Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Counting special points: Logic, diophantine geometry, and transcendence theory


Author: Thomas Scanlon
Journal: Bull. Amer. Math. Soc. 49 (2012), 51-71
MSC (2010): Primary 11G15, 03C64
DOI: https://doi.org/10.1090/S0273-0979-2011-01354-4
Published electronically: October 24, 2011
MathSciNet review: 2869007
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We expose a theorem of Pila and Wilkie on counting rational points in sets definable in o-minimal structures and some applications of this theorem to problems in diophantine geometry due to Masser, Peterzil, Pila, Starchenko, and Zannier.


References [Enhancements On Off] (What's this?)

  • 1. Yves André.
    $ G$-functions and geometry.
    Aspects of Mathematics, E13. Friedr. Vieweg & Sohn, Braunschweig, 1989. MR 990016 (90k:11087)
  • 2. Yves André.
    Finitude des couples d'invariants modulaires singuliers sur une courbe algébrique plane non modulaire.
    J. Reine Angew. Math., 505:203-208, 1998. MR 1662256 (2000a:11090)
  • 3. James Ax.
    On Schanuel's conjectures.
    Ann. of Math. (2), 93:252-268, 1971. MR 0277482 (43:3215)
  • 4. E. Bombieri and J. Pila.
    The number of integral points on arcs and ovals.
    Duke Math. J., 59(2):337-357, 1989. MR 1016893 (90j:11099)
  • 5. Enrico Bombieri.
    The Mordell conjecture revisited.
    Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17(4):615-640, 1990. MR 1093712 (92a:11072)
  • 6. Sinnou David.
    Points de petite hauteur sur les courbes elliptiques.
    J. Number Theory, 64(1):104-129, 1997. MR 1450488 (98k:11067)
  • 7. Bas Edixhoven.
    Special points on the product of two modular curves.
    Compositio Math., 114(3):315-328, 1998. MR 1665772 (99k:11087)
  • 8. Bas Edixhoven and Andrei Yafaev.
    Subvarieties of Shimura varieties.
    Ann. of Math. (2), 157(2):621-645, 2003. MR 1973057 (2004c:11103)
  • 9. A. M. Gabrièlov.
    Projections of semianalytic sets.
    Funkcional. Anal. i Priložen., 2(4):18-30, 1968. MR 0245831 (39:7137)
  • 10. M. Gromov.
    Entropy, homology and semialgebraic geometry.
    Astérisque, (145-146):5, 225-240, 1987.
    Séminaire Bourbaki, Vol. 1985/86. MR 880035 (89f:58082)
  • 11. Alexandre Grothendieck.
    Esquisse d'un programme.
    In Geometric Galois actions, 1, volume 242 of London Math. Soc. Lecture Note Ser., pages 5-48. Cambridge Univ. Press, Cambridge, 1997.
    With an English translation on pp. 243-283. MR 1483107 (99c:14034)
  • 12. Ehud Hrushovski.
    The Mordell-Lang conjecture for function fields.
    J. Amer. Math. Soc., 9(3):667-690, 1996. MR 1333294 (97h:11154)
  • 13. Ehud Hrushovski.
    The Manin-Mumford conjecture and the model theory of difference fields.
    Ann. Pure Appl. Logic, 112(1):43-115, 2001. MR 1854232 (2003d:03061)
  • 14. A. G. Khovanskiĭ.
    Fewnomials, Translations of Mathematical Monographs, Vol. 88.
    American Mathematical Society, Providence, RI, 1991.
    Translated from the Russian by Smilka Zdravkovska. MR 1108621 (92h:14039)
  • 15. Julia F. Knight, Anand Pillay, and Charles Steinhorn.
    Definable sets in ordered structures. II.
    Trans. Amer. Math. Soc., 295(2):593-605, 1986. MR 833698 (88b:03050b)
  • 16. Maxim Kontsevich and Don Zagier.
    Periods.
    In Mathematics unlimited--2001 and beyond, pages 771-808. Springer, Berlin, 2001. MR 1852188 (2002i:11002)
  • 17. Serge Lang.
    Introduction to transcendental numbers.
    Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0214547 (35:5397)
  • 18. Henry B. Mann.
    On linear relations between roots of unity.
    Mathematika, 12:107-117, 1965. MR 0191892 (33:119)
  • 19. D. Masser and U. Zannier.
    Torsion points on families of squares of elliptic curves.
    Mathematische Annalen, 16 February 2011.
    Online First.
  • 20. D. Masser and U. Zannier.
    Torsion anomalous points and families of elliptic curves.
    Amer. J. Math., 132(6):1677-1691, 2010. MR 2766181
  • 21. David Masser and Umberto Zannier.
    Torsion anomalous points and families of elliptic curves.
    C. R. Math. Acad. Sci. Paris, 346(9-10):491-494, 2008. MR 2412783 (2009j:11089)
  • 22. B. Mazur.
    Questions of decidability and undecidability in number theory.
    J. Symbolic Logic, 59(2):353-371, 1994. MR 1276620 (96c:03091)
  • 23. Ya'acov Peterzil and Sergei Starchenko.
    Uniform definability of the Weierstrass $ \wp $ functions and generalized tori of dimension one.
    Selecta Math. (N.S.), 10(4):525-550, 2004. MR 2134454 (2006d:03063)
  • 24. Ya'acov Peterzil and Sergei Starchenko.
    Around Pila-Zannier: the semiabelian case.
    preprint, 2009.
  • 25. Ya'acov Peterzil and Sergei Starchenko.
    Definability of restricted theta functions and families of abelian varieties.
    preprint, 2010.
  • 26. J. Pila and A. J. Wilkie.
