounds on the topology and index of classical minimal
surfaces, Preprint available at http://www.ugr.es/local/jperez/papers/papers.htm.

, The embedded Calabi-Yau conjectures for finite genus, Preprint available at
http://www.ugr.es/local/jperez/papers/papers.htm.

, The local picture theorem on the scale of topology, Preprint available at
http://www.ugr.es/local/jperez/papers/papers.htm.

, Local removable singularity theorems for minimal and H-laminations, Preprint
available at http://www.ugr.es/local/jperez/papers/papers.htm.

., Minimal surfaces whose Gauss map misses four points, Work in progress.

,  Properly embedded minimal planar domains, Preprint available at
http://www.ugr.es/local/jperez/papers/papers.htm.

, Uniqueness of the Riemann minimal examples, Invent. Math. 133 (1998), 107-132.
MR1626477

, The geometry of minimal surfaces of finite genus I; curvature estimates and
quasiperiodicity, J. Differential Geom. 66 (2004), 1-45. MR2128712



http://www.ams.org/mathscinet-getitem?mr=1483712
http://www.ams.org/mathscinet-getitem?mr=1879819
http://www.ams.org/mathscinet-getitem?mr=0837256
http://www.ams.org/mathscinet-getitem?mr=1744617
http://www.ams.org/mathscinet-getitem?mr=1085145
http://www.ams.org/mathscinet-getitem?mr=0630583
http://www.ams.org/mathscinet-getitem?mr=0671473
http://www.ams.org/mathscinet-getitem?mr=1078743
http://www.ams.org/mathscinet-getitem?mr=1216594
http://www.ams.org/mathscinet-getitem?mr=2039993
http://www.ams.org/mathscinet-getitem?mr=2066941
http://www.ams.org/mathscinet-getitem?mr=2164355
http://www.ams.org/mathscinet-getitem?mr=2164355
http://www.ams.org/mathscinet-getitem?mr=2167253
http://www.ams.org/mathscinet-getitem?mr=2164416
http://www.ams.org/mathscinet-getitem?mr=2195411
http://www.ams.org/mathscinet-getitem?mr=1626477
http://www.ams.org/mathscinet-getitem?mr=2128712

404

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.
137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153

WILLIAM H. MEEKS III AND JOAQUIN PEREZ

, The geometry of minimal surfaces of finite genus II; nonexistence of one limit end

ezamples, Invent. Math. 158 (2004), 323-341. MR2096796

, Liouville-type properties for embedded minimal surfaces, Communications in Anal-

ysis and Geometry 14 (2006), no. 4, 703-723. MR2273291

, Stable constant mean curvature surfaces, Handbook of Geometrical Analysis, vol. 1,

International Press, edited by Lizhen Ji, Peter Li, Richard Schoen and Leon Simon, 2008,

pp- 301-380. MR2483369,

, Limit leaves of an H lamination are stable, J. Differential Geometry 84 (2010),

no. 1, 179-189. MR2629513

W. H. Meeks III and H. Rosenberg, The global theory of doubly periodic minimal surfaces,

Invent. Math. 97 (1989), 351-379. MR1001845

, The mazimum principle at infinity for minimal surfaces in flat three-manifolds,

Comment. Math. Helvetici 65 (1990), 255-270. MR1057243

, The geometry and conformal structure of properly embedded minimal surfaces of

finite topology in R3, Invent. Math. 114 (1993), 625-639. MR1244914

, The geometry of periodic minimal surfaces, Comment. Math. Helvetici 68 (1993),

538-578. MR 1241472

, The theory of minimal surfaces in M x R, Comment. Math. Helv. 80 (2005), 811

858. MR2182702

, The uniqueness of the helicoid, Ann. of Math. (2) 161 (2005), 723-754. MR2153399

, The minimal lamination closure theorem, Duke Math. Journal 133 (2006), no. 3,

467-497. MR2228460

, Mazimum principles at infinity, J. Differential Geometry 79 (2008), no. 1, 141-165.

MR2401421

W. H. Meeks III, L. Simon, and S. T. Yau, The existence of embedded minimal sur-

faces, exotic spheres and positive Ricci curvature, Ann. of Math. (2) 116 (1982), 221-259.

