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WHY SHOULD

THE LITTLEWOOD–RICHARDSON RULE

BE TRUE?

ROGER HOWE AND SOO TECK LEE

Abstract. We give a proof of the Littlewood-Richardson Rule for describing
tensor products of irreducible finite-dimensional representations of GLn. The
core of the argument uses classical invariant theory, especially (GLn,GLm)-
duality. Both of the main conditions (semistandard condition, lattice per-
mutation/Yamanouchi word condition) placed on the tableaux used to define
Littlewood-Richardson coefficients have natural interpretations in the argu-
ment.

1. Introduction

The Littlewood-Richardson (LR) Rule is a central result in the representation
theory of compact Lie groups, mutatis mutandis, of reductive complex algebraic
groups ([Fu1], [LR], [Ma], [Sa], [vL], [Ze]). It is also a topic of intense study in
combinatorics, especially the theory of symmetric functions ([Ma], [Su], [Sch]), and
it has intimate connections with the topology of Grassmann varieties, and thereby
the theory of vector bundles and K-theory ([Hus]). First stated by Littlewood
and Richardson in 1934 ([LR]), it was fully proven only in the late 1970s ([Sch],
[T1], [T2], [Ma]) by means of refined study of the combinatorics of partitions and
symmetric functions. More recently, several authors have given relatively short
proofs ([Stm], [Ze], [ReS]).

Besides the long wait for a full proof, another notable feature of the LR Rule
is the curious way in which it is usually formulated. It is stated in terms of cer-
tain combinatorial objects called tableaux (described carefully below). It asserts
that certain numbers of interest can be counted by tableaux satisfying two types of
conditions. (We will call these special tableaux “LR tableaux”.) One condition is
semistandardness. Semistandardness is a condition that arises in a straightforward
way as part of the work of giving concrete combinatorial descriptions of represen-
tations of the general linear group. The other condition is formulated in various
ways, in terms of lattice permutations ([Ma]) or as the Yamanouchi word condition
([Fu1]). The role this condition plays is not a priori transparent.

In this paper we offer another proof of the LR Rule. This proof is not shorter
than some currently in the literature, but we hope that it has some other virtues.

Received by the editors March 30, 2009, and, in revised form, February 14, 2011.
2000 Mathematics Subject Classification. Primary 20G05; Secondary 05E15.
Key words and phrases. Littlewood-Richardson Rule, Pieri Rule, GLn tensor product algebra,

(GLn,GLm)-duality.
The second named author is partially supported by NUS grant R-146-000-110-112.

c©2011 American Mathematical Society
Reverts to public domain 28 years from publication

187

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



188 ROGER HOWE AND SOO TECK LEE

Whereas almost all proofs noted above are based on combinatorics, this one uses
representation theory in substantial ways. Moreover, it is a refinement of the origi-
nal partial proof of Littlewood and Richardson, so that it shows how their argument
can be completed by appropriate use of representation theory. We also hope that
it gives some insight into why the standard statement of the LR Rule is reasonable.
More precisely, our argument puts the semistandardness condition and the other
condition on essentially equal footings. It uses representation theory to argue that
the combination of the two conditions is what you might hope would characterize
the phenomenon described by the LR tableaux. Also, it interprets the lattice per-
mutation/Yamanouchi word condition in terms of (GLn,GLm)-duality. See §7 for
details.

Here is a preview of the rest of the paper. In §2, we briefly review the varied
applications of the LR Rule. In §3, we review some basic facts in the represen-
tation theory of GLn. In §4, we state the LR Rule in its standard form. In §5,
we discuss it in the light of representation theory and provide an alternative in-
terpretation of the conditions defining LR tableaux. We hope that this discussion
makes the LR Rule seem natural and inevitable. In §6, we recall the arguments
of Littlewood and Richardson concerning a special case of the rule, and put these
in a representation-theoretic setting. This argument has a strong combinatorial
component and is closely connected to the Catalan numbers. It is also suggestive
of the path model descriptions of tensor products and branching rules developed
by Littelmann ([Lim]). Finally in §7, we show how the constructions of [HTW1],
[HTW3], and [HL], of explicit highest weight vectors in tensor products, allow one
to establish the general case of the LR Rule on the basis of the special case treated
by Littlewood and Richardson.

A key tool in the arguments of §7 is the theory of of SAGBI bases ([RuS]),
especially the use of leading monomials to analyze the structure of various algebras.
The backdrop for the calculations of §7 is the standard monomial theory of Hodge.
This theory has undergone intensive study and now can be proven more simply,
and interpreted more conceptually, than when it was first established. Although it
is not strictly needed for the proof of the LR Rule, at the end of §7.2, we sketch
some of the recent history of standard monomial theory.

2. Appearances of the Littlewood-Richardson Rule

We offer here a brief overview of some of the occurrences and applications of
Littlewood-Richardson coefficients. These topics are discussed in much greater
detail in several works of Fulton ([Fu1], [Fu2]).

2.1. Representation theory. Over the years since its discovery, it has become
understood that the LR Rule unifies a large range of phenomena in representation
theory and the geometry of Lie groups and homogeneous spaces.

In the original paper ([LR]), the LR Rule was formulated to describe how to
decompose the tensor product of two irreducible representations of the unitary
group (equivalently, two irreducible “regular” or “rational” representations of the
complex general linear group) into a sum of irreducible representations. It is now
understood that LR coefficients can be used to describe branching rules for all
families of classical symmetric pairs ([HTW2]).
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WHY SHOULD THE LITTLEWOOD–RICHARDSON RULE BE TRUE? 189

Given a group G and a subgroup H, the branching rule from G to H is the
description of how irreducible representations of G decompose into irreducible H-
subrepresentations. If G and hence H is compact, then any representation π of H
will decompose into a direct sum of irreducible representations, and the only infor-
mation one needs to describe π up to isomorphism is the multiplicity m(π, ρ) with
which each irreducible representation ρ of H appears in π. Thus, knowledge of the
multiplicities m(σ|H , ρ) = m(σ, ρ) of the restriction to H of each irreducible repre-
sentation σ of G is sufficient to provide at least a numerical form of the branching
rule from G to H. The m(σ, ρ) are called branching multiplicities from G to H (or
for the pair (G,H)).

Given a (finite or compact) group G, a tensor product σ ⊗ τ of two irreducible
representations ofGmay be regarded as an irreducible representation of the product
G×G of G with itself. This is sometimes called the outer tensor product of σ and
τ , whereas the same tensor product, thought of as a representation of the original
group G, is called the inner tensor product. The relation between the outer tensor
product and the inner tensor product may be thought of in terms of restricting a
representation to a subgroup. Indeed, if we embed G into G×G diagonally, by the
mapping Δ : g → (g, g) for g ∈ G, then the inner tensor product of σ and τ results
from restricting the outer tensor product to Δ(G).

The group G×G has an obvious involution (automorphism of order 2) given by
γ : (g1, g2) → (g2, g1). It is easily checked that Δ(G) is the set of fixed points of γ.
This means that Δ(G) is a symmetric subgroup of G × G. In general, a subgroup
K ⊂ G is called a symmetric subgroup if K consists of the fixed points of an
involution (automorphism of order 2) of G. A pair (G,K) where K is a symmetric
subgroup of G is called a symmetric pair.

A classical algebraic group is a member of one of the three families of the general
(or special) linear groups, orthogonal (or special orthogonal, or spin), or symplectic
groups; or products of these. The symmetric pairs (G,K) of classical Lie groups
can be put into ten infinite families ([HTW1]) comprising four general types: di-
agonal subgroups, direct sum decompositions, isometry groups, and stabilizers of
polarizations. The general linear group embedded diagonally in its product with
itself is one of these ten families, and the LR Rule is exactly the branching law
for this family of symmetric pairs. The multiplicity of a representation ν in the
tensor product of two other irreducible representations λ and μ is denoted cνλ,μ.

The numbers cνλ,μ are called Littlewood-Richardson (LR) coefficients.
It turns out that, at least under some technical restrictions, the branching rules

for all ten families of classical symmetric pairs (G,K) can be described in terms of
LR coefficients. A substantial literature is devoted to showing this, from work of
Littlewood in the early 1940s (the Littlewood restriction rule [Liw1]), continuing
through the 1990s ([BKW], [Liw2], [Liw3], [Ki1], [Ki2], [Ki3], [Ki4], [Ko], [KoT]).
For a review of the work up to about 1990, see [Su], and for a unified treatment,
see [HTW2].

We note that, by Frobenius Reciprocity ([GW]), knowing the branching rule
from G to a subgroup K is equivalent to being able to decompose the induced
representation IndGKσ from any representation σ of K. When G and K are compact
Lie groups, this amounts to the spectral analysis of sections of the homogeneous
vector bundle defined by σ over the homogeneous space G/K (which is a compact
symmetric space when (G,K) is a symmetric pair).
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190 ROGER HOWE AND SOO TECK LEE

The application of LR coefficients in representation theory is not limited to Lie
groups. It turns out that the restriction of irreducible representations of a sym-
metric group Sn on n letters to the subgroup Sm × Sn−m is also described by LR
coefficients (i.e., the branching rule from Sn to Sm × Sn−m). This appearance of
the LR coefficients in the representation theory of the symmetric group is related
to the beautiful Schur duality ([W2], [Ho2], [GW] etc.), which gives a natural cor-
respondence between representations of the Sn on the one hand and GLm(C) on
the other.

2.2. Combinatorics. The influence of the LR Rule is not limited to representa-
tion theory. The search for its proof greatly stimulated combinatorics, specifically,
the combinatorics of Young diagrams and tableaux. It is in this context, via the
tools of the Robinson-Schensted-Knuth correspondence and the jeu de taquin of
Schützenberger that many of the proofs in the literature are given ([Sch], [T1],
[T2], [Ma]). This proof computes (generalizations of) the LR coefficients as the
number of ways that a skew Young diagram with given content can be “rectified”
to a given standard tableau. Several other interpretations of the LR coefficients
in terms of tableaux or skew tableaux, including the “pictures” interpretation of
Zelevinsky ([Ze]), have also been given. See [Fu1] for further discussion.

The original motivation for the LR Rule, and indeed the main focus of [LR],
is the theory of symmetric functions. As discussed in Macdonald’s book ([Ma]),
there are many bases for the ring of symmetric functions, each valuable for a dif-
ferent purpose, and a substantial portion of the theory is devoted to mediating
between these bases. One basis that was of considerable interest was the basis of
S-functions (or Schur functions). This basis was studied during the 19th century,
but has been named for Schur since his work identified it with the characters of
GLn(C) (equivalently, of the unitary group U(n)) in an appropriate coordinate sys-
tem. (This amounts to the Weyl Character Formula ([W2]) for the unitary group.)
The LR coefficients are the structure constants for the ring structure of the sym-
metric functions with respect to the basis of S-functions. Since the character of the
tensor product of representations is the product of the characters of the factors,
the identification of S-functions with characters makes the link between the repre-
sentation theoretic definition and the symmetric function definition. However, the
symmetric function interpretation stands on its own within that area of study.

2.3. Geometry. The LR coefficients show up in the topology of Grassmann vari-
eties (and are thereby relevant to the theory of vector bundles) ([Le], [Fu1], [Fu2]).
The Grassmannian Gn,d(C) = Gn,d is the set of d-dimensional planes in an n-
dimensional complex vector space. It can be decomposed into a union of

(
n
d

)
cells

of even dimension. The cells are known as Bruhat cells, and their closures are (pos-
sibly singular) subvarieties of Gn,d known as Schubert varieties. They are so named
because they are basic to a rigorous approach to enumerative geometry pioneered
by Schubert in the 19th century ([Scb]).

We will pause to describe the Schubert varieties. Recall that a flag in Cn is a
sequence of subspaces Ui that are nested, in the sense that Ui ⊂ Ui+1. A flag is
complete if it contains one subspace of every dimension: dimUi = i for 0 ≤ i ≤ n.

Given a (an ordered) basis B = {	bi : 1 ≤ i ≤ n} for Cn, we can define a complete

flag FB by letting UB,i = Ui be the span of the basis first i elements: 	ba for
1 ≤ a ≤ i. We call this the upper flag associated to B.
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WHY SHOULD THE LITTLEWOOD–RICHARDSON RULE BE TRUE? 191

If we use the standard Hermitian inner product on Cn, then a version of the
Gram-Schmidt procedure allows us attach to a complete flag F an orthonormal
basis B = {	ui} such that F = FB is the upper flag attached to this basis. More
canonically, we can attach to F the collection of lines Li = Ui ∩ (U⊥

i−1). Here X⊥

indicates the orthogonal complement with respect to the Hermitian form of the
subspace X ⊂ Cn. Then 	ui can be any unit vector in Li. Thus, the elements of B
are specified only up to multiplication by scalars of absolute value 1.

Fix a complete flag F = {Ui} in Cn. Given a subspace V ⊂ Cn, the intersections
V ∩ Uj will form a nested sequence of subspaces of V , and it is easy to see that
dim(V ∩Uj) ≤ dim(V ∩Uj−1)+1. Thus, except for the facts that there is redundancy
and some of the V ∩ Uj are equal to each other, these subspaces form a complete
flag in V . We will call the sequence of j such that V ∩ Uj �= V ∩ Uj−1 the jump
sequence of V .

Denote the jump sequence of V relative to F by JF ,V = JV . Thus, JV is a
strictly increasing sequence of integers, which we will list in a column of length
d = dimV :

(2.1) JF ,V = JV = J =

⎡⎢⎢⎢⎢⎢⎣
j1
j2
j3
...
jd

⎤⎥⎥⎥⎥⎥⎦ .
It is easy to convince oneself that any collection J of d distinct whole numbers

ja, 1 ≤ a ≤ d, from 1 to n, arise as the jump sequence of some d-dimensional

subspace V . Indeed, if F is the upper flag for the basis B = {	bi} and J is a list

of d indices from 1 to n, just take VB,J = VJ to be the span the basis vectors 	bja

for ja in J . Then it is obvious that the jump sequence of VJ is exactly J . Thus,
there are exactly

(
n
d

)
possibilities for the jump sequence of V . Denote the set of

d-dimensional subspaces V with jump sequence equal to J by BF ,J = BJ .
Let BF be the subgroup of GLn(C) that stabilizes the spaces Uj of the complete

flag F . It is clear that if V is a subspace of Cn and g is in BF , then g(V ) has
the same jump sequence with respect to F as V does. Thus, the Bruhat cells
BF ,J are invariant under BF . It is well known and follows from reduction theory
in elementary linear algebra that in fact BF ,J is just the BF orbit in Gn,d of the
space VJ :

(2.2) BF ,J = BJ = {V : JF ,V = J} = BF (VJ).

Reduction theory also reveals that this set can be parametrized by a complex vector
space of dimension

(2.3)
d∑

a=1

(ja − a) =

(
d∑

a=1

ja

)
− d(d+ 1)

2
.

Thus, topologically, BJ is a cell of dimension 2
((∑d

a=1 ja

)
− d(d+1)

2

)
.

The closure BF ,J = ΩF ,J of a given Bruhat cell BJ is called a Schubert variety.
It is a union of the original cell together with other Bruhat cells. Thus, closure
of Bruhat cells induces a natural partial ordering, often referred to as the Bruhat
order, on the set of jump sequences: we will say that, for jump sequences J and
K, that K ≤ J if and only if BK ⊂ BJ . To describe this partial order, we observe
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192 ROGER HOWE AND SOO TECK LEE

that, from the definition of jump sequence, it is clear that if JV is as in equation
(2.1), then dim(V ∩Uk) = a for ja ≤ k < ja+1. Since the dimension of intersection
of a variable space V with a fixed space Uk can only increase as V approaches a
limit, it follows that, if V ′ is in BJ , then each jump of V ′ must occur not later than
the corresponding jump of BJ . It is not hard to check that this condition is also
sufficient. Thus,

(2.4) K =

⎡⎢⎢⎢⎢⎢⎣
k1
k2
k3
...
kd

⎤⎥⎥⎥⎥⎥⎦ ≤

⎡⎢⎢⎢⎢⎢⎣
j1
j2
j3
...
jd

⎤⎥⎥⎥⎥⎥⎦ = J if and only if ka ≤ ja

for 1 ≤ a ≤ d. Thus, the Bruhat order is compatible with the natural partial
ordering on the lattice Zn of integer sequences.

Since the Bruhat cells are all of even dimension, it follows from the general
machinery of algebraic topology that the homology classes [ΩF ,J ] defined by the
Schubert varieties ΩF ,J form a basis for the integral homology of Gn,d. Since
GLn(C) acts transitively on the set of complete flags, and since it is a connected
group, it follows that the homology class [ΩF ,J ] is independent of the complete flag
F . Thus it is entirely appropriate to suppress the dependence of the homology class
on F , and write

(2.5) [ΩF ,J ] = [ΩJ ],

and the [ΩJ ] are then an integral basis for the homology of Gn,d.
There is a natural duality on Bruhat cells and Schubert cells. Given the ordered

basis B = {	bi : 1 ≤ i ≤ n}, we define the opposite basis to be the basis consisting
of the same vectors, but in the reverse order:

(2.6) Bopp = {	bopp
i = 	bn+1−i : 1 ≤ i ≤ n}.

