Commentary on ``Lectures on Morse theory, old and new''
Author:
Daniel S. Freed
Journal:
Bull. Amer. Math. Soc. 48 (2011), 517-523
MSC (2010):
Primary 58E05, 57R58, 57R56
DOI:
https://doi.org/10.1090/S0273-0979-2011-01349-0
Published electronically:
June 27, 2011
Link to article that is the subject of this commentary:
Bull. Amer. Math. Soc. 7 (1982), 331-358.
MathSciNet review:
2823021
Full-text PDF
References | Similar Articles | Additional Information
- [B] Raoul Bott, Morse theory indomitable, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 99–114 (1989). MR 1001450
- [D] S. K. Donaldson, The Seiberg-Witten equations and 4-manifold topology, Bull. Amer. Math. Soc. (N.S.) 33 (1996), no. 1, 45–70. MR 1339810, https://doi.org/10.1090/S0273-0979-96-00625-8
- [H] Michael Hutchings, Taubes’s proof of the Weinstein conjecture in dimension three, Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 1, 73–125. MR 2566446, https://doi.org/10.1090/S0273-0979-09-01282-8
- [MS] Paul S. Aspinwall, Tom Bridgeland, Alastair Craw, Michael R. Douglas, Mark Gross, Anton Kapustin, Gregory W. Moore, Graeme Segal, Balázs Szendrői, and P. M. H. Wilson, Dirichlet branes and mirror symmetry, Clay Mathematics Monographs, vol. 4, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2009. MR 2567952
- [W] Edward Witten, Fivebranes and knots, preprint.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 58E05, 57R58, 57R56
Retrieve articles in all journals with MSC (2010): 58E05, 57R58, 57R56
Additional Information
Daniel S. Freed
Affiliation:
Department of Mathematics, University of Texas, 1 University Station C1200, Austin, Texas 78712-0257
Email:
dafr@math.utexas.edu
DOI:
https://doi.org/10.1090/S0273-0979-2011-01349-0
Received by editor(s):
June 13, 2011
Published electronically:
June 27, 2011
Additional Notes:
The work of D.S.F. is supported by the National Science Foundation under grant DMS-0603964
Article copyright:
© Copyright 2011
American Mathematical Society