MRO0678484

W. H. Meeks III and M. Weber, Bending the helicoid, Mathematische Annalen 339 (2007),

no. 4, 783-798. MR2341900

W. H. Meeks III and B. White, Minimal surfaces bounded by convex curves in parallel planes,

Comment. Math. Helvetici 66 (1991), 263-278. MR1107841

, The space of minimal annuli bounded by an extremal pair of planar curves, Com-

munications in Analysis and Geometry 1 (1993), no. 3, 415-437. MR1266474

W. H. Meeks III and M. Wolf, Minimal surfaces with the area growth of two planes; the case

of infinite symmetry, Journal of the AMS, 29 (2007) no. 2, 441-465. MR2276776

W. H. Meeks IIT and S. T. Yau, The classical Plateau problem and the topology of three-

dimensional manifolds, Topology 21 (1982), no. 4, 409-442. MRO0670745

, The existence of embedded minimal surfaces and the problem of uniqueness, Math.

Z. 179 (1982), 151-168. MR0645492

J. B. Meusnier, Mémoire sur la courbure des surfaces, Mém. Mathém. Phys. Acad. Sci. Paris,

prés. par div. Savans 10 (1785), 477-510, Presented in 1776.

V. V. Miklyukov, Some peculiarities of the behavior of solutions of minimal surface type

equations in unbounded domains, Math. Sbornik 116 (1981), no. 1, 72-86, English translation

in Math. USSR Sbornik 44(1): 61-73, 1983. MR632489 (83d:35036)

V. V. Miklyukov and A. Weitsman, Carleman’s method and solutions to the minimal surface

equation, Preprint.

P. Mira, Complete minimal Mobius strips in R™ and the Bjorling problem, J. of Geometry

and Physics 56 (2006), 1506-1515. MR2240407(2007d:53012)

S. Montiel and A. Ros, Schrédinger operators associated to a holomorphic map, Global

Differential Geometry and Global Analysis (Berlin, 1990), Lecture Notes in Mathematics,

vol. 1481, Springer-Verlag, 1991, pp. 147-174. MR1178529

C. B. Morrey, The problem of Plateau on a Riemannian manifold, Ann. of Math. (2) 49

(1948), 807-851. MR0027137

N. Nadirashvili, Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal

surfaces, Invent. Math. 126 (1996), no. 3, 457-465. MR1419004

. S. Nayatani, On the Morse index of complete minimal surfaces in Euclidean space, Osaka
J. Math. 27 (1990), 441-451. MR1066637:



http://www.ams.org/mathscinet-getitem?mr=2096796
http://www.ams.org/mathscinet-getitem?mr=2273291
http://www.ams.org/mathscinet-getitem?mr=2483369
http://www.ams.org/mathscinet-getitem?mr=2629513
http://www.ams.org/mathscinet-getitem?mr=1001845
http://www.ams.org/mathscinet-getitem?mr=1057243
http://www.ams.org/mathscinet-getitem?mr=1244914
http://www.ams.org/mathscinet-getitem?mr=1241472
http://www.ams.org/mathscinet-getitem?mr=2182702
http://www.ams.org/mathscinet-getitem?mr=2153399
http://www.ams.org/mathscinet-getitem?mr=2228460
http://www.ams.org/mathscinet-getitem?mr=2401421
http://www.ams.org/mathscinet-getitem?mr=0678484
http://www.ams.org/mathscinet-getitem?mr=2341900
http://www.ams.org/mathscinet-getitem?mr=1107841
http://www.ams.org/mathscinet-getitem?mr=1266474
http://www.ams.org/mathscinet-getitem?mr=2276776
http://www.ams.org/mathscinet-getitem?mr=0670745
http://www.ams.org/mathscinet-getitem?mr=0645492
http://www.ams.org/mathscinet-getitem?mr=632489
http://www.ams.org/mathscinet-getitem?mr=632489
http://www.ams.org/mathscinet-getitem?mr=2240407
http://www.ams.org/mathscinet-getitem?mr=2240407
http://www.ams.org/mathscinet-getitem?mr=1178529
http://www.ams.org/mathscinet-getitem?mr=0027137
http://www.ams.org/mathscinet-getitem?mr=1419004
http://www.ams.org/mathscinet-getitem?mr=1066637

154

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.
174.

175.

176.
177.

178.

179.

180.

THE CLASSICAL THEORY OF MINIMAL SURFACES 405

. R. Neel, Brownian motion and the parabolicity of minimal graphs, ArXiv:0810.0669v1
[math.DG].

, A martingale approach to minimal surfaces, J. Funct. Anal. 256 (2009), no. 8,

2440-2472. MR2502522/(2010h:58056)

H. U. Nissen, Crystal orientation and plate structure in echinoid skeletal units, Science 166

(1969), 1150-1152.