We then define the lower or opposite flag Fopp
B = FBopp associated to B as the usual

upper flag associated to Bopp. Thus Uopp
i is the span of 	ba for n+1− i ≤ a ≤ n. If

B is an orthonormal basis, then we can also write Uopp
i = U⊥

n−i, where the Ui are
the spaces of the upper flag attached to B.

Let Bopp
F be the subgroup of GLn(C) stabilizing the lower flag Fopp

B attached to

B. If VB,J is, as above, the span of the basis elements 	bj with j belonging to J ,
then with respect to Bopp we have

(2.7) VB,J = VBopp,Jopp ,

where

(2.8) Jopp =

⎡⎢⎢⎢⎢⎢⎣
n+ 1− jd

n+ 1− jd−1

n+ 1− jd−2

...
n+ 1− j1

⎤⎥⎥⎥⎥⎥⎦ .
It is then easy to see that the intersection BF ,J ∩BFopp,Jopp of the Bruhat cells for
FB and Fopp

B generated by VB,J consists exactly in the one space (point in Gn,d)
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WHY SHOULD THE LITTLEWOOD–RICHARDSON RULE BE TRUE? 193

VB,J and this will remain true for the associated Schubert varieties:

(2.9) ΩFB,J ∩ ΩFopp
B ,Jopp = {VB,J}.

Moreover the dimension formula (2.3) shows that ΩFB,J and ΩFopp
B ,Jopp have com-

plementary dimensions, so that

(2.10) dimΩFB,J + dimΩFopp
B ,Jopp = d(n− d) = dimGn,d.

Although the parametrization of Bruhat cells by their jump sequences is direct
and convenient, another parametrization is frequently used is by partitions or Young
diagrams. A partition α is specified by a weakly decreasing sequence of non-negative
integers, Since the entries ja of the column J recording a jump sequence are strictly
increasing, we can use them to define a partition αJ with row lengths

(2.11) αJ =

⎡⎢⎢⎢⎣
jd − d

jd−1 − (d− 1)
...

j1 − 1

⎤⎥⎥⎥⎦ .
The Young diagram DαJ

associated to αJ has at most d non-zero rows, and rows
of length at most n − d. (See §4 for an introduction to partitions and diagrams.)
Thus, it fits inside the rectangle Rd,n−d consisting of d rows of length n − d. It is
not hard to check that all such diagrams arise, and that

(2.12) J ↔ αJ ↔ DαJ

is a bijection between subsets of d of the integers from 1 to n and partitions (or
their diagrams) that fit in Rd,n−d. Also, it is clear from the definition of DαJ

that

its size (the total number of boxes it contains) is |DαJ
| =
∑d

a=1(ja − a). As we
have noted, this is the dimension of the Bruhat cell BJ :

(2.13) |DαJ
| = dimBJ .

Parametrizing Bruhat cells by diagrams also fits well with the duality described
above. Given a diagram D in the rectangle Rd,n−d, the complement Rd,n−d −D,
when rotated by 180◦, is again a diagram, which we will denote by Dopp. The row
lengths of Dopp give the partition

(2.14) αopp = αDopp =

⎡⎢⎢⎢⎣
n− d− (j1 − 1)
n− d− (j2 − 2)

...
n− d− jd − d)

⎤⎥⎥⎥⎦ = αJopp .

The prevailing convention is to label the homology class of a Schubert cell by
the partition of this complementary diagram. Thus, for a partition α, we set

(2.15) ωα = [ΩJαopp ].

Thus, the size of α gives the codimension, rather than the dimension, of ωα. Also,
inclusion of Schubert varieties corresponds to reverse inclusion of diagrams.

If we now dualize again and define σα to be the cohomology class that is
(Poincaré) dual to the homology class ωα, then the σα are a basis for the co-
homology of Gn,d. Also, note that #(α) now tells us the degree of σα. According
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194 ROGER HOWE AND SOO TECK LEE

to [Le], the cup product on cohomology can be expressed with respect to this basis
using the Littlewood-Richardson coefficients. For partitions α and β, we have

(2.16) σα · σβ =
∑
γ

cγα,βσγ .

Here the sum is over all partitions γ such that #(γ) = #(α) + #(β). Since all the
classes ωα are represented by complex subvarieties of Gn,d, equation (2.16) may be
interpreted in terms of intersection theory ([Fu3]). This says that for partitions α,
β, and γ with #(γ) = #(α) + #(β), and any three flags F , F ′ and F ′′, we have
that the cardinality of the intersection

(2.17)
(
ΩF ′,Jopp

α
∩ ΩF ′′,Jopp

β
∩ ΩF ,Jγ

)
≥ cγα,β .

In particular, the intersection is guaranteed to be non-zero exactly when the LR
coefficient cγα,β is non-zero. For generic choices of the flags, the intersection will be
exactly equal to the Littlewood-Richardson coefficient number of points.

2.4. Sums of Hermitian matrices. The involvement of the LR coefficients in
describing intersections of Schubert varieties has also implicated them in the solu-
tion ([Kl], [KT1], [KT2], [KTW], see also [Fu2]) to the Horn Conjecture, which was
a proposal for a precise answer to a long-standing problem in spectral theory: to
describe the possible eigenvalues of a sum of two Hermitian n × n matrices with
specified eigenvalues. Weyl ([W1]), using his min-max argument, established some
inequalities between the eigenvalues of A, B and A+ B for Hermitian matrices A
and B. We describe his result.

Let λj(T ), 1 ≤ j ≤ n, be the eigenvalues of the Hermitian matrix T , arranged in
order from largest to smallest. Thus, λj(T ) is the jth largest eigenvalue of T . In
this notation, for Hermitian matrices A and B, Weyl found estimates

(2.18) λa+b−1(A+B) ≤ λa(A) + λb(B)

for any positive integers a and b. Thus, if a = 1 and b = 2, this says that λ2(A+B) ≤
λ1(A) + λ2(B).

The key to Weyl’s argument involved looking at the inner products (T	v, 	v),
where ( , ) denotes the standard Hermitian inner product on C

n and 	v is a unit
vector in Cn. If BT = {	uj} is an orthonormal eigenbasis for T , with T	uj = λj(T )	uj ,
then if we express 	v =

∑
i ci	ui as a linear combination of the 	uj , we can write

(T	v, 	v) =
∑

i λi(T )|ci|2.
Now suppose that 	v belongs to the subspace UT,j spanned by the 	ui for i ≤ j.

Then the sum expressing (T	v, 	v) terminates at i = j:

(2.19) (T	v, 	v) =
∑
i≤j

λi(T )|ci|2 ≥ λj(T )
∑
i≤j

|ci|2 = λj(T )(	v, 	v) = λj(T ),

since 	v is a unit vector. A similar argument shows that if 	v belongs to U⊥
T,j , the

orthogonal complement of UT,j , then (T	v, 	v) ≤ λj+1(T ).
In the context of comparing the spectrum of A+B to those of A and B, suppose

that 	v is a unit vector belonging to U(A+B),� ∩ U⊥
A,j ∩ U⊥

B,k. Then we can say that

λ�(A+B) ≤ ((A+B)	v, 	v) = (A	v, 	v) + (B	v, 	v) ≤ λj+1(A) + λk+1(B).

Since dimUT,i = i, basic linear algebra tells us that the dimension of the intersection
must be at least  + (n − j) + (n − k) − 2n =  − (j + k). This will be positive if
 > j + k, from which inequality (2.18) follows.
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WHY SHOULD THE LITTLEWOOD–RICHARDSON RULE BE TRUE? 195

Weyl’s inequalities give useful information. In fact, for n = 2, they, along with
the obvious conditions λ1(A + B) + λ2(A + B) = tr(A + B) = tr(A) + tr(B) =
λ1(A) + λ2(A) + λ1(B) + λ2(B), completely determine the possibilities for the
spectrum of A+ B in terms of the spectra of A and B. However, already for 3×3
matrices, they do not give the whole story.

One might, therefore, ask, what other inequalities might hold between eigenval-
ues of A, B and A+B? The Horn Conjecture ([Horn]) proposed a solution, which
was verified in the late 1990s, through a combination of several authors ([Kl], [KT1],
[KTW]). The long article [Fu2] is devoted to an exposition of these results. In some
sense, the key to the solution requires just a slight reformulation of Weyl’s results.
However, arriving at the point of view that allowed this reformulation took over
60 years! ([W1], [Jo]) (And another 15 years to enter the published literature [To],
[HR].)

The inner product (A	v, 	v), for a unit vector 	v, can also be expressed as

(2.20) (A	v, 	v) = tr(P�vAP�v) = tr(P�vA),

where tr(T ) denotes the trace of the matrix T , and P�v is the orthogonal projection
to the line C	v,

(2.21) P�v(	w) =
(	w, 	v)

(	v, 	v)
	v

for a vector 	w in Cn. If C	v = L denotes the line spanned by 	v, then we will also
write P�v = PL. With this notation, the inequalities noted above on the eigenvalues
of A can be restated as

(2.22) L ⊂ UA,j ⇒ tr(PLA) ≥ λj(A)

and

(2.23) L ⊂ (UA,j)
⊥ ⇒ tr(PLA) ≤ λj+1(A).

Now, instead of a unit vector 	v, we look for a line L such that

L ⊂ U(A+B),� ∩ (UA,j)
⊥ ∩ (UB,k)

⊥.

If such an L exists, we can assert that

λ�(A+B) ≤ tr(PL(A+B)) = tr(PLA) + tr(PLB) ≤ λj+1(A) + λk+1(B).

The same dimension considerations as in the argument above give a rederivation of
the inequality (2.18).

Reviewing the discussion above in the context of §2.3, we can recognize a connec-
tion to the geometry of Grassmann varieties. Observe that the spaces UA,j define
a complete flag in C

n. It is the upper flag (see §2.3) associated to an eigenbasis for
A, ordered by decreasing size of the A-eigenvalue. Let us denote this flag by FA.
Note also that the orthogonal complements (UA,j)

⊥ form the opposite flag Fopp
A .

Moreover, a condition that L ⊂ UA,j or L ⊂ U⊥
A,j amounts to a condition that the

point in Gn,1 = P
n−1(C) represented by L belongs to a certain Schubert variety

attached to the flag FA or the flag Fopp
A . Finally, the condition yielding Weyl’s

inequalities is seen as just the condition that certain triples of Schubert varieties
in Gn,1 must intersect. (In the case of Gn,1, this is a well-known fact of linear
algebra and no cohomology need be invoked. On the other hand, the cohomology
of projective space is well understood and very simple, so it would not be delicate
to use the cohomological criterion.)
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These remarks suggest that the argument above is not restricted to lines, but
can be extended to apply to subspaces of any dimension. Consider a subspace U of
dimension d. Let PU denote orthogonal projection to U . Note that, if U = U ′⊕U ′′

is an orthogonal direct sum decomposition of U , then PU = PU ′ +PU ′′ . Continuing
this, we can see that if U =

⊕
i Li is an orthogonal direct decomposition of U into

lines, then PU =
∑

i PLi
.

For the d-dimensional subspace V of Cn, let JV = J be the jump sequence of
V with respect to the flag FA, as described in §2.3. It is not hard to argue that
we can find an orthonormal basis {	yb} for V , such that 	yb belongs to UA,jb . Using
this, and the decomposition of PV into projections corresponding to lines, as in the
previous paragraph, we can see that the argument for inequality (2.19) extends to
give

(2.24) tr(PV A) ≥
d∑

b=1

λjb(A).

Similarly, if Jopp
V = Jopp is the jump sequence of V with respect to the opposite

flag Fopp
A defined by the spaces U⊥

A,n−j , then we have inequalities in the opposite
direction,

tr(PV A) ≤
d∑

c=1

λn−joppc +1(A).

We note that the eigenvalue sums in these equations can also be expressed as traces.
Indeed,

(2.25)

d∑
b=1

λjb(A) = tr(PVJ,A
A) = trJ (A),

where VJ,A is the span of the λjb-eigenvectors for A. The last quantity in this
equation is just a shorthand notation for the previous one.

One can use these estimates to get inequalities between sums of eigenvalues of A+
B and related sums for A and B individually. Suppose that we can find a subspace
V that belongs to the intersection of Schubert varieties SF(A+B),K

∩ SFopp
A,I

∩ SFopp
B,J

for some jump sequences I, J , and K. Then, as above in the case when U was a
line, we can conclude that

trK(A+B) =

d∑
b=1

λkb
(A+B) ≤ tr(PV (A+B)) = tr(PV A) + tr(PV B)

≤
d∑

c=1

λn−jc+1(A) +

d∑
c=1

λn−kc+1(B) = trIopp(A) + trJopp(B).

(2.26)

It turns out that the inequalities (2.26), for all d, provide necessary and sufficient
conditions to characterize the eigenvalues of A+B.

Let {λj}, {μj}, and {νj}, for 1 ≤ j ≤ n, be three decreasing sequences of real
numbers. Let J be a subset of the whole numbers from 1 to n. Suppose that the
elements of J are listed in a vector, as in (2.1). We set

(2.27) λJ =
∑
j∈J

λj =

d∑
a=1

λja .
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We define μJ and νJ similarly. We let N stand for the full set of positive integers
up to n,

N = {1, 2, 3, . . . , n− 1, n}.

Theorem 2.1. In order that a sequence {νj} be the eigenvalue sequence of the sum
A + B of two Hermitian n × n matrices A and B whose eigenvalue sequences are
{λj} and {μj}, respectively, it is necessary and sufficient that

νN = λN + μN ; and
νK ≤ λIopp + μJopp

for all jump sequences I, J , and K of length d, 1 ≤ d ≤ n, such that the the

Littlewood-Richardson coefficient c
αopp

I
αJ ,αK is non-zero.

The necessity of the conditions of Theorem 2.1 follows from the discussion above,
specifically from the inequalities (2.26) and the intersection-theoretic interpretation
of the LR coefficients described in §2.3. The sufficiency is a consequence of the
Horn Conjecture (see references cited above). Theorem 2.1 is not exactly the Horn
Conjecture, which was formulated in a rather technical way in terms of recursion
on n, the size of the matrices. Rather, Theorem 2.1 might be thought of as the
essential geometric solution to the eigenvalue question, while the specifics of Horn’s
conjecture provides further information about the recursive nature of the triples
α, β, γ of partitions such that the LR coefficients cγα,β are non-zero.

One might wonder why the inequalities (2.26) should be a sufficient set of con-
ditions to characterize the eigenvalues of A+B. There are at least two aspects to
this question. First, why should linear inequalities among eigenvalues be enough
for the characterization? Second, why these inequalities?

As to the first question, the best answer seems to lie in the general “yoga”
of symplectic geometry and, in particular, of convexity properties of the moment
map for Hamiltonian actions of groups ([GS], [Kir]). These considerations apply to
the eigenvalues-of-the-sum problem, and they imply that the collection of possible
eigenvalue sequences for A + B should be a convex polyhedron in R

n. Hence, it
will be described by some collection of linear inequalities among the coordinates.

As to the second question, it is probably germane that the space of skew Her-
mitian matrices, which are just

√
−1 times Hermitian matrices, is the Lie algebra

of the unitary group U(n). A standard fact in Lie theory ([Ho1]) says that to any
representation

ρ : U(n) → UY ,

where UY is the unitary group of a complex vector space Y endowed with a Hermit-
ian inner product, there is an associated “infinitesimal” representation of the Lie
algebra: dρ : un → uY . The mapping dρ will send skew Hermitian n × n matrices
to skew Hermitian operators on Y . Since dρ is linear, it will preserve sums:

dρ(
√
−1A+

√
−1B) =

√
−1(dρ(A) + dρ(B))

(where we have abused notation somewhat to write dρ(A) = ( 1√
−1

)dρ(
√
−1A) for

a Hermitian matrix A). Thus, the unitary representations of U(n) attach a large
family of other such sums to a sum of Hermitian operators.

Among the representations of U(n), the natural actions on the exterior powers
Λd(Cn) are especially significant examples. Given a Hermitian matrix A, its image
dΛd(A) will be a Hermitian matrix on Λd(Cn). Moreover, the eigenvalues of dΛd(A)
will be exactly the set of all d-fold sums of eigenvalues of A. Thus, inequalities
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among eigenvalues of dΛd(A) and dΛd(B), and dΛd(A+B), will translate directly
into inequalities among sums of eigenvalues for A, B, and A + B. This suggests
that it would be reasonable to look for inequalities of this kind.

Furthermore, the Λd(Cn) play a distinguished role in the representation theory of
U(n) (as we will see later in this paper). They often are called the fundamental rep-
resentations of U(n), because any other representation of U(n) can be constructed
recursively from them by applications of tensor product and (virtual) direct sum.
This perhaps makes it reasonable that eigenvalue inequalities stemming from the
dΛd(A) should be particularly important in a result such as Theorem 2.1. At any
rate, this result does involve the Littlewood-Richardson coefficients directly in the
solution of a seductive problem in operator theory.