    The rational points of a definable set.
    Duke Math. J., 133(3):591-616, 2006. MR 2228464 (2007f:03048)
  • 27. Jonathan Pila.
    Rational points on a subanalytic surface.
    Ann. Inst. Fourier (Grenoble), 55(5):1501-1516, 2005. MR 2172272 (2006g:11071)
  • 28. Jonathan Pila.
    On the algebraic points of a definable set.
    Selecta Math. (N.S.), 15(1):151-170, 2009. MR 2511202 (2010h:11109)
  • 29. Jonathan Pila.
    Counting rational points on a certain exponential-algebraic surface.
    Ann. Inst. Fourier (Grenoble), 60(2):489-514, 2010. MR 2667784
  • 30. Jonathan Pila.
    O-minimality and the André-Oort conjecture for C$ {}^n$.
    Ann. of Math. (2), 172(3):1779-1840, 2011.
  • 31. Jonathan Pila and Umberto Zannier.
    Rational points in periodic analytic sets and the Manin-Mumford conjecture.
    Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19(2):149-162, 2008. MR 2411018 (2009d:11110)
  • 32. Anand Pillay and Charles Steinhorn.
    Definable sets in ordered structures. I.
    Trans. Amer. Math. Soc., 295(2):565-592, 1986. MR 833697 (88b:03050a)
  • 33. Anand Pillay and Charles Steinhorn.
    Definable sets in ordered structures. III.
    Trans. Amer. Math. Soc., 309(2):469-476, 1988. MR 943306 (89i:03059)
  • 34. M. Raynaud.
    Sous-variétés d'une variété abélienne et points de torsion.
    In Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, pages 327-352. Birkhäuser Boston, Boston, MA, 1983. MR 717600 (85k:14022)
  • 35. J.-P. Rolin, P. Speissegger, and A. J. Wilkie.
    Quasianalytic Denjoy-Carleman classes and o-minimality.
    J. Amer. Math. Soc., 16(4):751-777 (electronic), 2003. MR 1992825 (2004g:14065)
  • 36. Thomas Scanlon.
    A proof of the André-Oort conjecture via mathematical logic [after J. Pila, A. Wilkie and U. Zannier].
    2011.
    Séminaire Bourbaki. Vol. 2010/2011.
  • 37. Thomas Scanlon.
    Theorems on unlikely intersections by counting points in definable sets.
    2011.
    Mini-courses around the Pink-Zilber conjecture at Luminy, May 2011.
  • 38. C. L. Siegel.
    Über die Classenzahl quadratischer Zahlkörper.
    Acta Arith., (1):83-86, 1935.
  • 39. Joseph H. Silverman.
    Heights and the specialization map for families of abelian varieties.
    J. Reine Angew. Math., 342:197-211, 1983. MR 703488 (84k:14033)
  • 40. Patrick Speissegger.
    The Pfaffian closure of an o-minimal structure.
    J. Reine Angew. Math., 508:189-211, 1999. MR 1676876 (2000j:14093)
  • 41. Alfred Tarski.
    A Decision Method for Elementary Algebra and Geometry.
    RAND Corporation, Santa Monica, Calif., 1948. MR 0028796 (10:499f)
  • 42. J. Tsimermann.
    Brauer-Siegel for arithmetic tori and lower bounds for galois orbits of special points.
    preprint, 2011.
  • 43. E. Ullmo and A. Yafev.
    Nombre de classes des tores de multiplication complexe et bornes inférieures pour orbites Galoisiennes de points spéciaux.
    preprint, 2011.
  • 44. Lou van den Dries.
    Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248.
    Cambridge University Press, Cambridge, 1998. MR 1633348 (99j:03001)
  • 45. Lou van den Dries, Angus Macintyre, and David Marker.
    The elementary theory of restricted analytic fields with exponentiation.
    Ann. of Math. (2), 140(1):183-205, 1994. MR 1289495 (95k:12015)
  • 46. Lou van den Dries and Chris Miller.
    On the real exponential field with restricted analytic functions.
    Israel J. Math., 85(1-3):19-56, 1994. MR 1264338 (95e:03099)
  • 47. A. J. Wilkie.
    Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function.
    J. Amer. Math. Soc., 9(4):1051-1094, 1996. MR 1398816 (98j:03052)
  • 48. Alex J. Wilkie.
    O-minimal structures.
    Astérisque, (326):Exp. No. 985, vii, 131-142 (2010), 2009.
    Séminaire Bourbaki. Vol. 2007/2008. MR 2605320 (2011h:03063)
  • 49. Y. Yomdin.
    $ C^k$-resolution of semialgebraic mappings. Addendum to: ``Volume growth and entropy''.
    Israel J. Math., 57(3):301-317, 1987. MR 889980 (90g:58009)
  • 50. Y. Yomdin.
    Volume growth and entropy.
    Israel J. Math., 57(3):285-300, 1987. MR 889979 (90g:58008)

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 11G15, 03C64

Retrieve articles in all journals with MSC (2010): 11G15, 03C64


Additional Information

Thomas Scanlon
Affiliation: Department of Mathematics, University of California, Berkeley, Evans Hall, Berkeley, California 94720-3840
Email: scanlon@math.berkeley.edu

DOI: https://doi.org/10.1090/S0273-0979-2011-01354-4
Received by editor(s): June 9, 2011
Published electronically: October 24, 2011
Additional Notes: Partially supported by NSF grants FRG DMS-0854998 and DMS-1001550. The author thanks M. Aschenbrenner, J. Pila, P. Tretkoff, and U. Zannier for their detailed comments about earlier versions of these notes.
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society