## On Khot’s unique games conjecture

HTML articles powered by AMS MathViewer

- by Luca Trevisan PDF
- Bull. Amer. Math. Soc.
**49**(2012), 91-111 Request permission

## Abstract:

In 2002, Subhash Khot formulated the *Unique Games Conjecture*, a conjecture about the computational complexity of certain optimization problems.

The conjecture has inspired a remarkable body of work, which has clarified the computational complexity of several optimization problems and the effectiveness of “semidefinite programming” convex relaxations.

In this paper, which assumes no prior knowledge of computational complexity, we describe the context and statement of the conjecture, and we discuss in some detail one specific line of work motivated by it.

## References

- N. Alon and V. D. Milman,
*$\lambda _1,$ isoperimetric inequalities for graphs, and superconcentrators*, J. Combin. Theory Ser. B**38**(1985), no. 1, 73–88. MR**782626**, DOI 10.1016/0095-8956(85)90092-9 - N. Alon,
*Eigenvalues and expanders*, Combinatorica**6**(1986), no. 2, 83–96. Theory of computing (Singer Island, Fla., 1984). MR**875835**, DOI 10.1007/BF02579166 - Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy,
*Proof verification and the hardness of approximation problems*, J. ACM**45**(1998), no. 3, 501–555. MR**1639346**, DOI 10.1145/278298.278306 - Sanjeev Arora and Shmuel Safra,
*Probabilistic checking of proofs: a new characterization of NP*, J. ACM**45**(1998), no. 1, 70–122. MR**1614328**, DOI 10.1145/273865.273901 - Sanjeev Arora and Boaz Barak,
*Computational complexity*, Cambridge University Press, Cambridge, 2009. A modern approach. MR**2500087**, DOI 10.1017/CBO9780511804090 - Sanjeev Arora, Boaz Barak, and David Steurer,
*Subexponential algorithms for unique games and related problems*, Proceedings of the 51st IEEE Symposium on Foundations of Computer Science, 2010. - Sanjeev Arora, James R. Lee, and Assaf Naor,
*Euclidean distortion and the sparsest cut [extended abstract]*, STOC’05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, ACM, New York, 2005, pp. 553–562. MR**2181659**, DOI 10.1145/1060590.1060673 - Sanjeev Arora, Satish Rao, and Umesh Vazirani,
*Expander flows, geometric embeddings and graph partitioning*, Proceedings of the 36th Annual ACM Symposium on Theory of Computing, ACM, New York, 2004, pp. 222–231. MR**2121604**, DOI 10.1145/1007352.1007355 - Mihir Bellare, Oded Goldreich, and Madhu Sudan,
*Free bits, PCPs, and nonapproximability—towards tight results*, SIAM J. Comput.**27**(1998), no. 3, 804–915. MR**1612644**, DOI 10.1137/S0097539796302531 - M Bellare, S. Goldwasser, C. Lund, and A. Russell,
*Efficient probabilistically checkable proofs and applications to approximation*, Proceedings of the 25th ACM Symposium on Theory of Computing, 1993, See also the errata sheet in*Proc of STOC ’94*, pp. 294–304. - Christer Borell,
*Geometric bounds on the Ornstein-Uhlenbeck velocity process*, Z. Wahrsch. Verw. Gebiete**70**(1985), no. 1, 1–13. MR**795785**, DOI 10.1007/BF00532234 - Moses Charikar, Konstantin Makarychev, and Yury Makarychev,
*Near-optimal algorithms for unique games*, Proceedings of the 38th ACM Symposium on Theory of Computing, 2006, pp. 205–214. - Jeff Cheeger, Bruce Kleiner, and Assaf Naor,
*A $(\log n)^{\Omega (1)}$ integrality gap for the sparsest cut SDP*, arxiv:0910.2024, 2009. - S.A. Cook,
*The complexity of theorem proving procedures*, Proceedings of the 3rd ACM Symposium on Theory of Computing, 1971, pp. 151–158. - Pierluigi Crescenzi, Riccardo Silvestri, and Luca Trevisan,
*On weighted vs unweighted versions of combinatorial optimization problems*, Inform. and Comput.**167**(2001), no. 1, 10–26. ISTCS’96 (Jerusalem). MR**1839896**, DOI 10.1006/inco.2000.3011 - Charles Delorme and Svatopluk Poljak,
*Combinatorial properties and the complexity of a max-cut approximation*, European J. Combin.**14**(1993), no. 4, 313–333. MR**1226579**, DOI 10.1006/eujc.1993.1035 - C. Delorme and S. Poljak,