2.5. Extensions of abelian groups. A finite abelian group is canonically a prod-
uct of groups of prime power order. It is standard that a finite abelian p-group can
be expressed as a direct sum of cyclic subgroups Cpa of order pa. Furthermore, in
any direct sum decomposition A �

∏r
i=1 Cpai , the number of indices i for which

ai takes on a given value depends only on A, not on the specific decomposition.
We will call the exponents involved in the cyclic decomposition of a finite abelian
p-group the exponents of A. If we arrange the exponents of A in decreasing order,
they will form a partition of α, where #(A) = pα is the order of A. Let us denote
this partition by P (A).

If C is a finite abelian p-group and A ⊂ C is a subgroup, then we can form the
quotient B = C/A. A natural question in this context is, what is the relationship
between the partitions of A, B, and C? It is not straightforward: clearly, the size of
P (C) is the sum of the sizes of P (A) and P (B), but the individual parts of P (C) can
vary substantially for given P (A) and P (B). For example, if A ∼= Z/pZ ∼= B, then

C can be isomorphic either to (Z/pZ)2 or to Z/p2Z. It turns out that, if P (A) = D
and P (B) = E, then for a third partition F , there is an extension C of A by B such
that P (C) = F if and only if the LR coefficient cFD,E is non-zero! (We note that

the parameters describing irreducible representations of GLn(C) can effectively be
taken to be partitions; see the discussion just below in §3.) An algebraic approach
to this question was taken by P. Hall. This is discussed in [Ma]. See also [Fu2, §2].

3. Representations of GLn

In this section, we shall review some basic facts in the representation theory of
GLn = GLn(C) ([GW], [Hum], [W2]).

Let V be a finite-dimensional complex vector space and let ρ : GLn → GL(V )
be a rational representation of GLn. This means that ρ is a group homomorphism,
and for any vector v in V and any linear functional λ on V , the function on G

g → λ(ρ(g)(v))

is regular; that is, it is a polynomial in the entries of g and 1/(det g). Let Bn be
the standard Borel subgroup of upper triangular matrices in GLn. The Lie-Kolchin
Theorem ([Hum]) says that ρ(Bn) has an eigenvector v0, that is,

ρ(b)(v0) = ψ(b)v0 (b ∈ Bn),

where ψ : Bn → C
× is a character of Bn. The Borel subgroup Bn can be written

as Bn = AnUn where An is the diagonal torus of GLn and Un is the maximal
unipotent subgroup consisting of all the upper triangular matrices with 1’s on the
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diagonal. In fact, Un is the commutator subgroup of Bn, so that ψ(u) = 1 for all
u ∈ Un. Thus

ρ(u)(v0) = v0 (u ∈ Un)

and ψ is determined by its restriction to An. Now the rational characters of An can
be parametrized by Zn: for α = (α1, . . . , αn) ∈ Zn, let ψα

n : An → C× be defined
by

(3.1) ψα
n [diag(a1, . . . , an)] = aα1

1 · · · aαn
n .

Here diag(a1, . . . , an) is the n×n diagonal matrix such that its diagonal entries are
a1, . . . , an. Let

(3.2) Λ+
n = {α = (α1, . . . , αn) ∈ Z

n : α1 ≥ α2 ≥ · · · ≥ αn}
and

(3.3) Â+
n = {ψα

n : α ∈ Λ+
n }.

We call the characters in Â+
n the dominant weights of GLn. Then it is well known

that the character ψ defined by the Bn-eigenvector v0 belongs to Â+
n ,

ψ(a) = ψλ
n(a) (a ∈ An)

for some λ ∈ Λ+
n , and we call v0 a highest weight vector of weight ψλ

n. If ρ is
irreducible, then the vector v0 is unique up to scalar multiples. In this case, we call
the character ψλ

n of An the highest weight of ρ, and it determines the representation
ρ uniquely. In view of this, we shall denote ρ by ρλn. For example, if V = C, m ∈ Z,
and

ρ(g)(v) = (det g)mv g ∈ GLn, v ∈ C,

then ρ = ρm1n
n where

(3.4) 1n = (

n︷ ︸︸ ︷
1, 1, . . . , 1) and m1n = (

n︷ ︸︸ ︷
m,m, . . . ,m).

The set {ρλn : λ ∈ Λ+
n } exhausts all the irreducible rational representations of GLn.

If λ = (λ1, . . . , λn) ∈ Λ+
n is such that λn ≥ 0, then we call ρλn a polynomial repre-

sentation of GLn. Every irreducible rational representation ραn of GLn is isomorphic
to the tensor product of a polynomial representation and a power of determinant,
that is,

ραn
∼= ρλn ⊗ ρm1n

n

for some polynomial representation ρλn and integer m ∈ Z. For example, we can
take λ = (α1 − αn, α2 − αn, . . . , αn−1 − αn, 0) and m = αn.

In general, a rational representation ρ : GLn → GL(V ) can be decomposed as a
direct sum of irreducible repsentations:

(3.5) V =
⊕
α∈Λ+

n

(HomGLn(ρ
α
n, V )⊗ ραn) .

Here we abuse notation and denote the representation space of ραn also by ραn, and
HomGLn(ρ

α
n, V ) is the space of all GLn intertwining maps T : ραn → V , that is,

T (ραn(g)(v)) = ρ(g)T (v) for all g ∈ GLn and v ∈ ραn. The group GLn acts on
HomGLn

(ραn, V ) trivially. The multiplicity of ραn in V is defined as

m(V, ραn) = dimHomGLn
(ραn, V ).
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Equation (3.5) can also be written as

V =
⊕
α∈Λ+

n

m(V, ραn)ρ
α
n.

The multiplicities m(V, ραn) are closely related to the highest weight vectors in V of
weight ψα

n . Let

V Un = {v ∈ V : ρ(u)(v) = v ∀u ∈ Un}.
Then V Un is stable under the action by An, so it can be decomposed as

V Un =
⊕
α∈Λ+

n

V Un
α ,

where for each α ∈ Λ+
n ,

V Un
α = {v ∈ V Un : ρ(a)(v) = ψα

n(a)v ∀a ∈ An}

is the ψα
n -eigenspace of An. Each non-zero vector v in V Un

α is a highest weight
vector of weight ψα

n and it defines an intertwining map Tv : ραn → V as follows.
Fix a highest weight vector wα in ραn. Then there is a unique GLn intertwining
map Tv : ραn → V with the property that Tv(wα) = v. In this way, we obtain a
linear map V Un

α → HomGLn(ρ
α
n, V ) which sends v to Tv. This map is a vector space

isomorphism, so we have

(3.6) m(V, ραn) = dimV Un
α .

4. Anatomy of the LR Rule

We will now give a statement of the Littlewood-Richardson Rule. This takes a
little preparation.

A Young diagram D is an array of square boxes arranged in left-justified hori-
zontal rows, with each row no longer than the one above it ([Fu1]). If D has at
most m rows, then we shall denote it by

D = (λ1, . . . , λm),

where for each i, λi is the number of boxes in the ith row of D. For example, the
following is the Young diagram (6, 4, 4, 2).

We shall denote the number of rows in D by r(D) and the total number of boxes
in D by |D|. If |D| = n, then the sequence (λ1, . . . , λm) is also called a partition of
n.

If one Young diagram D sits inside another Young diagram F , then we write
D ⊂ F . In this case, by removing all boxes belonging to D, we obtain the skew
diagram F −D. If we put a positive number in each box of F −D, then it becomes
a skew tableau and we say that the shape of this skew tableau is F − D. If the
entries of this skew tableau are taken from {1, 2, . . . ,m} and μj of them are j for
1 ≤ j ≤ m, then we say the content of this skew tableau is E = (μ1, . . . , μm). If
T is a skew tableau, then the word of T is the sequence w(T ) of positive integers
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obtained by reading the entries of T from top to bottom and right to left in each
row. For example,

(4.1) T =

1 1 2
2 3

1 3 4
1 2

is a skew tableau of shape F−D and content E, where D = (3, 2, 1), F = (6, 4, 4, 2),
and E = (4, 3, 2, 1), and its word is given by

w(T ) = (2, 1, 1, 3, 2, 4, 3, 1, 2, 1).

A Littlewood-Richardson (LR) tableau is a skew tableau T with the following
properties:

(i) It is semistandard; that is, the numbers in each row of T weakly increase
from left-to-right, and the numbers in each column of T strictly increase
from top-to-bottom.

(ii) It satisfies the Yamanouchi word condition (YWC); that is, for each positive
integer j, starting from the first entry of w(T ) to any place in w(T ), there
are at least as many j’s as (j + 1)’s.

Note that for semistandard tableaux T , (ii) is equivalent to:

(ii)′ The number of j’s in the first a rows of T is at least as large as the number
of (j + 1)’s in the first a+ 1 rows, for j, a ≥ 1.

This is because, for a semistandard tableau, the part of the word coming from a
given row has entries that are weakly decreasing. This means that all the (j + 1)’s
in row (a+ 1) appear before any of the j’s in that row. Thus, the j’s that appear
before the (j + 1)’s of row (a + 1) must be supplied by the first a rows, and the
YWC requires the number of these j’s to be larger than the number of the (j+1)’s
in the first (a+ 1) rows.

Here are some examples. The skew tableau T given in (4.1) is semistandard, but
it does not satisfy the YWC, so it is not an LR tableau. On the other hand, one
can check that the following skew tableau T ′ is an LR tableau.

T ′ =

1 1 1
1 2

2 2 3
3 4

For Young diagrams D,E, and F , the LR coefficient cFD,E is defined as

(4.2) cFD,E = the number of LR tableaux of shape F −D and content E.

Young diagrams with at most n rows can be used to label the polynomial repre-
sentations of GLn. Let D be such a Young diagram. Then it can be identified with
an n-tuple of integers (λ1, . . . , λn) such that λ1 ≥ · · · ≥ λn ≥ 0, so it corresponds

to the dominant weight ψ
(λ1,...,λn)
n and the polynomial representation ρ

(λ1,...,λn)
n of

GLn. We shall write ψ
(λ1,...,λn)
n and ρ

(λ1,...,λn)
n as ψD

n and ρDn , respectively.
We now consider two polynomial representations ρDn and ρEn of GLn and form

their tensor product ρDn ⊗ ρEn . The Littlewood-Richardson Rule gives a description
of the multiplicities of this tensor product.
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The Littlewood-Richardson Rule

The multiplicity of ρFn in the tensor product ρDn ⊗ρEn is given by the
LR coefficient cFD,E.

5. The Pieri Rule and the LR Rule

The case of tensoring a general irreducible representation of GLn with a rep-
resentation corresponding to a Young diagram with one row (equivalently, with a
symmetric power of the standard representation), is easy to describe. It is well
known classically as the Pieri Rule.

Let D be a Young diagram, and consider the representation ρDn of GLn corre-
sponding to D. Let Sa denote the ath symmetric power of the standard action
of GLn on C

n. Then Sa � ρRa
n , where Ra is the single row containing a boxes.

The Pieri Rule first says that ρDn ⊗ Sa is multiplicity free: any irreducible repre-
sentation of GLn appears in ρDn ⊗ Sa at most one time. Second, it says that the
representations that do appear in ρDn ⊗ Sa are the ρEn , where E is a diagram such
that

i) D ⊂ E; and
ii) E −D is a skew-row containing a boxes.

The term “skew-row” means that any column of E is at most one box longer than
the corresponding column of D, or equivalently, that each column of E contains at
most one box that is not in D. This includes the possibility that E has a column
of length one where D had no column at all, i.e., the first row of E may be strictly
longer than the first row of D. In Figures 5.1 and 5.3, the numbered boxes form a
skew row, but in Figures 5.2 and 5.4 they do not.

From these conditions, we can see what the result will be if we tensor with several
symmetric powers Saj in succession. We consider the multiple tensor product

(5.1) Ω = ρDn ⊗

⎛⎝ k⊗
j=1

Saj

⎞⎠ .

Each constituent of Ω will be described by a nested sequence D = D0 ⊂ D1 ⊂
D2 ⊂ · · · ⊂ Dk of Young diagrams, with each difference Dj − Dj−1 being a skew
row.

We can also describe such a succession by means of skew tableaux. Fill the boxes
of D1 − D0 with 1’s. Fill the boxes of D2 − D1 with 2’s. And so on. The result
will be that the skew diagram Dk −D0 is filled with the numbers 1 through k: we
have constructed a skew tableau that describes a constituent of the multiple tensor
product. Furthermore, the condition that Dj ⊃ Dj−1 implies that the entries of the
tableau are weakly increasing along any row. Also, the condition that Dj −Dj−1

is a skew row implies that the entries of the tableau are strictly increasing down
any column. In other words, the skew tableaux that describe the successive tensor
products with symmetric powers are semistandard. It is also not hard to convince
oneself that, given a semistandard skew tableau living in the skew diagram Dk−D0,
there is a succession of nested subdiagrams Dj such that Dj −Dj−1 is a skew row;
namely Dj is the diagram whose boxes contain numbers i ≤ j. The condition
of weakly increasing indices along rows implies the nestedness of the Dj , and the
condition of strictly increasing indices down columns implies that Dj −Dj−1 is a
skew row. Thus, on the one hand, nested sequences of diagrams satisfying condition
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T1 =

1
1

2
2

T2 =

1
2

1
2

T3 =

1
2

2
1

T4 =

2
1

1
2

T5 =

2
1

2
1

T6 =

2
2

1
1

Figure 5.1. Semistandard tableaux of shape D2 −D0 and content (2, 2).

ii) at each step and, on the other hand, semistandard skew tableaux are two ways
of describing the same set—the set of constituents of the multiple tensor product
Ω of formula (5.1).

Here is an example. Let n ≥ 4, D = D0 = (3, 2, 1), and D2 = (4, 3, 2, 1). Then
D2−D0 is a skew row, consisting of the bottom box in each column of D2. Consider
the tensor product ρDn ⊗ S2 ⊗ S2. There are six semistandard tableaux of shape
D2 −D0 and content (2, 2); see Figure 5.1. It follows that the multiplicity of ρD2

n

in the tensor product ρDn ⊗ S2 ⊗ S2 is 6.
An analogous situation holds if we look at tensor products with exterior powers

Λb of Cn. A tensor product ρDn ⊗ Λb is always multiplicity free. Its constituents
consist of representations ρEn such that

i) D ⊂ E; and
ii) E −D is a skew column containing b boxes.

The term “skew column” means that each row of E contains at most one box not
contained in D, or equivalently, that each row of E is at most one box longer than
the same row of D. This includes the possibility that E has a row of length one
where D had no row at all; that is, the first column of E may be strictly longer
than the first column of D.

From these conditions, we can see what the result will be if we tensor with several
exterior powers Λbj in succession. Consider the multiple tensor product

(5.2) Ψ = ρDn ⊗

⎛⎝ r⊗
j=1

Λbj

⎞⎠ .

Each constituent of Ψ will be described by a nested sequence D = D0 ⊂ D′
1 ⊂

D′
2 ⊂ · · · ⊂ D′

r of Young diagrams, with each difference D′
j −D′

j−1 being a skew
column.

We could identify such a nested sequence with a tableau by filling D′
j − D′

j−1

with the number j. Just as in the case of tensoring with symmetric powers, this
tableau would allow us to reconstruct the sequence D′

i, and so would uniquely label
the constituents of the multiple tensor product.

However, this labeling will tend to produce skew diagrams that are not semi-
standard. We want to consider an alternative labeling scheme for tableaux to record
the constituents. In the skew column of D′

j − D′
j−1, of length bj , we will put the

numbers 1 through bj consecutively down the skew column. We will call this the
standard filling of a skew column.
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1
2 1

2 3

Figure 5.2. A non-peelable tableau satisfying YWC.

1
2 1

2

Figure 5.3. A peelable, but not standard-peelable, tableau.

Unfortunately, this labeling of the skew columns of a constituent of a multiple

tensor product does not uniquely determine the constituents of ρD0
n ⊗
(⊗r

j=1 Λ
bj
)
;

it is easy to produce examples where different sequences of nested diagrams produce
the same tableau. For example, the tableau T1 in Figure 5.1 can be produced by
four standard fillings. However, standard filling does produce tableaux that satisfy
the YWC; clearly with this scheme, for every box labeled j, there is a box labeled
j − 1 in a higher row.

In fact, giving each skew column the standard filling produces a tableau that
satisfies a stronger condition than the YWC: it is peelable. If we have a skew
tableau in a skew diagram E −D, then we say we can peel a skew column off the
tableau, if we can find a diagram E1, with D ⊂ E1 ⊂ E, such that

i) E − E1 is a skew column, and
ii) E − E1 has the standard filling.

We say that the tableau E−D is peelable if we can find a sequence of peelings that
exhaustsE−D. That is, we can find a sequence E = E0 ⊃ E1 ⊃ E2 ⊃ · · · ⊃ Er = D
such that each difference Cj = Ej − Ej+1 is a skew column with the standard
labeling.