J. C. C. Nitsche, A characterization of the catenoid, J. of Math. Mech. 11 (1962), 293—-302.

MR0137043

, On new results in the theory of minimal surfaces, Bull. Amer. Math. Soc. 71 (1965),

195-270. MR0173993

, A new uniqueness theorem for minimal surfaces, Arch. Rat. Mech. Anal. 52 (1973),

319-329. MR0341258

, Lectures on minimal surfaces, vol. 1, Cambridge University Press, Cambridge, 1989.

MR1015936

R. Osserman, Global properties of minimal surfaces in E3 and E™, Ann. of Math. (2) 80

(1964), no. 2, 340-364. MR0179701

, The convex hull property of immersed manifolds, J. Differential Geom. 6 (1971),

no. 2, 267-270. MR0298595|(45:7647)

, A survey of minimal surfaces, 2nd ed., Dover Publications, New York, 1986.

MR0852409

J. Pérez, On singly-periodic minimal surfaces with planar ends, Transactions of the AMS 6

(1997), 2371-2389. MR1407709

, A rigidity theorem for periodic minimal surfaces, Comm. in Analysis and Geom. 7

(1999), no. 1, 95-104. MR1674113

, Parabolicity and minimal surfaces, Global theory of minimal surfaces, American

Mathematical Society, Providence, RI, for the Clay Mathematics Institute, Cambridge, MA,

edited by D. Hoffman, 2005, pp. 163-174. MR2167253

, Uniqueness of the Riemann minimal surfaces, Global theory of minimal surfaces,

American Mathematical Society, Providence, RI, for the Clay Mathematics Institute, Cam-

bridge, MA, edited by D. Hoffman, 2005, pp. 597-610. Based on joint work with W.H. Meeks

IIT and A. Ros. MR2167253

J. Pérez, Stable embedded minimal surfaces bounded by a straight line, Calculus of Variations

and PDE 29 (2007), no. 2, 267-279. MR2307776

J. Pérez, M. Rodriguez, and M. Traizet, The classification of doubly periodic minimal tori

with parallel ends, Journal of Diff. Geometry 69 (2005), no. 3, 523-577. MR2170278

J. Pérez and A. Ros, The space of properly embedded minimal surfaces with finite total

curvature., Indiana Univ. Math. J. 45 (1996), no. 1, 177-204. MR1406689

, Properly embedded minimal surfaces with finite total curvature, The Global Theory

of Minimal Surfaces in Flat Spaces, Lecture Notes in Math 1775, Springer-Verlag, 2002,

pp. 15-66, G. P. Pirola, editor. MR1901613.

J. Pérez and M. Traizet, The classification of singly periodic minimal surfaces with genus

zero and Scherk type ends, Transactions of the AMS 359 (2007), no. 3, 965-990. MR2262839

1. Peterson, Spiral proof, Science News 168 (2005), no. 25, 393-397.

A. V. Pogorelov, On the stability of minimal surfaces, Soviet Math. Dokl. 24 (1981), 274-276.

MR0630142

B. Riemann, Uber die Fliche vom kleinsten Inhalt bei gegebener Begrenzung, Abh. Konigl,

d. Wiss. Gottingen, Mathem. Cl. 13 (1867), 3-52, K. Hattendorf, editor. JFM 01.0218.01.

, Ouevres mathématiques de Riemann, Gauthiers-Villars, Paris, 1898.

A. Ros, Compactness of spaces properly embedded minimal surfaces with finite total curva-

ture, Indiana Univ. Math. J. 44 (1995), no. 1, 139-152. MR1336435

, Embedded minimal surfaces: forces, topology and symmetries, Calc. Var. 4 (1996),

469-496. MR1402733

, The isoperimetric problem, Global theory of minimal surfaces, American Mathe-

matical Society, Providence, RI, for the Clay Mathematics Institute, Cambridge, MA, edited