*Laplacian eigenvalues and the maximum cut problem*, Math. Programming**62**(1993), no. 3, Ser. A, 557–574. MR**1251892**, DOI 10.1007/BF01585184 - Nikhil R. Devanur, Subhash A. Khot, Rishi Saket, and Nisheeth K. Vishnoi,
*Integrality gaps for sparsest cut and minimum linear arrangement problems*, STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, ACM, New York, 2006, pp. 537–546. MR**2277179**, DOI 10.1145/1132516.1132594 - Uriel Feige and Gideon Schechtman,
*On the optimality of the random hyperplane rounding technique for MAX CUT*, Random Structures Algorithms**20**(2002), no. 3, 403–440. Probabilistic methods in combinatorial optimization. MR**1900615**, DOI 10.1002/rsa.10036 - Michel X. Goemans and David P. Williamson,
*Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming*, J. Assoc. Comput. Mach.**42**(1995), no. 6, 1115–1145. MR**1412228**, DOI 10.1145/227683.227684 - Johan Håstad,
*Some optimal inapproximability results*, J. ACM**48**(2001), no. 4, 798–859. MR**2144931**, DOI 10.1145/502090.502098 - Richard M. Karp,
*Reducibility among combinatorial problems*, Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972) Plenum, New York, 1972, pp. 85–103. MR**0378476** - Subhash Khot,
*On the power of unique 2-prover 1-round games*, Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, ACM, New York, 2002, pp. 767–775. MR**2121525**, DOI 10.1145/509907.510017 - —,
*Inapproximability of $NP$-complete problems, discrete Fourier analysis, and geometry*, Proceedings of the International Congress of Mathematicians, 2010. - Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell,
*Optimal inapproximability results for MAX-CUT and other two-variable CSPs?*, Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, 2004, pp. 146–154. - Subhash Khot and Nisheeth Vishnoi,
*The unique games conjecture, integrality gap for cut problems and the embeddability of negative type metrics into $\ell _1$*, Proceedings of the 46th IEEE Symposium on Foundations of Computer Science, 2005, pp. 53–63. - Robert Krauthgamer and Yuval Rabani,
*Improved lower bounds for embeddings into $L_1$*, SIAM J. Comput.**38**(2009), no. 6, 2487–2498. MR**2506299**, DOI 10.1137/060660126 - L. A. Levin,
*Universal enumeration problems*, Problemy Peredači Informacii**9**(1973), no. 3, 115–116 (Russian). MR**0340042** - Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz,
*Noise stability of functions with low influences: invariance and optimality*, Ann. of Math. (2)**171**(2010), no. 1, 295–341. MR**2630040**, DOI 10.4007/annals.2010.171.295 - Prasad Raghavendra,
*Optimal algorithms and inapproximability results for every CSP? [extended abstract]*, STOC’08, ACM, New York, 2008, pp. 245–254. MR**2582901**, DOI 10.1145/1374376.1374414 - Ran Raz,
*A parallel repetition theorem*, SIAM J. Comput.**27**(1998), no. 3, 763–803. MR**1612640**, DOI 10.1137/S0097539795280895 - V. I. Rotar′,
*Limit theorems for polylinear forms*, J. Multivariate Anal.**9**(1979), no. 4, 511–530. MR**556909**, DOI 10.1016/0047-259X(79)90055-1 - Michael Sipser,
*Introduction to the theory of computation*, Thomson, 2005, Second Editon. - Luca Trevisan, Gregory B. Sorkin, Madhu Sudan, and David P. Williamson,
*Gadgets, approximation, and linear programming*, SIAM J. Comput.**29**(2000), no. 6, 2074–2097. MR**1756405**, DOI 10.1137/S0097539797328847 - Vijay V. Vazirani,
*Approximation algorithms*, Springer-Verlag, Berlin, 2001. MR**1851303**

## Additional Information

**Luca Trevisan**- Affiliation: Computer Science Department, Stanford University, 353 Serra Mall Stanford, California 94305-9025
- Email: trevisan@stanford.edu
- Received by editor(s): July 18, 2011
- Received by editor(s) in revised form: July 25, 2011
- Published electronically: November 7, 2011
- Additional Notes: This material is based upon work supported by the National Science Foundation under Grant No. CCF-1017403.
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Bull. Amer. Math. Soc.
**49**(2012), 91-111 - MSC (2010): Primary 68Q17
- DOI: https://doi.org/10.1090/S0273-0979-2011-01361-1
- MathSciNet review: 2869009