Among all skew columns that can be peeled off a diagram, there will be a longest
possible length. Among all longest peelable skew columns, there will be one with a
1 in the highest possible row, a 2 in the highest possible row below that, a 3 in the
highest possible row below that, and so forth. We will call this the standard-peelable
column. We will say that a tableau is standard peelable if it allows a peeling by
standard-peelable columns.

The following is evident:

Lemma 5.1. (a) The tableaux obtained by filling the successive skew columns of a

constituent of Ψ with the standard filling will produce a peelable tableau.
(b) A peelable tableau satisfies YWC.

We can see by example that YWC does not imply peelability, and that a peelable
tableau may not be standard peelable. See Figures 5.2 and 5.3. It is also easy to
see that a tableau satisfying YWC or that is peelable or even standard peelable,
need not be semistandard. Indeed, the Figures 5.2 and 5.3 are not semistandard,
and Figure 5.4 is a standard-peelable tableau that is also not semistandard.
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1
1

2
2

Figure 5.4. A standard-peelable, but not semistandard, tableau.

However, in [HTW3, §2.3.3], the following result is proved:

Proposition 5.2. A semistandard tableau satisfying YWC is standard peelable.
Moreover, the standard-peelable column at any stage is (weakly) longer than the
standard-peelable column of the next stage.

It is worth remarking also that, although a peelable tableau might not be
uniquely peelable, a tableau can have at most one standard peeling, by virtue
of the definition of standard peeling.

We have been discussing how to decompose the tensor products Ω of formula
(5.1) or Ψ of formula (5.2) by starting with the representation ρDn and tensoring
successively with symmetric (resp., exterior) powers. However, we may alternatively

regard Ω as the tensor product of ρDn with the single representation
⊗k

j=1 S
aj ,

gotten by tensoring all the symmetric powers together. This representation is highly
reducible; its irreducible components are found by applying the principles above to
the case of D = ∅, the empty diagram. Thus, the constituents are described by
all semistandard tableaux containing aj boxes filled with j. Suppose that the row
lengths aj are weakly decreasing, so that they are the lengths of the rows of a Young
diagram E. Then there is exactly one such tableau that fills the diagram E. This
is the tableau in which all boxes in the jth row of E are filled with j.

We can make a qualitative statement about the other constituents of
⊗k

j=1 S
aj .

Recall that the set of Young diagrams has a partial ordering. It can be defined in
terms of moving boxes or in terms of row lengths. In terms of row lengths, we say
that given two diagrams F and G, then F ≥ G provided first ([Fu1]), that F and
G have the same number of boxes and second, the sum of the lengths of the first r
rows of F is at least as large as the sum of the lengths of the first r rows of G, for
each positive integer r.

Proposition 5.3. (a) If the aj are the lengths of the rows of the diagram E, then

the tensor product
⊗k

j=1 S
aj contains the representation ρEn with multiplic-

ity one.

(b) If ρGn is a constituent of
⊗k

j=1 S
aj , then G ≥ E.

Proof. Since each time we tensor with a symmetric power, we add a skew row to a
diagram and we see that, if we start with the empty diagram, then after tensoring
with s factors Saj , we can only obtain diagrams with at most s rows. The number
of boxes in these diagrams will be the sum of the aj for 1 ≤ j ≤ s, that is, it is
equal to the number of boxes in the first s rows of E. Hence, the number of boxes
in the first s rows of any tableau produced by this process is at least equal to the
number of boxes in the first s rows of E. Since this is true for each s, if we take into
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account our description of the diagram ordering, statement b) of the proposition
follows directly. �

On the other hand, if we make the analogous construction with columns, we get
a quite different set of constituents.

Proposition 5.4. (a) If the bj are the lengths of the columns of the diagram E,

then the tensor product
⊗r

j=1 Λ
bj contains the representation ρEn with mul-

tiplicity one.
(b) If ρGn is a constituent of

⊗r
j=1 Λ

bj , then E ≥ G.

Proof. The diagram G is built up out of skew columns of lengths equal to the
columns of E. The skew column based on the column of E of length bj can have
at most min(s, bj) boxes in the first s rows of G. Thus, the number of boxes in the
first s rows of G will not exceed the number of boxes in the first s rows of E, which
means that E ≥ G, as claimed. The only way to get exactly E by this process is
for each column of E to fill consecutive rows of the diagram, starting with the first
row. Thus, the multiplicity of E is one. �

Corollary 5.5. If the diagram E has rows of lengths aj and columns of lengths

b�, then the multiple tensor products
⊗k

j=1 S
aj and

⊗r
�=1 Λ

b� have exactly one

irreducible constituent in common, namely one copy of ρEn .

Remarks. a) Corollary 5.5 is closely related to the reasons for the success of the
construction of representations of the symmetric group by Young symmetrizers
([W2], [Fu1]), and it is linked by Schur duality to the use of Young symmetrizers
to construct the representations of GLn.

b) Propositions 5.3 and 5.4, as well as Corollary 5.5 should perhaps be taken as
part of the folklore of the subject. We have not conducted a search to find them in
the literature.

c) Proposition 5.3 is also related to the decomposition (7.13), which exhibits

multiplicities in
⊗k

j=1 S
aj as equal to multiplicities of weight spaces for a maximal

torus in irreducible representations. These multiplicities are known as Kostka num-
bers ([Fu1]). This interpretation translates Proposition 5.3 into well-known facts
about Kostka nubmers (i.e., the unitriangularity of the Kostka matrix with respect
to the dominance order on Young diagrams)([Fu1]).

The above considerations can help us to accept that the combination of semis-
tandardness and the YWC might be the appropriate conditions to put on tableaux
in order to count constituents of a tensor product. Let D and E be two Young
diagrams. Let aj be the lengths of the rows of E, and let b� be the lengths of the
columns of E. Consider the tensor products Ω of formula (5.1) and Ψ of formula
(5.2). By Propositions 5.3 and 5.4, both of these tensor products contain the tensor
product ρDn ⊗ ρEn . Moreover, Ω is a sum of tensor products ρDn ⊗ ρGn over diagrams
G ≤ E, and Ψ is a sum of tensor products ρDn ⊗ ρHn over diagrams H ≥ E. Except
for the unique summand ρDn ⊗ρEn , none of the summands constituting Ω is the same
as any of the summands constituting Ψ.

We have seen how to label the constituents of Ω with semistandard skew tableaux.
We have also seen how to label the constituents of Ψ by peelable skew tableaux.
This latter labeling is non-unique, but for the subset of standard-peelable tableaux,
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there is only one possible standard peeling.1 If we would like to believe that these
labelings are not purely formal devices, but capture something significant in the
structure of these representations, we might hope that the skew tableaux which
appear in both labelings are exactly the skew tableaux that describe the unique
common constituent ρDn ⊗ ρEn of Ω and Ψ. According to Proposition 5.2, this is
exactly the assertion of the Littlewood-Richardson Rule.

6. The two-rowed case

The original paper of Littlewood and Richardson ([LR]) established the LR Rule
in the case of tensor products ρDn ⊗ ρEn , where E has two rows. In this section, we
will revisit their argument. It will be shown in §7 that the two-rowed case, applied
in a slightly more general context, in fact implies the general case.

As noted in §5, we know how to tensor with one-rowed representations: the Pieri
Rule tells us how to find the constituents. By iterating this process, we can find
the tensor products ρDn ⊗ ρEn for any diagram E, but hidden in a sum that includes
many other tensor products. This gives us an approach to determining ρDn ⊗ ρEn :
try to isolate it in the multiple tensor product Ω. This is the strategy of Littlewood
and Richardson for two-rowed diagrams E.

Let ρ
(a,b)
n denote the representation attached to the two-rowed Young diagram

with rows of lengths a and b ≤ a. The basic observation is that
(6.1)

Sa ⊗ Sb �
b⊕

j=0

ρ(a+b−j,j)
n � ρ(a,b)n ⊕

⎛⎝b−1⊕
j=0

ρ(a+b−j,j)
n

⎞⎠ � ρ(a,b)n ⊕ (Sa+1 ⊗ Sb−1).

This says that to find the constituents of ρDn ⊗ρ
(a,b)
n , we can look at the constituents

of ρDn ⊗ Sa ⊗ Sb and try to figure out which of them could not come from ρDn ⊗
Sa+1 ⊗ Sb−1.

We know that the constituents of ρDn ⊗ Sa ⊗ Sb are labeled by a sequence D ⊂
E ⊂ F of diagrams, such that E −D and F −E are skew rows with a boxes and b
boxes, respectively. Consider first the case when F −D is a skew row and a skew
column at the same time. This means that the a+ b boxes of F −D are distributed
in a+ b different rows and a+ b different columns. This is the situation in Figure
5.1.

A constituent of ρDn ⊗ Sa ⊗ Sb isomorphic to ρFn is specified by distributing a
1’s and b 2’s in the a + b boxes of F − D. This distribution of 1’s and 2’s must
make F −E into a semistandard skew tableau. Since we are assuming that F −E
is both a skew row and a skew column, the semistandard conditions are vacuous,
and any distribution of a 1’s and b 2’s among the a + b boxes is allowable. Such
a distribution is determined by deciding where to put the 1’s, so there are in all

1Another aspect of non-uniqueness affects both labelings: the tensor products
⊗k

j=1 S
aj and

⊗r
�=1 Λ

b� do not depend on the order of the factors. However, the labelings that will result from
the procedures defined above do depend on the order of the factors. For example, aj counts the
number of js that appear in the skew tableau of Ω. If we change the order of the factors in
⊗k

j=1 S
aj , we will change the content of the resulting tableaux. In particular, we have no chance

of getting any tableaux satisfying the YWC unless the aj are arranged in decreasing order—that
is, unless they form the row lengths of a Young diagram. Similarly, in order for a constituent of⊗r

�=1 Λ
b� to correspond to the standard peeling of a peelable semistandard tableau, the b� must

be arranged in increasing order.
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�

� [
6
5

]

Figure 6.1. The path corresponding to the sequence (1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2)

(
a+b
a

)
possible tableaux. Similarly, if we look at components of ρDn ⊗ Sa+1 ⊗ Sb−1

isomorphic to ρFn , we see that there are
(
(a+1)+(b−1)

a+1

)
=
(
a+b
a+1

)
. In order for the

LR formula to hold in this case, we should therefore have that the number of LR
tableaux among all the possible tableau, which is to say, the number of tableaux
satisfying YWC should be

(
a+b
a

)
−
(
a+b
a+1

)
.

To see that this is true, it is helpful to think of the binomial coefficients in terms

of paths in the plane. Consider paths in (Z+)2 that start at
[

0
0

]
and at each step,

move either one space to the right (add
[

1
0

]
) or one space up (add

[
0
1

]
). We will

call these increasing paths. Then the number of increasing paths leading from the

origin to
[

a
b

]
is just the binomial coefficient

(
a+b
b

)
. See Figure 6.1 for an example

of an increasing path.
The YWC for the tableaux we are dealing with amounts to the requirement that

if we list the contents of the boxes starting from the top, then at any stage in the
list, we should have written at least as many 1’s as 2’s. If we map tableaux to
paths by letting a 1 correspond to moving to the right, and letting a 2 correspond
to moving up, then the YWC translates into the condition that our path should
never go above the diagonal line y = x in the plane. Thus, the following lemma
tells us that we have the right number of LR tableaux.

Lemma 6.1. The increasing paths from
[

0
0

]
to
[

a
b

]
that go above the diagonal

(that is, that pass through a point
[

m
n

]
with n > m), are in one-to-one correspon-

dence with the increasing paths from
[

0
0

]
to
[

a + 1
b − 1

]
.

Remarks.

a) The argument of Littlewood and Richardson does not use the imagery of
paths, but it is formally equivalent to this one.

b) The condition that a path not go above the diagonal is involved in the
definition of Catalan numbers ([Sta]). Catalan numbers are concerned with
the case a = b. An argument like the one below for this case can be found in
the combinatorics literature. See for example [FH]. Despite some inquiries,
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we did not find a reference for the case of general (a, b). However, the
argument is no different in the general case than when a = b.

c) In this lemma, one can see the beginning of Littelmann’s path model ([Lim])
for representations.

Proof. The main idea of the proof is illustrated in Figure 6.2. Let P be an increasing

path from the origin to
[

a
b

]
that rises above the main diagonal. We replace P

as in Figure 6.1 with a path P ′ going to
[

a + 1
b − 1

]
by strategically altering a single

move of P.
We want to keep track of the height of points above the diagonal. Thus, for a

point p =
[

x
y

]
of the plane, let h(p) = y−x be the vertical distance from p to the

diagonal line.

We look at the first point po =
[

n
m

]
at which the path P rises to the greatest

height above the diagonal. That is, h(po) is the maximum value of h among all
points on the path, and n is the smallest first coordinate at which this maximum
is attained. Notice that the origin is the first point on P for which h ≥ 0, so that
if po is not the origin, then h(po) > 0; that is, po lies strictly above the diagonal.

Since po is the first point where h is maximal on P, the path P must have moved

up to get to po; that is, the point on P just before po must be
[

m − 1
n

]
. Also,

since h(po) is maximal on P, the next move of P must be to the right, that is, the

next point after po on P must be
[

m + 1
n

]
.

We modify P to get a different path P ′, as follows. Instead of moving up at[
m − 1

n

]
, P ′ moves to the right. Thereafter, all the moves of P ′ are the same as

for P. Thus, P ′ has all the same moves as P, except the (m+ n)-th move is right
instead of up. In terms of points on the paths, the points of P and P ′ agree up

to
[

m − 1
n

]
, and thereafter, each point of P ′ is obtained from the corresponding

point of P by shifting by
[

−1
1

]
: one step right and one step down. It is therefore

clear that the endpoint of P ′ will be
[

a
b

]
+
[

1
−1

]
=
[

a + 1
b − 1

]
. Again, we refer to

Figure 6.2.
We claim that this procedure produces a bijection between increasing paths from

the origin to
[

a
b

]
that rise above the diagonal and all increasing paths to

[
a + 1
b − 1

]
.

To see that this is true, consider what the path P does after reaching
[

m
n

]
. Since

P never moves above the diagonal containing
[

m
n

]
, we see that after arriving at[

m
n

]
, the number of times that P moves up never exceeds the number of times

P moves right. Since the moves of P ′ from
[

m + 1
n − 1

]
are the same as the moves

of P from
[

m
n

]
, it follows that, after leaving

[
m + 1
n − 1

]
, P ′ never rises above the

diagonal containing
[

m + 1
n − 1

]
. Since

[
m
n

]
is the first point on the highest diagonal

reached by P, it follows that
[

m
n − 1

]
is on the highest diagonal reached by P ′,

and that it is the last point of P ′ on this diagonal.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



210 ROGER HOWE AND SOO TECK LEE

� �
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po
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P′

[
a
b

]

. . . . . . . . . . . . . ...
..
..
...............................

..

..

..

.[ a + 1
b − 1

]

Figure 6.2. An illustration of the paths P and P ′

This tells us how to reconstruct P from P ′; we look for the last point
[

m′

n′

]
on

the highest diagonal reached by P ′. The move from this point must be to the right,
since moving up would take P ′ to a higher diagonal. We replace the move to the

right from
[

m′

n′

]
with a move up, and leave all the other moves the same. This

will reconstitute P from P ′.
Any increasing path P ′ to

[
a + 1
b − 1

]
from the origin always reaches the main

diagonal (since it starts at the origin, which is on the main diagonal). Hence, the
path P constructed in the previous paragraph from P ′, will rise above the main

diagonal. Also, it will clearly end at
[

a
b

]
. Thus, we can construct an inverse to

the map P → P ′, so the claim is established. The lemma follows directly from the
claim. �

Here is an example to illustrate the bijection described in Lemma 6.1. Again we
consider the tensor product ρDn × S2 ⊗ S2 where D = (3, 2, 1). For F = (4, 3, 2, 1),
there are six semistandard tableaux T1, . . . , T6 of shape F −D and content (2, 2),
as shown in Figure 5.1. Each of these tableaux can be identified with an increasing

path from the origin to the point
[

2
2

]
. Among these paths, those which correspond

to T3, T4, T5, and T6 rise above the origin, and we alter them according to the

procedure described in Lemma 6.1. The new paths now end at
[

3
1

]
, so they

correspond to semistandard tableaux of shape F − D with content (3, 1). The
explicit correspondence on tableaux in this case is given in Figure 6.3. In particular,
T ′
3, T

′
4, T

′
5, T

′
6 give all the semistandard tableaux of shape F −D and content (3, 1).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WHY SHOULD THE LITTLEWOOD–RICHARDSON RULE BE TRUE? 211

T3 =

1
2

2
1

→ T ′
3 =

1
2

1
1

T4 =

2
1

1
2

→ T ′
4 =

1
1

1
2

T5 =

2
1

2
1

→ T ′
5 =

1
1

2
1

T6 =

2
2

1
1

→ T ′
6 =

2
1

1
1

Figure 6.3. Correspondence on tableaux.