by D. Hoffman, 2005, pp. 175-209. MR2167260

, One-sided complete stable minimal surfaces, Journal Differential Geometry 74

(2006), 69-92. MR2260928



http://www.ams.org/mathscinet-getitem?mr=2502522
http://www.ams.org/mathscinet-getitem?mr=2502522
http://www.ams.org/mathscinet-getitem?mr=0137043
http://www.ams.org/mathscinet-getitem?mr=0173993
http://www.ams.org/mathscinet-getitem?mr=0341258
http://www.ams.org/mathscinet-getitem?mr=1015936
http://www.ams.org/mathscinet-getitem?mr=0179701
http://www.ams.org/mathscinet-getitem?mr=0298595
http://www.ams.org/mathscinet-getitem?mr=0298595
http://www.ams.org/mathscinet-getitem?mr=0852409
http://www.ams.org/mathscinet-getitem?mr=1407709
http://www.ams.org/mathscinet-getitem?mr=1674113
http://www.ams.org/mathscinet-getitem?mr=2167253
http://www.ams.org/mathscinet-getitem?mr=2167253
http://www.ams.org/mathscinet-getitem?mr=2307776
http://www.ams.org/mathscinet-getitem?mr=2170278
http://www.ams.org/mathscinet-getitem?mr=1406689
http://www.ams.org/mathscinet-getitem?mr=1901613
http://www.ams.org/mathscinet-getitem?mr=2262839
http://www.ams.org/mathscinet-getitem?mr=0630142
http://www.ams.org/mathscinet-getitem?mr=1336435
http://www.ams.org/mathscinet-getitem?mr=1402733
http://www.ams.org/mathscinet-getitem?mr=2167260
http://www.ams.org/mathscinet-getitem?mr=2260928

406

181

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.
197.

198.

199.

200.
201.

202.

203.

204.

205.

206.

207.

208.

209.

WILLIAM H. MEEKS III AND JOAQUIN PEREZ

H. Rosenberg, Minimal surfaces of finite type, Bull. Soc. Math. France 123 (1995), 351-354.
MR1373739

, Some recent developments in the theory of minimal surfaces in 3-manifolds, 24th
Brazilian Mathematics Colloquium (Instituto de Matematica Pura e Aplicada (IMPA), Rio
de Janeiro), IMPA Mathematical Publications, 2003. MR2028922 |(2005b:53015)

H. Rosenberg, R. Souam, and E. Toubiana, General curvature estimates for stable H -surfaces
in 3-manifolds and applications, J. Differential Geom. 84 (2010), no. 3, 623-648. MR2669367
M. Ross, Schwarz’ P and D surfaces are stable, Differential Geom. Appl. 2 (1992), no. 2,
179-195. MR1245555

H. F. Scherk, Bemerkungen tber die kleinste Fldache innerhalb gegebener Grenzen, J. R.
Angew. Math. 13 (1835), 185-208, ERAM 013.0481cj.

M. Schmies, Computational methods for Riemann surfaces and helicoids with handles, Ph.D.
thesis, Technical University of Berlin, Berlin, Germany, 2005.

A. Schoen, Infinite periodic minimal surfaces without self-intersections, Technical Note D-
5541, NASA, Cambridge, Mass., May 1970.

R. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential
Geom. 18 (1983), 791-809. MR0730928

G. Segal and G. Wilson, Loop groups and equations of KdV type, Publ. Math. de L.H.E.S.
61 (1985), 5-65. MR0783348

M. Shiffman, On surfaces of stationary area bounded by two circles, or convex curves, in
parallel planes, Ann. of Math. (2) 63 (1956), 77-90. MR0074695

B. Solomon, On foliations of R by minimal hypersurfaces, Comm. Math. Helv. 61 (1986),
67-83. MR0847521

M. Soret, Mazimum principle at infinity for complete minimal surfaces in flat 3-manifolds,
Annals of Global Analysis and Geometry 13 (1995), 101-116. MR1336206

J. Spruck, Two-dimensional minimal graphs over unbounded domains, Journal of the Inst.
of Math. Jussieu 1 (2002), no. 4, 631-640. MR1954438

G. Tinaglia, Curvature estimates for minimal surfaces with total boundary curvature
less than 4w, Proceedings of the American Mathematical Society 137 (2009), 2445-2450.
arXiv:0712.1500. MR2495281/(2010a:53018)

V. G. Tkachev, Disjoint minimal graphs, Annals of Global Analysis and Geometry 35 (2009),
no. 2, 139-155. MR2486121/(2010c:53011)

M. Traizet, The genus 2 helicoid, Personal Communication.

, An embedded minimal surface with no symmetries, J. Differential Geometry 60
(2002), no. 1, 103-153. MR 1924593

, A balancing condition for weak limits of minimal surfaces, Comment. Math. Hel-
vetici 79 (2004), no. 4, 798-825. MR2099123

, On the genus of triply periodic minimal surfaces, J. Differential Geom. 79 (2008),
243-275. MR2420019

, A minimal surface with one limit end and unbounded curvature, Preprint, 2011.
M. Traizet and M. Weber, Hermite polynomials and helicoidal minimal surfaces, Invent.
Math. 161 (2005), no. 1, 113-149. MR2178659