Lemma 6.1 tells us that under the assumption that F −D is a skew row and a
skew column, the LR tableaux count the difference between the ρFn constituents of
ρDn ⊗ Sa ⊗ Sb and the ρFn constituents of ρDn ⊗ Sa+1 ⊗ Sb−1. According to formula

(6.1), these constituents must come from ρDn ⊗ρ
(a,b)
n . Thus the LR formula is correct

in this case.
Consider now what happens if F −D is not both a skew row and a skew column.

Suppose first that it is a skew row, but not necessarily a skew column. Consider a
semistandard tableau T filling F −D. We again consider T as a list. We list the
entries of T from right to left. Since right to left is compatible with top to bottom,
the YWC again guarantees that, at any point in the list, the number of 2’s never
exceeds the number of 1’s up to that point.

We can again think of T as defining an increasing path P = P(T ) in the plane,

from origin to
[

a
b

]
. The fact that F−D is not a skew column puts some constraints

on what P can be. We can take the row structure of F − D into account by
partitioning the list defining T into subsets consisting of the entries corresponding
to boxes in the same row of F −D. These will be consecutive subsets of the list T .
Call them the row subsets. The semistandard condition amounts to requiring that
in a row subset the 2’s must precede the 1’s. If we translate this to the path P,
this becomes the condition, that in a sequence of steps belonging to a row subset,
the up moves should precede the right moves. This means that part of the path
corresponding to a row subset looks like an upside down L—it has only two legs,
with the upward leg preceding the rightward leg. Of course, either leg could have
length zero.

Now consider the construction described above, for converting P to P ′. This
proceeds by replacing an upward step by a rightward step. As we noted in the
discussion, since it is timed to occur at the first time the highest diagonal is reached,
it always happens at a point when an upward step is followed by a rightward step.
In other words, it happens at the high point of one of the inverted L’s defined by
the row subsets, and it converts such an inverted L to another one, with one less
vertical step, and one more rightward step. Thus, the mapping from P to P ′ will

take the set of increasing paths from the origin to
[

a
b

]
and satisfying the row-set

constraints, to the set of paths from the origin to
[

a + 1
b − 1

]
, and satisfying the row-

set constraints. We can also see that the inverse mapping likewise respects the row-
set constraints. Thus, the bijection constructed for Lemma 6.1 restricts to define a
bijection between the tableaux representing ρFn constituents of ρDn ⊗ Sa+1 ⊗ Sb−1
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and the tableaux representing ρFn constituents of ρDn ⊗Sa ⊗Sb that violate the LR
condition. Hence, the LR tableaux again count the difference between these two

multiplicities, which must be accounted for by the constituents of ρDn ⊗ ρ
(a,b)
n .

Finally, consider the general case, when F − D is not necessarily a skew row.
Since it is the union of two skew rows, the columns of F −D are of length at most
two. The semistandardness condition gives us no choice about how to fill a column
of length two: the upper box must be filled with a 1, and the lower box must be
filled with a 2.

Also, the columns of length two occur when a row of the skew row of E − D
overlaps a row of the skew row of F − E, where E is the intermediate diagram
between D and F . Of course, this diagram will vary from tableau to tableau but
the overlaps are determined solely by the skew diagram F−D. The overlaps always
occur on the left end of a row of E −D and on the right end of a row of F − E.

If we just delete, or ignore, the columns of F that contain length two columns
of F −D, then the remaining boxes of F −D form a skew row. If there are c such
columns, it requires c 1’s and c 2’s to fill them. This leaves (a− c) 1’s and (b− c)
2’s to fill the remaining boxes of F −D. Or, if we are looking at the constituents
of ρDn ⊗ Sa+1 ⊗ Sb−1, then we would have (a + 1 − c) 1’s and (b − 1 − c) 2’s to
fill the remaining boxes. In other words, after filling the columns of length two in
the unique possible way, we are left with a the same problem we considered when
F −D was a skew row, except with fewer boxes. Hence, by our previous argument,

the LR tableaux count the constituents of ρDn ⊗Sa⊗Sb that come from ρDn ⊗ ρ
(a.b)
n

The above argument is equivalent to the proof of Littlewood and Richardson for
the truth of their rule when the second factor in the tensor product has two rows.
When understood on the purely combinatorial level, it does not extend directly
to the general case. However, by combining it with the results of [HTW3] and
[HL], it can be made to imply the full LR Rule. The constructions of [HTW3] and
[HL] give collections of linearly independent highest weight vectors in any tensor
product ρDn ⊗ ρEn , and these collections can be directly seen to be counted by LR
tableaux. This implies that the LR numbers are lower bounds for the tensor product
multiplicities. The fact that the LR Rule is correct when E has two rows shows
that the collections constructed in [HL] span the appropriate space of highest weight
vectors for this case, so that they form bases for the relevant spaces. As will be
seen in §7, this further implies that the constructions of [HTW3] and [HL] in fact
yield bases for all relevant spaces of highest weight vectors, implying the general
LR Rule.

7. The general case

7.1. Recollections from classical invariant theory; the scheme of the proof.
Our proof of the general case of the LR Rule uses classical invariant theory, or more
precisely, what in some sense is the core result of classical invariant theory from a
modern perspective, the phenomenon of (GLn,GLm)-duality. We recall it here.

Let P(Mn,m) be the algebra of polynomial functions on the space Mn,m =
Mn,m(C) of n × m complex matrices. We use the standard matrix entries xjk :
1 ≤ j ≤ n; 1 ≤ k ≤ m of the typical n × m matrix X as coördinates on Mn,m so
that the polynomial functions are sums of the monomials

xα =
∏
j,k

x
αjk

jk ,
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where α is an n×m matrix of non-negative integers with entries αjk.
The group GLn ×GLm acts on Mn,m, with GLn acting by multiplication on the

left and GLm by multiplication on the right. To distinguish the two actions, we
shall label GLm and all its subgroups with a ′ to indicate that they act by right
multiplication. From this we can define an action of GLn × GL′

m on P(Mn,m) by
the formula

(7.1) [(g, h).(f)](X) = f(gtXh),

for g ∈ GLn, h ∈ GL′
m, X ∈ Mn,m, and f ∈ P(Mn,m). Here gt is the transpose of

g. (GLn,GLm) duality describes the decomposition of this action into irreducible
representations.

Theorem 7.1. Under the action of GLn × GL′
m on P(Mn,m) given in equation

(7.1), P(Mn,m) has the following decomposition into irreducible GLn ×GL′
m mod-

ules:

(7.2) P(Mn,m) �
∑

r(F )≤min(n,m)

ρFn ⊗ ρFm.

(GLn,GLm)-duality may be regarded as an analog or generalization of the Peter-
Weyl Theorem ([BD]) for the unitary group. It has been discovered independently
by various authors. See the discussion in [Ho2]. We do not know its first explicit
appearance in the literature. For a proof and discussion of its uses in classical
invariant theory, see [Ho2] or [GW].

Our first use of (GLn,GLm)-duality is to provide a model for the representations
of GLn and of their tensor products. Recall that U ′

m ⊂ GL′
m is the group of

upper triangular unipotent matrices in GL′
m, and A′

m is the subgroup of diagonal
matrices. As discussed in §3, the theorem of the highest weight says that for
any representation ρFm of GL′

m, the space (ρFm)U
′
m of U ′

m-invariant vectors is one
dimensional and is an eigenspace for A′

m with eigencharacter ψF
m. This implies that

(7.3) P(Mn,m)U
′
m �

⎛⎝ ∑
r(F )≤min(n,m)

ρFn ⊗ ρFm

⎞⎠U ′
m

�
∑

r(F )≤min(n,m)

ρFn ⊗ (ρFm)U
′
m .

In other words, the algebra P(Mn,m)U
′
m of U ′

m-invariant functions in P(Mn,m) de-
composes as a GLn-module into a sum of one copy of each irreducible representation
ρFn . Moreover, since the action of GLn ×GL′

m and, in particular, the action of A′
m

is by algebra automorphisms, the algebra structure is graded by the highest weights
ψF
m of A′

m, with each A′
m-eigenspace consisting of a single irreducible representation

of GLn.
Variations on this theme let us construct many other related subalgebras. The

next example shows how to study the tensor product problem in this context
([HTW3]).

We write m = k+ , which gives us an isomorphism Mn,m � Mn,k ⊕Mn,�, where
we think of Mn,k as defining the first k columns of an n ×m matrix, and Mn,� as
the last  columns. Looking at the polynomial rings, we have

(7.4) P(Mn,m) = P(Mn,k ⊕Mn,�) � P(Mn,k)⊗ P(Mn,�).
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If we apply (GLn,GLm)-duality to each of P(Mn,k) and P(Mn,�), and then follow
with the construction of formula (7.3), we obtain

P(Mn,m)U
′
k×U ′

� �

⎛⎝ ∑
r(D)≤min(n,k)

ρDn ⊗ (ρDk )U
′
k

⎞⎠⊗

⎛⎝ ∑
r(E)≤min(n,�)

ρEn ⊗ (ρE� )
U ′

�

⎞⎠
�
∑
D,E

(
ρDn ⊗ ρEn

)
⊗
(
(ρDk )U

′
k ⊗ (ρE� )

U ′
�

)
.(7.5)

Here we obtain one copy of each possible tensor product of representations of GLn

(subject to some restriction on the depth of the diagrams involved). Again, the
algebra is graded, this time by characters ψD

k × ψE
� of A′

k × A′
�. Of course, we

can think of GL′
k × GL′

� ⊂ GL′
m as a block diagonal subgroup, and under this

identification, we have A′
k × A′

� � A′
m, so the grading of P(Mn,m)U

′
k×U ′

� may be

thought of as a grading by Â′+
m .

We can iterate the process of the previous paragraph, decomposing Mn,k or
Mn,� into subsets of columns, and so forth, and obtain corresponding subalgebras
of P(Mn,m). Thus, we could consider any decomposition Γ = (k1, . . . , kc) of m into
pieces ki, so that m =

∑c
i=1 ki. To this decomposition, we can associate the block

diagonal subgroup

(7.6) M ′
Γ =

c∏
i=1

GL′
ki

⊂ GL′
m,

where GL′
ki

is the subgroup of GL′
m that acts on the variables xa,j for 1 ≤ a ≤ n

and
(∑i−1

b=1 kb

)
+ 1 ≤ j ≤

∑i
b=1 kb, and leaves the other variables unchanged. Let

(7.7) U ′
Γ =

c∏
i=1

U ′
ki

⊂ U ′
m

be the group of unipotent upper triangular matrices in M ′
Γ. We can look at the

subalgebra

(7.8) A(Γ) = A(k1, . . . , kc) = P(Mn,m)U
′
Γ .

The summands of this algebra will be c-fold tensor products of representations of
GLn, with the depth of the diagram labeling the ith factor being bounded by ki.
More precisely, A(Γ) is a module for GLn ×

(∏c
i=1 A

′
ki

)
and can be decomposed as

A(Γ) � P
(

c⊕
i=1

Mn,ki

)U ′
Γ

�
c⊗

i=1

P (Mn,ki
)
U ′

ki

�
c⊗

i=1

⎛⎝ ∑
r(Di)≤min(n,ki)

ρDi
n ⊗ (ρDi

ki
)U

′
ki

⎞⎠
�

∑
D1,...,Dc

(
ρD1
n ⊗ · · · ⊗ ρDc

n

)
⊗ (ρD1

k1
)U

′
k1 ⊗ · · · ⊗ (ρDc

kc
)U

′
kc .(7.9)

Also, this algebra is graded by characters of
∏c

i=1 A
′
ki

� A′
m. The subalgebras

A(Γ) corresponding to the various decompositions Γ of m have obvious inclusion
relations, with one containing another when one decomposition refines another.
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The extreme case of this is when c = m and all the ki are equal to 1. Then all
the U ′

ki
are equal to the identity, and we are just dealing with the full polynomial

ring P(Mn,m), decomposed as an m-fold tensor product:

(7.10) P(Mn,m) � P(Cn)⊗
m

.

Of course, the polynomial ring in n variables is decomposed into the subspaces of
polynomials of given degree:

(7.11) P(Cn) =
∞∑
d=0

Pd(Cn).

The spaces

(7.12) Pd(Cn) � ρ(d)n

are just the symmetric powers of the standard representation of GLn on Cn. (It
might seem that they should be the duals of the symmetric powers, but we have
defined the action of GLn on P(Mn,m) to be dual to what might seem natural, in
order to make equation (7.12) true.) At the same time, of course, the Pd(Cn) are
also the eigenspaces for the scalar operators, f(t	v) = tdf(	v) for f ∈ Pd(Cn). Thus,
we obtain the decomposition

(7.13) P(Mn,m) �
∑
di≥0

ρ(d1)
n ⊗ ρ(d2)

n ⊗ · · · ⊗ ρ(dm)
n

of P(Mn,m) into eigenspaces for A′
m � (A′

1)
m, and each eigenspace is described as

a tensor product of symmetric powers of Cn, which are the representations of GLn

labeled by diagrams with one row.
Each of the algebras A(k1, . . . , kc) is invariant under GLn, so a natural question

to ask is, how does A(k1, . . . , kc) decompose as a representation for GLn? A strong
form of an answer to this question would be provided by a description of the subal-
gebra A(k1, . . . , kc)

Un of GLn highest weight vectors in A(k1, . . . , kc). This would
give a description of the GLn highest weight vectors in each summand

ρD1
n ⊗ · · · ⊗ ρDc

n

of formula (7.9), which by highest weight theory determine the GLn-module struc-
ture of this multiple tensor product. In particular, a description of A(k, )Un for
k+  = m would provide an answer to the problem of decomposing tensor products
of representations of GLn. In fact, the algebraA(k, )Un is a module for An×Ak×A�

and can be decomposed as

(7.14) A(k, )Un =
∑

F,D,E

EF,D,E ,

where each EF,D,E is the ψF
n ×ψD

k ×ψE
� eigenspace for An×Ak×A�. So the algebra

A(k, )Un is also graded and the EF,D,E’s are its homogeneous components. The
non-zero vectors in EF,D,E are precisely the GLn highest weight vectors of weight
ψF
n in the tensor product ρDn ⊗ ρEn . Consequently, by equation (3.6), its dimension

coincides with the multiplicity of ρFn in ρDn ⊗ ρEn . Thus information on how tensor
products of GLn representations decompose can be deduced from the structure of
the algebra A(k, )Un . In view of this property, this algebra is called a GLn tensor
product algebra ([HTW3]). Similarly, we call A(k1, . . . , kc)

Un a GLn c-fold tensor
product algebra ([HL]).
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Based on the discussion in the previous paragraph, the LR Rule can be formu-
lated as a statement on the dimension of EF,D,E.

Lemma 7.2. The LR Rule holds if and only if

dim EF,D,E = cFD,E

for all Young diagrams D,E, and F .

A description of the tensor product algebra A(k, )Un was given in [HTW3], and
descriptions of all the algebras A(k1, . . . , kc) were given in [HL]. More precisely,
[HTW3] described a collection of elements ofA(k, )Un that corresponded bijectively
to the appropriate LR tableaux, and showed that these elements were linearly inde-
pendent. Assuming the LR Rule, i.e., that the LR tableaux count the multiplicities
in tensor products, we could conclude that the elements of A(k, )Un constructed
in [HTW3] in fact span A(k, )Un , so that they form a basis for A(k, )Un . Similar
remarks apply to the more general result of [HL].

Here we will show that how the two-rowed LR Rule provides an alternate route
to showing that the elements constructed in [HTW3] in fact span A(k, )Un , thus
providing a proof of the general LR Rule.

Our argument uses various members of the family of algebras A(k1, . . . , kc)
Un

and the relationship between them. To study these relationships, it is useful to
describe these algebras using a reciprocity phenomenon ([Ho2], [HTW1]). We note
that, by (GLn,GLm)-duality, we can write

(7.15)

A(k1, . . . , kc)
Un =
(
P(Mn,m))U

′
Γ

)Un

�

⎛⎝(∑
F

ρFn ⊗ρFm

)U ′
Γ

⎞⎠Un

�
(∑

F

ρFn ⊗(ρFm)U
′
Γ

)Un

�
∑
F

(ρFn )
Un ⊗ (ρFm)U

′
Γ �
(∑

F

(ρFn )
Un ⊗ ρFm

)U ′
Γ

�
(
P(Mn,m)Un

)U ′
Γ .

Thus, after taking the Un-invariants, we can think of A(k1, . . . , kc)
Un as the algebra

of U ′
Γ-invariants in the GL′

m module
∑

F (ρ
F
n )

Un ⊗ ρFm. We note that U ′
Γ =
∏

i U
′
ki

is a maximal unipotent upper triangular group in the block diagonal subgroup
M ′

Γ =
∏

i GL′
ki

⊂ GL′
m. Thus, the space (ρFm)U

′
Γ is the space of the highest weight

vectors for M ′
Γ in the irreducible representation ρFm of GL′

m. By the theory of

the highest weight, the space (ρFm)U
′
Γ is telling us how ρFm decomposes as an M ′

Γ

module. Hence the full ring
(
P(Mn,m)Un

)U ′
Γ �
(∑

F (ρ
F
n )

Un ⊗ ρFm
)U ′

Γ is telling us

how all the representations ρFm decompose on restriction to M ′
Γ. That is, it is

telling us the branching rule from GL′
m to M ′

Γ. (This double interpretation of the
algebra A(k1, . . . , kc)

Un is part of a general reciprocity phenomenon in the theory
of reductive dual pairs in the symplectic group ([HTW1]). For this reason, we also
refer to A(k1, . . . , kc)

Un as the (GL′
m,M ′

Γ) branching algebra.
When (k1, . . . , kc) = (k, 1, 1, . . . , 1) = (k, 1m−k), with m− k =  1’s, the branch-

ing algebra A(k1, . . . , kc)
Un turns out to be relatively easy to understand and is

closely related to the standard monomial theory of Hodge ([Hd]). In the 1990s,
standard monomial theory was recast by Gonciulea and Lakschmibai ([GL]) in
terms of toric deformations. A similar description was given by Sturmfels ([Stu]),
Sturmfels and Miller ([MS]), and Kim ([Kim]) in terms of the highest terms with
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respect to an appropriate term order of the elements of A(k, 1m−k)Un . This is the
description that will be most useful here, and we will describe it in detail shortly.
At the moment, we anticipate that the highest terms of elements of A(k, 1m−k)Un

will parametrize semistandard tableaux in a fairly straightforward way. In this con-
text, the main result of [HTW3] is that there is a collection of elements of A(k, )Un

whose highest terms correspond to (all of the) Littlewood-Richardson tableaux. In
[HL], this result is extended to all algebras A(k1, . . . , kc)

Un for any decomposition
m =
∑c

i=1 ki.
We now consider decompositions

Ξk,i = (k,

i−1︷ ︸︸ ︷
1, 1, . . . , 1, 2,

�−i−1︷ ︸︸ ︷
1, 1, . . . , 1) = (k, 1i−1, 2, 1�−i−1),

that start with k, follow with (i− 1) 1’s, then have one 2, and then m− k− i− 1 =
−i−1 more 1’s. The algebra A(Ξk,i)

Un is the subalgebra of P(Mn,m)Un consisting

of functions invariant under the group U ′
k×U

′(i)
2 , where U

′(i)
2 is the upper unipotent

subgroup of GL
′(i)
2 , which operates on the plane consisting of vectors with only the

k+ i and k+ i+1 coordinates non-zero. The elements of A(Ξk,i)
Un constructed in

[HL] have highest terms correspond to all semistandard tableaux that satisfy the
YWC with respect to the pair (i, i+ 1). It will be seen that by the Pieri Rule and
the two-row case of the LR Rule, these tableaux count the relevant highest weight
vectors, and it follows that the elements of A(Ξk,i)

Un constructed in [HL] form a
basis for A(Ξk,i)

Un . It further follows that any function in A(Ξk,i)
Un must have

a highest term that corresponds to a semistandard tableau satisfying the (i, i+ 1)
YWC. Details will be discussed later.

We now observe that the groups U
′(i)
2 generate the full group U ′

� of upper tri-
angular unipotent matrices in GL′

�. This is easily checked. It follows that, if a

function in P(Mn,m) is invariant under each U
′(i)
2 , then it is invariant under U ′

�.
This implies that
(7.16)

A(k, )Un =
(
P(Mn,m)Un

)U ′
k×U ′

� =

�−1⋂
i=1

(P(Mn,m)Un)U
′
k×U

′(i)
2 =

�−1⋂
i=1

A(Ξk,i)
Un .

From the discussion of the previous paragraph, we see that equation (7.16) implies
that elements of A(k, )Un must have highest terms that correspond to tableaux
satisfying the YWC for all pairs (i, i+ 1) for i from 1 to − 1. On the other hand,
we have constructed in [HTW3] an element having any such tableau as a highest
term. Thus, the highest weights of representations of GL′

m restricted to GL′
k×GL′

�

are counted by LR tableau, which is the Littlewood-Richardson Rule.

7.2. The algebra A(k, 1m−k)Un . In the remaining subsections, we will present
the details of the arguments sketched in §7.1. This subsection is devoted to the
branching algebra A(Γ)Un = A(k, 1�)Un , where k +  = m. For convenience, we
shall assume that k ≤ n. As mentioned above, this is essentially a part of the
much-studied standard monomial theory ([GL], [Ho2], [Kim], [MS]), originally due
to Hodge ([Hd]). We will describe a basis for the algebra A(k, 1�)Un . In §7.5, this
basis will be used to construct a basis for A(Ξk,i).
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According to equation (7.8),

A(k, 1�)Un =
(
P(Mn,m)U

′
Γ

)Un

= P(Mn,m)Un×U ′
k

because U ′
Γ = U ′

k × (U ′
1)

� � U ′
k since U ′

1 is trivial. We restrict the action of
GLn ×GL′

m on P(Mn,m) to GLn ×
(
GL′

k × (GL′
1)

�
)
, and under this action,

P(Mn,m) � P(Mn,k ⊕ C
n
1 ⊕ · · · ⊕ C

n
� )

� P(Mn,k)⊗ P(Cn
1 )⊗ · · · ⊗ P(Cn

� )

�

⎛⎝ ∑
r(D)≤k

ρDn ⊗ρDk

⎞⎠⊗
⎛⎝∑

α1≥0

ρ(α1)
n ⊗ ρ

(α1)
1

⎞⎠⊗· · ·⊗

⎛⎝∑
α�≥0

ρ(α�)
n ⊗ρ

(α�)
1

⎞⎠
�
∑

r(D)≤k

α1,...,α�≥0

(
ρDn ⊗ ρ(α1)

n ⊗ · · · ⊗ ρ(α�)
n

)
⊗ ρDk ⊗ ρ

(α1)
1 ⊗ · · · ⊗ ρ

(α�)
1 .

Here, for each 1 ≤ j ≤ m − k, Cn
j is a copy of Cn. By extracting the Un × U ′

k

invariants from P(Mn,m), we obtain

A(k, 1�)Un = P(Mn,m)Un×U ′
k

∼=
∑

r(D)≤k

α1,...,α�≥0

(
ρDn ⊗ ρ(α1)

n ⊗ · · · ⊗ ρ(α�)
n

)Un

⊗
(
ρDk
)U ′

k ⊗ ρ
(α1)
1 ⊗ · · · ⊗ ρ

(α�)
1 .

The algebra A(k, 1�)Un is a module for An ×A′
k × (GL′

1)
�. We will identify (GL′

1)
�

with the diagonal torus of GL′
�, and the representation ρ

(α1)
1 ⊗ · · ·⊗ ρ

(α�)
1 of (GL′

1)
�

with the character ψα
� of A′

�, where α = (α1, . . . , α�). Now A(k, 1�)Un can be
decomposed as

A(k, 1�)Un =
∑

F,D,α

WF,D,α,

where the sum is taken over all Young diagrams D and F with r(D) ≤ k and
r(F ) ≤ n and over all α ∈ Z

�
≥0, and WF,D,α is the ψF

n × ψD
k × ψα

� -eigenspace of

An × A′
k × A′

�. If WF,D,α is non-zero, then the non-zero vectors in WF,D,α can be
identified with the GLn highest weight vectors of weight ψF

n in the tensor product

(7.17) ρDn ⊗ ρ(α1)
n ⊗ · · · ⊗ ρ(α�)

n .

So the dimension of WF,D,α coincides with the multiplicity of ρFn in the tensor
product (7.17). Let ST(F,D, α) be the set of all semistandard tableaux of shape
F − D and content α. Then by the Pieri Rule discussed in §5, this multiplicity
coincides with the cardinality of ST(F,D, α). Thus

(7.18) dimWF,D,α = #(ST(F,D, α)) .

We shall construct a basis for WF,D,α labeled by the elements of ST(F,D, α).
For these purposes, we write a typical element of Mn,m as

(7.19)

⎛⎜⎜⎜⎝
x11 x12 · · · x1k y11 y12 · · · y1�
x21 x22 · · · x2k y21 y22 · · · y2�
...

...
...

...
...

...
xn1 xn2 · · · xnk yn1 yn2 · · · yn�

⎞⎟⎟⎟⎠ ,
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so that P(Mn,m) can be viewed as the polynomial algebra on the variables xab

and ycd. We want to define elements of A(k, 1�)Un corresponding to column skew
tableaux. A column skew tableau is defined by a certain number p of empty boxes
at the top, followed by boxes labeled by an increasing sequence S = {s1, s2, . . . , sq}
of whole numbers sj with sj < sj+1. Let us label this column skew tableau T(p,S).
For every column tableau T(p,S) with p ≤ k and sq ≤ , we define an element of the

algebra A(k, 1�)Un by the formula
(7.20)

γ(p,S) =

∣∣∣∣∣∣∣∣∣
x11 x12 · · · x1p y1s1 y1s2 · · · y1sq
x21 x22 · · · x2p y2s1 y2s2 · · · y2sq
...

...
...

...
...

...
x(p+q)1 x(p+q)2 · · · x(p+q)p y(p+q)s1 y(p+q)s2 · · · y(p+q)sq

∣∣∣∣∣∣∣∣∣ .
When q = 0, the sequence S is empty, in which case

γ(p,∅) =

∣∣∣∣∣∣∣∣∣
x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

...
xp1 xp2 · · · xpp

∣∣∣∣∣∣∣∣∣
.

Similarly, if p = 0, then

γ(0,S) =

∣∣∣∣∣∣∣∣∣
y1s1 y1s2 · · · y1sq
y2s1 y2s2 · · · y2sq
...

...
...

yqs1 yqs2 · · · yqsq

∣∣∣∣∣∣∣∣∣ .
It is easy to check that because the determinant (7.20) involves the first p + q
consecutive rows of the matrix (7.19), γ(p,S) is a highest weight vector (of weight

ψ
1p+q
n ) for GLn. See equation (3.4) for the notation 1p+q . Similarly, since the

determinant (7.20) involves the first p consecutive columns of the xab, γ(p,S) will

also be a highest weight vector (of weight ψ
1p

k ) for GL′
k. Also, it will be a weight

vector for the torus A′
� ⊂ GL′

� with weight ψ
α(S)
� , where α(S) is the -tuple with

entries 1 at the places belonging to S, and 0’s at the other places. Thus, we see
that

(7.21) γ(p,S) ∈ W1p+q ,1p,α(S).

Now consider any semistandard skew tableau T . Let the jth column (counting
from left to right) of T be Tj = T(pj ,Sj). Assume that pj ≤ k and that the largest
entry of Sj is at most . We define the standard monomial corresponding to T as

(7.22) γT =

c∏
j=1

γTj
=

c∏
j=1

γ(pj ,Sj),

where c is the number of columns in T . The main result of standard monomial
theory ([Hd], [GL], [MS]) is

Theorem 7.3. The set BF,D,α = {γT : T ∈ ST(F,D, α)} is a basis for WF,D,α.

Since we have constructed an element γT of the vector space WF,D,α for each
tableau T in ST(F,D, α), the theorem will follow if we can show that the γT are
linearly independent as T varies over ST(F,D, α). We will do this by introducing
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a monomial ordering τ for P(Mn,m). That is, τ is a total ordering on the set of
monomials in the entries of the matrix (7.19), and satisfying certain basic properties,
as detailed in, for example [CLO].

We define τ by first putting a linear ordering on the variables xij and yis. Here
1 ≤ i ≤ n, 1 ≤ j ≤ k, and 1 ≤ s ≤ . We agree that

(7.23)
(a) xab > xcd iff b < d or b = d and a < c.

(b) Similarly, yab > ycd iff b < d or b = d and a < c.

Thus,
x11 > x21 > · · · > xn1 > x12 > x22 > · · · > xn−1,k > xnk,

and similarly for the yis.

(c) Finally, xab > ycd for all pairs (a, b) and (c, d) of indices.

We then extend this ordering to a total ordering on all monomials in the xij and
yis by the graded lexicographic ordering (see [CLO]). This is described as follows.
Let N be an n×k matrix of non-negative integers nij , and let M be an n× matrix
of non-negative integers mis. Then a typical monomial in the xij and yis can be
written as

(7.24) xNyM =

⎛⎝∏
i,j

x
nij

ij

⎞⎠(∏
s,t

ymst
st

)
.

The graded lexicographic order associated to the ordering (7.23) of the variable
says that, given two monomials xN1yM1 and xN2yM2 , we have

(7.25) xN1yM1 > xN2yM2

if either

i) the degree of xN1yM1 is larger than the degree of xN2yM2 ; or
ii) both xN1yM1 and xN2yM2 have the same degree, and for the first (i.e.,

largest) variable with an exponent in xN1yM1 that is different from its
exponent in xN2yM2 , the exponent in xN1yM1 is larger.

Definition 7.4. Let f be a polynomial in P(Mn,m). Since f is a finite linear
combination of the monomials xNyM , and since τ is a total ordering, among the
monomials appearing in f with non-zero coefficients, there will be a maximal one.
We call this the leading monomial of f , and denote it by inτ (f).

We recall ([CLO]) that a basic fact about leading monomials is that leading
monomials are compatible with multiplication: if f and φ are two polynomials in
P(Mn,m)

inτ (fφ) = inτ (f)inτ (φ).

For each skew tableau T of shape F −D, define

(7.26) m(D,F ),T =

(
k∏

i=1

xλi
ii

)(∏
b∈T

ya(b)c(b)

)
,

where D = (λ1, . . . , λk), and for each box b in T , a(b) is the row of F in which
the box b lies, and c(b) is the entry in b. For example, if D,F and T are given in
equation (4.1), then

m(D,F ),T = x3
11x

2
22x33y

2
11y12y22y23y31y33y34y41y42.
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T =

1 1 2
2 3

1 3 4
1 2

−→

x11 x11 x11 y11 y11 y12

x22 x22 y22 y23

x33 y31 y33 y34

y41 y42

Figure 7.1. Fill the boxes of a tableau with variables

Here is another way of thinking about m(D,F ),T . For each box of T , fill the box
with a variable. If the box is empty (i.e., is a box of D), then fill it with xii, where
i is the row in which the box occurs. If the box contains the number s and is in
row i, then fill it with the variable yis. Then m(D,F ),T is the product of all the
variables filling the boxes of T . For the example above, we fill the boxes of T as
shown in Figure 7.1.

From this description, it is evident that the exponent λi with which xii appears
in m(D,F ),T is exactly the length of the ith row of D and the exponent cit with
which yit appears is the number of ts in row i. This makes it clear that a tableaux
T can be recovered from m(D,F ),T . Indeed, since the boxes in any row of T are
arranged with the empty boxes on the left and the entries increasing from left to
right, knowing the λi and the numbers cit of boxes filled by t in each row i is enough
to reconstitute T .

Lemma 7.5. For each T ∈ ST(F,D, α),

(7.27) inτ (γT ) = m(D,F ),T .

Proof. Let Tj = T(pj ,Sj), 1 ≤ j ≤ c, be the columns of T , so that γT =
∏c

j=1 γ(pj ,Sj).
Since leading monomials are multiplicative,

inτ (γT ) = inτ

⎛⎝ c∏
j=1

γ(pj ,Sj)

⎞⎠ =
c∏

j=1

inτ (γ(pj ,Sj)).

On the other hand, m(D,F ),T is also multiplicative over the columns of T ; that is,

m(D,F ),T =
c∏

j=1

m(Dj ,Fj),Tj
,

where each Dj are Fj are column diagrams with pj and pj + qj boxes respectively,
and qj = #(Sj). Hence it is enough to check formula (7.27) for a column tableau
T = T(p,S) where S = {s1, . . . , sq} with sj < sj+1. In this case, γT = γ(p,S) which
is the determinant given in equation (7.20). To determine its leading monomial, we
observe that x11 has the highest order among all the variables which appear in the
determinant. From the definition of the monomial ordering τ given in (7.23), we see
that inτ (γT ) must contain the variable x11. To determine the remaining variables
in inτ (γT ), we consider the determinant of the submatrix obtained by removing the
first row and first column from the original matrix. Among all the variables which
appear in this submatrix, x22 has the highest order. So inτ (γT ) must also contain
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the variable x22. Continuing this way, we see that inτ (γT ) is given by the product of
all the variables on the diagonal, that is, inτ (γT ) = x11 · · ·xppy(p+1)s1 · · · y(p+q)sq .
This coincides with m(D,F ),T . �

Proof of Theorem 7.3. By Lemma 7.5, the leading monomials inτ (γT ) of γT for
T ∈ ST(F,D, α) are distinct. Hence BF,D,α is linearly independent. �

Corollary 7.6. If f is a non-zero element of WF,D,α, then

inτ (f) = m(D,F ),T

for some T ∈ ST(F,D, α).

Proof. Since f is a non-zero element of WF,D,α, it is a linear combination of vectors
in the basis BF,D,α. Since the leading monomials of the vectors in BF,D,α are
distinct, inτ (f) coincides with the leading monomial of one of the basis vector
which appears in the linear combination. This shows that inτ (f) is of the desired
form. �

Remark. a) The statement of Theorem 7.3 is more or less as Hodge made it ([Hd]).
(The context of Theorem 7.3 is somewhat more general than Hodge considered, but
is handled by the same methods.) However, our proof shows much more, which we
will explain here.