M. Tsuji, Potential theory in modern function theory, 2nd ed., Chelsea Publishing Company,
New York, NY, 1975. MR0414898

J. Tysk, Figenvalue estimates with applications to minimal surfaces, Pacific J. of Math. 128
(1987), 361-366. MR0888524

M. Weber and M. Wolf, Minimal surfaces of least total curvature and moduli spaces of plane
polygonal arcs, Geom. Funct. Anal. 8 (1998), 1129-1170. MR1664793

, Teichmdiiller theory and handle addition for minimal surfaces, Ann. of Math. (2)
156 (2002), 713-795. MR1954234

A. Weitsman, Growth of solutions to the minimal surface equation over domains in a half
plane, Communications in Analysis and Geometry 13 (2005), 1077-1087. MR2216153,

, On the growth of minimal graphs, Indiana Univ. Math Journal 54 (2005), no. 2,
617-625. MR2136824

F. Xavier, The Gauss map of a complete non-flat minimal surface cannot omit 7 points of
the sphere, Ann. of Math. (2) 113 (1981), 211-214. MR0604048

, Convezx hulls of complete minimal surfaces, Math. Ann. 269 (1984), 179-182.
MRO0759107



http://www.ams.org/mathscinet-getitem?mr=1373739
http://www.ams.org/mathscinet-getitem?mr=2028922
http://www.ams.org/mathscinet-getitem?mr=2028922
http://www.ams.org/mathscinet-getitem?mr=2669367
http://www.ams.org/mathscinet-getitem?mr=1245555
http://www.ams.org/mathscinet-getitem?mr=0730928
http://www.ams.org/mathscinet-getitem?mr=0783348
http://www.ams.org/mathscinet-getitem?mr=0074695
http://www.ams.org/mathscinet-getitem?mr=0847521
http://www.ams.org/mathscinet-getitem?mr=1336206
http://www.ams.org/mathscinet-getitem?mr=1954438
http://www.ams.org/mathscinet-getitem?mr=2495281
http://www.ams.org/mathscinet-getitem?mr=2495281
http://www.ams.org/mathscinet-getitem?mr=2486121
http://www.ams.org/mathscinet-getitem?mr=2486121
http://www.ams.org/mathscinet-getitem?mr=1924593
http://www.ams.org/mathscinet-getitem?mr=2099123
http://www.ams.org/mathscinet-getitem?mr=2420019
http://www.ams.org/mathscinet-getitem?mr=2178659
http://www.ams.org/mathscinet-getitem?mr=0414898
http://www.ams.org/mathscinet-getitem?mr=0888524
http://www.ams.org/mathscinet-getitem?mr=1664793
http://www.ams.org/mathscinet-getitem?mr=1954234
http://www.ams.org/mathscinet-getitem?mr=2216153
http://www.ams.org/mathscinet-getitem?mr=2136824
http://www.ams.org/mathscinet-getitem?mr=0604048
http://www.ams.org/mathscinet-getitem?mr=0759107

THE CLASSICAL THEORY OF MINIMAL SURFACES 407

210. S.T. Yau, Problem section, Seminar on Differential Geometry, Annals of Math. Studies, vol.
102, 1982, pp. 669-706. MR0645762

, Review of geometry and analysis, Mathematics: frontiers and prospectives, Amer.

Math. Soc., Providence, RI, 2000, pp. 353-401. MR 1754787

211.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MASSACHUSETTS, AMHERST, MASSACHUSETTS
01003
E-mail address: profmeeks@gmail.com

DEPARTMENT OF GEOMETRY AND TOPOLOGY, UNIVERSITY OF GRANADA, GRANADA, SPAIN
E-mail address: jperez@ugr.es


http://www.ams.org/mathscinet-getitem?mr=0645762
http://www.ams.org/mathscinet-getitem?mr=1754787

	1. Introduction
	2. Basic results in classical minimal surface theory
	3. Minimal surfaces with finite topology and more than one end
	4. Sequences of embedded minimal surfaces without uniform local area bounds
	5. The structure of minimal laminations of R3
	6. The ordering theorem for the space of ends
	7. Conformal structure of minimal surfaces
	8. Uniqueness of the helicoid I: The proper case
	9. Minimal laminations revisited and the embedded Calabi-Yau problem
	10. Embedded minimal surfaces of finite genus
	11. Outstanding problems and conjectures
	About the authors
	Acknowledgments
	References