Hodge’s result inspired numerous authors (e.g., [Stu], [DEP], [Hi], [Se], [GL],
[KM], [MS], [Kim]) to attempt to understand it in a more structural way. Since the
1990s, it has come to be understood as a statement that the algebra A(k, 1�)Un has
a “toric deformation”, a flat deformation ([EH]) to a certain semigroup ring. Both
the existence of the deformation and the form of the semigroup ring are of interest.
For this reason, although it is not essential for finishing the proof of the LR Rule,
we will take some time to describe them. These remarks will be somewhat lengthy,
and the reader may wish to skip them on a first reading.

b) Our first observation is that Theorem 7.3 shows that A(k, 1�)Un contains a
collection of large polynomial subalgebras. In fact, it singles out a finite collection of
polynomial subrings that together span the whole algebra. To see this, we note that
one can put a partial order on the column tableaux. Given two column tableaux,
T1 and T2, we will say

(7.28) T1 ≤ T2

provided that the entry in each box of T1 is less than or equal to the entry in the
box of T2 in the same row, with the conventions that

i) an empty box is less than any numbered box; and
ii) an empty space (no box at all) is larger than any box. In other words,

T1 ≤ T2 if T1 is at least as long as T2, and for each non-empty box of T1

for which T2 has a box in the same row, the entry in that box is at least as
large as the entry in the given box of T1.

Note that this order already appeared in §2.3 for the case of columns of equal length
(cf. (2.4)).

It is easy to convince oneself that, given this definition, a tableau is semistandard
if and only if its columns, read left to right, form a weakly increasing sequence
with respect to this partial order. Put another way, if we have a linearly ordered
sequence of columns, then listing them in order, with arbitrary repetitions allowed,
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will produce a semistandard tableau, and all semistandard tableaux arise in this
way.

Thus, in view of our definition of standard monomials, we see that every standard
monomial arises as a monomial in elements γTi

= γ(pi,Si), where the Ti form a

linearly ordered set. The fact that these elements form a basis for A(k, 1�)Un

implies in particular that all the monomials formed from a given linearly ordered set
of columns are linearly independent. In other words, the generators corresponding
to any linearly ordered set of monomials form a polynomial ring. Furthermore,
since any standard monomial belongs to at least one such ring, these polynomial
rings span A(k, 1�)Un . Also, it is clear that the intersection of any two such rings
is just the polynomial ring in the generators that are in the intersection of the two
linearly ordered generating sets. In considering these rings, clearly it is enough to
restrict attention to maximal linearly ordered sets. Non-maximal sets will generate
subrings of the rings generated by any maximal (linearly ordered) set containing
it. We describe this situation by saying that the algebra A(k, 1�)Un is an almost
direct sum of the polynomial rings generated by maximal linearly ordered families
of column tableaux under the ordering (7.28).

This is the first lesson of standard monomial theory. It clearly provides insight
into the structure ofA(k, 1�)Un , but it leaves in question how the various polynomial
subrings fit together inside the whole ring. We turn to that question.

c) Consider a space C
r, with variables zj , for 1 ≤ j ≤ r. It is clear from the

multiplicative property of leading monomials, that if τ is any term order on the
monomials in the zj and B is a subalgebra of the polynomial ring P(Cr), then the
set inτ (B) of leading monomials of elements of B constitute a semigroup, and their
linear span C(inτ (B)) will be the corresponding semigroup ring.

Assume that inτ (B) is finitely generated. Then C(inτ (B)) will be a Noetherian
ring, and will be the ring of regular functions on an algebraic variety V (inτ (B)).
The group of Ar of diagonal matrices on Cr acts on the algebra P(Cr) in the usual
way, and the monomials are the eigenfunctions for this action. In particular, inτ (B)
and C(inτ (B)) will be invariant under Ar, and so Ar acts on the variety V (inτ (B)).
Since Ar acts on Cr with an open orbit, the same will be true of V (inτ (B)). This
means that V (inτ (B)) is what is known as a toric variety [Fu3].

Moreover, the ring C(inτ (B)) is closely related to the original ring B, and
V (inτ (B)) is likewise related to the varieties V (B) associated to B. The precise
relationship is captured by the notion of flat deformation: the ring C(inτ (B)) is a
flat deformation of B [CHV], and the same is said of the corresponding varieties.
Since V (inτ (B)) is a toric variety, one speaks of a toric deformation of B or of
V (B).

d) For the ring A(k, 1�)Un and the monomial order τ defined above, we know
from Corollary 7.6 that inτ (A(k, 1�)Un) consists of the monomials m(D,F ),T . These
monomials therefore form a semigroup. In the context of Remark b), we would like
to know whether inτ (A(k, 1�)Un) is finitely generated. It is, and in fact, it has an
interesting structure, which we will describe.

As we saw from the description of m(D,F ),F given after equation (7.26),

inτ (A(k, 1�)Un) can be identified with the collection of pairs (λ,C), where λ is
the column vector of row lengths of the diagram D, and C is the n×  matrix with
entries cit, where cit is the number of t’s in the ith row of the tableaux T .
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�

�
a

b

Figure 7.2. An illustration of GT(7,3,4)

The conditions defining semistandard tableaux can easily be expressed by in-
equalities among sums of the components of (λ,C). For convenience in describing
this, we set λi = ci0. (Note then that ci0 = 0 for i > k.) Let Ds be the diagram
consisting of boxes of T that are filled with numbers up to s. Then the length of
the ith row of the diagram Ds is the sum

(7.29) ris =
s∑

t=0

cit.

The condition that the lengths of the rows of Ds increase (weakly) as s increases,
in other words, the condition that ris − ri(s−1) = cis ≥ 0, can be captured by the
inequality

(7.30) ris ≤ ri(s+1)

for s ≥ 0. The semistandardness condition, that the numbers increase strictly down
columns, can be expressed similarly: it requires that the length of the ith row of
Ds be not longer than the (i− 1)-th row of Ds−1:

(7.31) r(i−1)(s−1) ≥ ris.

(Note that this is stronger than saying that Ds has weakly decreasing row lengths.)
The condition thatD should have at most k rows translates to c(k+1)0 = r(k+1)0 = 0,
which from (7.29) and (7.30) implies that also r(k+a)b = 0 for 0 ≤ b < a. It is not
hard to show that, conversely, any collection of numbers ris satisfying inequalities
(7.30) and (7.31), and the additional condition coming from a limitation on k, come
from a skew diagram of the appropriate sort.

It turns out that there is an elegant way to characterize the collections of numbers
ris satisfying (7.30) and (7.31), plus the side condition. Consider the set of points

GT(n,k,�) =

{[
t− i
−i

]
: 1 ≤ i ≤ n, 1 ≤ t ≤ , i− t ≤ k

}
(7.32)

=

{[
a
b

]
: −n ≤ b ≤ −1, b ≤ a ≤ b+ , a ≥ −k

}
in the lattice Z2 in the plane. The set GT(n,k,�) is illustrated in Figure 7.2.
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We consider Z2 to be a partially ordered set (poset) with respect to the usual
partial order [

a
b

]
≤
[

c
d

]
if and only if a ≤ c and b ≤ d, and we consider GT(n,k,�) to be a poset with the
induced partial ordering.

Given a collection of numbers rit as in inequalities (7.30) and (7.31), define a
function R on GT(n,k,�) by the recipe

(7.33) R

([
a
b

])
= r(−b)(a−b).

It is easy to check that R is an increasing function on the poset GT(n,k,�), and
conversely, that every collection rit comes from an increasing function on GT(n,k,�).
Patterns such as the rit were defined by Gelfand and Tsetlin ([GT]) as a means
of describing bases for representations of GLn without formally introducing the
underlying poset. Hence we call GT(n,k,�) a Gelfand-Tsetlin poset. In summary, the

semigroup inτ (A(k, 1�)Un) is isomorphic to the semigroup of Z+-valued, increasing
functions on the Gelfand-Tsetlin poset, GT(n,k,�).

How does this relate to the observations of Remark b)? For any poset X, the
semigroup Z

+
≥(X) consisting of increasing Z+-valued functions on X is a particu-

larly nice kind of semigroup. In particular, it is a lattice cone: the set of integral
points in a the cone R+

≥(X) of non-negative, real-valued, order-preserving functions

on X, inside the real vector space R
X of all real-valued functions on X.

The semigroup rings C(Z+
≥(X)) were studied by T. Hibi ([Hi]), and are known

as Hibi rings. Thus, one way to summarize the derivation of standard monomial
theory given above is to say that the algebra A(k, 1�)Un has a flat deformation
to the Hibi ring C(Z+

≥)(GT(n,k,�)). This is stronger than Hodge’s original result.

It is due to a number of authors, starting with [GL] and [Stu] in the 1990s, and
continuing with [KM], [MS], [Kim] in the 2000s.

It turns out that the Hibi lattice cones Z
+
≥(X) are especially nice semigroups.

In particular, any Hibi ring has a “standard monomial theory”, in the sense that
C(Z+

≥(X)) is the almost direct sum of polynomial rings in a canonical way. Precisely,

the generators of Z+
≥(X) are the characteristic functions of increasing subsets of X,

and any linearly ordered family of increasing subsets will generate a polynomial ring
inside C(Z+

≥(X)). The maximal such families are in one-to-one correspondence with
the total orderings on X that are compatible with the given partial ordering. In this
context, the column tableaux are in natural bijection with the increasing subsets
of GT(n,k,�). We refer to [Ho3] for a more complete discussion. See also [Rei].

e) Since the proof given above of standard monomial theory for A(k, 1�)Un estab-
lishes a bijection between semistandard tableaux and the semigroup Z

+
≥(GT(n,k,�)),

it follows that semistandard tableaux can be endowed with a semigroup structure.
Although this structure does not leap out at one from the yoga of semistandard
tableaux, it is not hard to see how to define it. Given two semistandard tableaux T1

and T2, their sum T1 + T2 is the concatenation of T1 and T2, gotten by combining
the ith rows of T1 and T2 and rearranging the boxes to put them in increasing
order, for each i ≥ 1.
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f) We can also use the highest terms of A(k, 1�)Un to discuss the YWC. Since
cit tells the number of t’s in row i, the YWC can be expressed as the requirement

(7.34)
i−1∑
j=1

cj(s−1) ≥
i∑

j=1

cjs.

The condition is parallel to the strict-decrease-down-rows condition (7.31). The
difference is that it involves a sum on the first index rather than the second index
of the cit. Because of this, the YWC is not easily expressed in terms of the variables
ris that are used to identify the Hibi cone structure on inτ (A(k, 1�)Un).

On the other hand, this does make clear that the Littlewood-Richardson tableaux
form a subcone of inτ (A(k, 1�)Un); we call it the LR cone. Each set of conditions on
the cij , the semistandard conditions, or the YWC conditions would by themselves
define a Hibi cone. However, since the two sets of conditions are not compatible,
the structure of the LR cone is substantially more complicated than that of Hibi
cones. Finding a good model for the LR cone has been the subject of several papers
[BZ], [KT1], [KTW], and was an important ingredient in the Knutson-Tau proof of
saturation, used to complete the proof of Horn’s Conjecture.

7.3. The algebra A(Ξk,i)
Un . We first recall the construction of the algebra

A(Ξk,i). Consider the action of GLn × GL′
m on P(Mn,m) given in formula (7.1),

and restrict it to GLn × (GL′
k ×M ′) where

M ′ = M ′
Ξk,i

= GL′
k ×
(
GL′

1

)i−1 ×GL′
2 ×
(
GL′

1

)�−i−1 ⊂ GL′
�.

Then (see formula (7.8))

A(Ξk,i) = P(Mn,m)U
′
,

where U ′ = U ′
Ξk,i

= U ′
k × (U ′

1)
i−1 × U ′

2 × (U ′
1)

�−i−1
. It is a module for

GLn ×A′
k × (A′

1)
i−1 ×A′

2 × (A′
1)

�−i−1 � GLn ×A′
k ×A′

�,

and by equation (7.9), it can be decomposed as

A(Ξk,i)

�
∑
D,α

⎧⎨⎩ρDn ⊗
(

i−1⊗
p=1

ρ(αp)
n

)
⊗ ρ(αi,αi+1)

n ⊗

⎛⎝ �⊗
q=i+2

ρ(αq)
n

⎞⎠⎫⎬⎭
⊗
(
ρDk
)U ′

k ⊗
(

i−1⊗
p=1

ρ
(αp)
1

)
⊗
(
ρ
(αi,αi+1)
2

)U ′
2 ⊗

⎛⎝ �⊗
q=i+2

ρ
(αq)
1

⎞⎠
�
∑
D,α

⎧⎨⎩ρDn ⊗
(

i−1⊗
p=1

ρ(αp)
n

)
⊗ ρ(αi,αi+1)

n ⊗

⎛⎝ �⊗
q=i+2

ρ(αq)
n

⎞⎠⎫⎬⎭⊗ ψD
k ⊗ ψα

� ,

where the sum is taken over all Young diagrams D with r(D) ≤ k and all α =
(α1, . . . , α�) ∈ Z�

≥0 such that αi ≥ αi+1.

Now A(Ξk,i)
Un is a module for An ×A′

k ×A′
�, and it can be decomposed as

A(Ξk,i)
Un =

∑
F,D,α

E(i)
F,D,α,
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where the sum is taken over all Young diagrams D and F with r(D) ≤ k and

r(F ) ≤ m, and all α = (α1, . . . , α�) ∈ Z�
≥0 such that αi ≥ αi+1, and E(i)

F,D,α is the

ψF
n ×ψD

n ×ψα
� eigenspace for An×A′

k×A′
�. If E

(i)
F,D,α is non-zero, then the non-zero

vectors in E(i)
F,D,α can be identified with the GLn highest weight vectors of weight

ψF
n in the tensor product

(7.35) ρDn ⊗
(

i−1⊗
p=1

ρ(αp)
n

)
⊗ ρ(αi,αi+1)

n ⊗

⎛⎝ �⊗
q=i+2

ρ(αq)
n

⎞⎠ .

So the dimension of E(i)
F,D,α coincides with the multiplicity of ρFn in the tensor

product (7.35). We now describe this multiplicity.
Recall that a skew tableau is an LR tableau if it is semistandard and it satisfies

the YWC. The YWC is a condition on the pairs (i, i+ 1) for 1 ≤ i ≤  − 1, but it
can also be viewed as a set of (− 1) distinct conditions with each condition on a
specific pair. We now consider those semistandard tableaux in which the YWC for
a specific pair is satisfied.

Notation. Fix 1 ≤ i ≤ − 1. Let D and F be Young diagrams such that r(D) ≤ k
and r(F ) ≤ n, and let α = (α1, . . . , α�) be an -tuple of non-negative integers such

that αi ≥ αi+1. Let ST(i)(F,D, α) be the set of all semistandard tableaux T with
the following properties:

(i) T is of shape F −D and has content α.
(ii) The pair (i, i + 1) satisfies the YWC in T . This means that starting from

the first entry of w(T ) to any place in w(T ), there are at least as many i’s
as (i+ 1)’s.

Lemma 7.7. The dimension of E(i)
F,D,α coincides with the cardinality of

ST(i)(F,D, α).

Proof. By the Pieri Rule and the LR Rule for the two-row case, the multiplicity
of ρFn in the tensor product (7.35) is given by the number of all ( − 1)-tuples
(F1, . . . , F�−2, Ti) where

(i) D = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F�−2 ⊂ F = F�−1 is a chain of Young diagrams.
(ii) For each 1 ≤ j ≤ i− 1, Fj − Fj−1 is a skew row with αj boxes.
(iii) Ti is a LR tableau of shape Fi − Fi−1 and content (αi, αi+1).
(iv) For each i+ 1 ≤ j ≤ − 1, Fj − Fj−1 is a skew row with αj+1 boxes.

We denote the collections of all such (− 1)-tuples by Ci(F,D, α). So

dim E(i)
F,D,α = #(Ci(F,D, α)).

Now for each (F1, . . . , F�−2, Ti) ∈ Ci(F,D, α), we define a skew tableau T as
follows:

(a) T is of shape F −D.
(b) We regard F −D as a union of the skew diagrams Fj −Fj−1, 1 ≤ j ≤ −1.
(c) For each 1 ≤ j ≤ i− 1, we fill the boxes in Fj − Fj−1 with the number j.
(d) The LR tableau Ti has shape Fi −Fi−1. For s = 1, 2, if a box in Ti is filled

with s, we replace it by i− 1 + s.
(e) For each i+ 1 ≤ j ≤ − 1, we fill the boxes in Fj − Fj−1 with the number

j + 1.
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Then T ∈ ST(i)(F,D, α). This sets up a map

(F1, . . . , F�−2, Ti) → T

from Ci(F,D, α) to ST(i)(F,D, α). It is easy to check that this map is bijective.
Thus the lemma follows. �

Proposition 7.8 ([HL]). For T ∈ ST(i)(F,D, α), there is a polynomial γ̃T in

E(i)
F,D,α such that

inτ (γ̃T ) = m(D,F ),T .

In fact, for any decomposition Γ = (k1, . . . , kc) of m, the paper [HL] constructed
a set of highest weight vectors in A(Γ), whose leading monomials are of the form
m(D,F ),T for appropriate D, F , and T . Although the general construction of [HL]
is somewhat involved, the case of Γ = Ξk,i is relatively easy, and will be described
in §7.5.

Corollary 7.9. The set B(i)
F,D,α = {γ̃T : T ∈ ST(i)(F,D, α)} is a basis for E(i)

F,D,α.

Proof. By Proposition 7.8, the polynomials in B(i)
F,D,α have distinct leading terms

with respect to τ . So B(i)
F,D,α is linearly independent. The corollary now follows

from this and Lemma 7.7. �

Corollary 7.10. If f is a non-zero element of E(i)
F,D,α, then

inτ (f) = m(D,F ),T

for some T ∈ ST(i)(F,D, α).

Proof. The proof is similar to the proof of Corollary 7.6. �

7.4. The algebra A(k, )Un . As explained in §7.1, the LR Rule is encoded in the
structure of the algebra A(k, )Un . We recall that A(k, )Un is an An × A′

k × A′
�

module, and it can be decomposed as

A(k, )Un =
∑

F,D,E

EF,D,E ,

where each EF,D,E is the ψF
n × ψD

k × ψE
� eigenspace of An × Ak × A�. Lemma 7.2

says that the LR Rule is equivalent to the statement dim EF,D,E = cFD,E for all
Young diagrams D,E, and F . The final step of the proof is to construct a linearly
independent subset of EF,D,E with cFD,E elements and show that it spans EF,D,E .

The construction of these elements was the main result of [HTW3].

Proposition 7.11 ([HTW3]). For each LR tableau T of shape F −D and content
E, there is a polynomial Δ(D,F ),T in EF,D,E such that

inτ
[
Δ(D,F ),T

]
= m(D,F ),T .

We will describe the construction of the polynomial Δ(D,F ),T in §7.6.

Proposition 7.12. The leading monomial of each non-zero element f in the ho-
mogeneous component EF,D,E of A(k, )Un is of the form m(D,F ),T , where T is an
LR tableau of shape F −D and content E.
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Proof. Let f be a non-zero element in EF,D,E . By equation (7.16), f ∈ A(Ξk,i)
Un for

i = 1, 2, . . . , − 1. In fact, since f is a eigenvector for An ×A′
k ×A′

� corresponding
to the character ψF × ψD

k × ψE
� , it is contained in the homogeneous component

E(i)
F,D,E of A(Ξk,i)

Un . By Corollary 7.10,

inτ (f) = m(D,F ),T ,

where T ∈ ST(i)(F,D,E). Since for each 1 ≤ i ≤  − 1, the pair (i, i + 1) satisfies
YWC in T , T is an LR tableau. �

Proof of the LR Rule. Let

B(F,D,E) = {Δ(D,F ),T : T ∈ LR(F,D,E)}.
By Lemma 7.2, it suffices to show that B(F,D,E) is a basis for EF,D,E . By Propo-
sition 7.11, the elements of B(F,D,E) have distinct leading monomials, so they are
linearly independent. It remains to show that B(F,D,E) spans EF,D,E.

Let q be a non-zero element of AF,D,E . By Proposition 7.12, inτ (g) = m(D,F ),T1

for some LR tableau T1 of shape F −D and content E. We consider the polynomial

g2 = g − c1Δ(D,F ),T1
,

where c1 is the coefficient of the monomial m(D,F ),T1
in g. If g2 = 0, then g =

c1Δ(D,F ),T1
is a linear combination of elements in B(F,D,E). If g2 �= 0, then

inτ (g2) < inτ (g), and we consider the polynomial

g3 = g2 − c2Δ(D,F ),T2
= g − c1Δ(D,F ),T1

− c2Δ(D,F ),T2
,

where inτ (g2) = m(D,F ),T2
and c2 is the coefficient of the monomial m(D,F ),T1

in g2.
Continuing this way, we see that g is a linear combination of elements of B(F,D,E).
This shows that B(F,D,E) spans EF,D,E . �

7.5. The construction of highest weight vectors in A(Ξk,i)
Un . This section

and §7.6 should be considered as addenda to the main discussion, which was com-
pleted in §7.4. Although we can simply appeal to [HL] for the existence of the
desired highest weight vectors in A(Ξk,i)

Un , the general construction of [HL] is
rather involved. Therefore, it seems worthwhile pointing out here that, in the cases
of the special decomposition Ξk,i that we use in our proof of the LR Rule, the
desired highest weight vectors can be constructed without great effort.

We observe that the polynomials γ(p,S) defined in equation (7.20) can be classified
into four types:

Type 1: i, i+ 1 �∈ S. In this case, γ(p,S) is a GL
(i)
2 invariant. That is, it is a GL

(i)
2

highest weight vector with weight ψ
(0,0)
2 .

Type 2: i, i+ 1 ∈ S. In this case, γ(p,S) is a GL
(i)
2 relative invariant, that is, it is

a GL
(i)
2 highest weight vector with weight ψ

(1,1)
2 .

Type 3: i ∈ S and i+ 1 �∈ S. In this case, γ(p,S) is a GL
(i)
2 highest weight vector

with weight ψ
(1,0)
2 .

Type 4: i �∈ S and i + 1 ∈ S. In this case, γ(p,S) is not a GL
(i)
2 highest weight

vector.
In fact, if i ∈ S and i+1 �∈ S and S′ is the set obtained by replacing i by i+1 in S,

then γ(p,S) and γ(p,S′) span a GL
(i)
2 module isomorphic to C2. We form the tensor

product of two such copies of C2. Specifically, let 1 ≤ p1, p2 ≤ k, and for j = 1, 2, let
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Sj ⊆ {1, 2, . . . , } be such that i ∈ Sj and i+ 1 �∈ Sj , and denote the GL
(i)
2 module

spanned by γ(pj ,Sj) and γ(pj ,S′
j)

by C2
j . If (p1, S1) �= (p2, S2), then the four-tuple

of products {γ(p1,S1)γ(p2,S2), γ(p1,S1)γ(p2,S′
2)
, γ(p1,S′

1)
γ(p2,S2), γ(p1,S′

1)
γ(p2,S′

2)
} spans a

GL
(i)
2 module isomorphic to C2

1 ⊗ C2
2, and the polynomial

(7.36)

Δ((p1, S1), (p2, S2)) =

∣∣∣∣ γ(p1,S1) γ(p1,S′
1)

γ(p2,S2) γ(p2,S′
2)

∣∣∣∣ = γ(p1,S1)γ(p2,S′
2)
− γ(p2,S2)γ(p1,S′

1)

is a GL
(i)
2 relative invariant in this module.

We now let D and F be Young diagrams such that r(D) ≤ k and r(F ) ≤ n, and

let α = (α1, . . . , α�) ∈ Z�
≥0 be such that αi ≥ αi+1. Assume that ST(i)(F,D, α) �= ∅,

and let T ∈ ST(i)(F,D, α). Consider the polynomial γT = γT1
γT2

· · · γTr
as defined

in equation (7.22). We define the polynomial γ̃T ∈ A(Ξk,i)
Un by modifying γT

according to the following recipe:

(1) If no γTj
(1 ≤ j ≤ r) are of Type 4, then we set γ̃T = γT .

(2) Suppose some γTj
are of Type 4. Assume that Tj1 , . . . , Tju (j1 > j2 > · · · >

ju) and Tj′1
, . . . , Tj′v (j′1 > j′2 > · · · > j′v) are all the columns of T which are

of Type 3 and of Type 4, respectively. Since T satisfies the YWC with for
i and i + 1, we must have u ≥ v and j′a ≥ ja for 1 ≤ a ≤ v. Let T ′ be the
tableau obtained by removing the columns Tja and Tj′a , 1 ≤ a ≤ v. Then
we set

γ̃T = γT ′

v∏
a=1

Δ((pja , Sja), (pj′a , Ŝj′a)),

where for each 1 ≤ a ≤ v, Ŝj′a is obtained from Sj′a by replacing i+ 1 by i.

Proof of Proposition 7.8. If all γTj
(1 ≤ j ≤ r) are not of Type 4, then

inτ (γ̃T ) = inτ (γT ) = m(D,F ),T

by Lemma 7.5.
Next, we assume some γTj

are of Type 4. Let 1 ≤ a ≤ v, and consider the
columns Tja and Tj′a . Since the pair (i, i+1) satisfies the YWC in T , we must have
j′a < ja. Since T is a semistandard tableau, a moment’s thought reveals that

inτ (Δ(pja , Sja), (pj′a , Ŝj′a)) = inτ (γ(pja ,Sja )
)inτ (γ(pj′a

,Sj′a
)).

It follows from this that

inτ (γ̃T ) = inτ (γT ′)
v∏

a=1

inτ (Δ((pja , Sja), (pj′a , Sj′a)))

= inτ (γT ′)

v∏
a=1

inτ (γ(pja ,Sja )
)inτ (γ(pj′a

,Sj′a
))

= inτ (γT )

= m(D,F ),T . �
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7.6. Construction of highest weight vectors in A(k, )Un . In this subsection,
we briefly review the construction of the polynomial Δ(D,F ),T given in [HTW3].

Let Dt = (d1, . . . , dr), E
t = (e1, . . . , es), and F t = (f1, . . . , ft). Here Dt is the

conjugate diagram of D; that is, d1, . . . , dr are the lengths of the columns in D.
The notation Et and F t are interpreted similarly. Let

B =

⎛⎜⎜⎜⎝
β11 β12 · · · β1s

β21 β22 · · · β2s

...
...

...
βt1 βt2 · · · βts

⎞⎟⎟⎟⎠
be a t× s matrix of indeterminates. For 1 ≤ a ≤ n, 1 ≤ b ≤ k, and 1 ≤ c ≤ , let

Xa,b =

⎛⎜⎜⎜⎝
x11 x12 · · · x1b

x21 x22 · · · x2b

...
...

...
xa1 xa2 · · · xab

⎞⎟⎟⎟⎠ and Ya,c =

⎛⎜⎜⎜⎝
y11 y12 · · · y1c
y21 y22 · · · y2c
...

...
...

ya1 ya2 · · · yac

⎞⎟⎟⎟⎠
be the upper left a× b (respectively a× c) submatrix of the matrix X (respectively
Y ). Finally, we let L be the |F | × |F | matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Xf1,d1
0 · · · 0 β11Yf1,e1 β12Yf1,e2 · · · β1sYf1,es

0 Xf2,d2
· · · 0 β21Yf2,e1 β22Yf2,e2 · · · β2sYf2,es

...
...

...
...

...
...

0 0 · · · Xfr,dr
βr1Yfr,e1 βr2Yfr,e2 · · · βrsYfr ,es

0 0 · · · 0 βr+1,1Yfr+1,,e1 βr+1,2Yfr+1,e2 · · · βr+1,sYfr+1,es
...

...
...

...
...

...
0 0 · · · 0 βt1Yft,e1 βt2Yft,e2 · · · βtsYft,es

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The determinant of L is a polynomial in X = (xij), Y = (yih) and β = (βab), so it
can be expressed as

detL =
∑
M

pM (X,Y )βM ,

where each M = (mij) is a t× s matrix of non-negative integers, βM =
∏

i,j β
mij

ij ,

pM (X,Y ) is a polynomial in the variables X = (xij) and Y = (yih). One can
associate the LR tableau T with a t × s matrix M(T ), and the highest weight
vector Δ(D,F ),T is defined as

Δ(D,F ),T = pM(T )(X,Y ).

We briefly describe how the matrix M(T ) = (mij) is defined. By filling each column
of the Young diagram E from top to bottom with consecutive positive integers
starting from 1, we obtain a tableau BT (E) which we call the banal tableau of
shape E. In the paper [HTW3], a “content preserving” map from T to BT (E) is
defined, i.e., each cell of T is mapped to a cell in BT (E) with the same value. The
map can be visualized as the process of successively removing the “vertical skew
strips” from T and reassembling them into columns of BT (E). This is the process
of standard peeling described in §5. Thus T is constructed by the reverse process of
standard peeling. The contents of BT (E) are moved to the skew diagrams F −D
one column at a time, starting from the last column of BT (E). The (i, j)-th entry
mij of the matrix M(T ) is the number of entries from the jth column of E that
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get put into the ith column of F −D. We refer readers to the paper [HTW3] for
more details.

7.7. Final remarks.

(a) The analysis of this section shows the roles of the two conditions of semi-
standardness and YWC in determining the LR tableaux. Semistandard
tableaux serve to label the GLn highest weight vectors in the tensor prod-

uct ρDn ⊗
(⊗�

j=1 S
aj

)
. In the context of (GLn,GLm)-duality, this space

is an eigenspace for the diagonal torus in GLm, where m = k + , and it
is also a highest weight vector for the upper left-hand block GLk ⊂ GLm.
The YWC then serves to describe what additional conditions are needed
on the tableaux to guarantee that we also have a highest weight vector for
GL� ⊂ GLm, where GL� is the lower right-hand block in GLm.

(b) This proof of the LR Rule sheds light on the asymmetry of the tableau
description of the LR coefficients. From basic principles, it is clear that the
LR coefficients cFD,E are symmetric in the two factors: cFD,E = cFE,D. How-

ever, D and E play very different roles in the description of cFD,E via LR

tableaux. The construction of [HTW3] makes clear the source of the asym-
metry: in defining a term order for the polynomials on Mn,k+�, we break
the symmetry between the variables, putting the variables from Mn,k first,
and the variables from Mn,� after, and this choice of order is compatible
with the asymmetry in the definition of LR tableaux.

(c) The algebra A(k, 1�) = P(Mn,m)U
′
k can be decomposed as

P(Mn,m)U
′
k ∼= P(Mn,k)

U ′
k ⊗

�︷ ︸︸ ︷
P(Cn)⊗ · · · ⊗ P(Cn)

∼=
∑

r(D)≤k

s1,...,s�≥0

PD,s1,...,s� ,

where PD,s1,...,s� = ρDn ⊗ (ρDk )Uk ⊗ Ps1(Cn) ⊗ · · · ⊗ Ps�(Cn). If si ≥ si+1,
then the tensor product Psi(Cn)⊗Psi+1(Cn) contains one copy of the rep-

resentation ρ
(si,si+1)
n , so that PD,s1,...,si,si+1,...,s� contains the tensor product

ρDn ⊗

⎛⎝ i−1⊗
j=1

Psj (Cn)

⎞⎠⊗ ρ(si,si+1)
n ⊗

⎛⎝ �⊗
j=i+2

Psj (Cn)

⎞⎠ .

As a subspace of PD,s1,...,si,si+1,...,s� , this tensor product is exactly

the kernel of the raising operator Ei,i+1 =
∑n

c=1 yci
∂

∂yc(i+1)
from

PD,s1,...,si,si+1,...,s� to PD,s1,...,si−1,si+1+1,...,s� . Equivalently, it is the space(
PD,s1,...,si,si+1,...,s�

)U(i)
2 of vectors in PD,s1,...,si,si+1,...,s� that are fixed by

U
(i)
2 . The raising operator Ei,i+1 is the parallel in our context of the raising

operators used in the combinatorial proofs (see for example [Stm]). Sim-
ilarly, it was the raising operators for a general (Kac-Moody) Lie algebra
that Littelmann ([Lim]) deformed to obtain his path description of repre-
sentations.

(d) One way of thinking about the discussion of §6 and §7 is that it provides
the intrinsic meaning for the LR tableaux hinted at near the end of §5.
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(e) In [Ho2], a proof of the LR Rule for the two-rowed case is given, that does
not rely on counting multiplicities. If this argument can be extended to the
general two-rowed situation used in §7, it would enable a proof of the LR
Rule without any counting at all. We hope to return to this issue in the
future.
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[BD] T. Bröcker and T. Dieck, Representations of Compact Lie Groups, Graduate Texts in
Mathematics, Springer-Verlag, New York, 1985. MR781344 (86i:22023)

[BKW] G. Black, R. King, and B. Wybourne, Kronecker products for compact semisimple Lie
groups, J. Phys. A 16 (1983), 1555–1589. MR708193 (85e:22020)

[BZ] A. Berenstein and A. Zelevinsky, Triple multipliciies for sl(r+1) and the spectrum of the
exterior algebra of the adjoint representation, J. Alg. Comb. 1 (1992), 7–22. MR1162639
(93h:17012)

[CHV] A. Conca, J. Herzog, and G. Valla, SAGBI basis with applications to blow-up algebras,
J. Reine Angew. Math. 474 (1996), 215–248. MR1390693 (97h:13023)

[CLO] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms. An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra, Second edition,
Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. MR1417938
(97h:13024)

[DEP] C. De Concini, D. Eisenbud, and C. Procesi, Hodge Algebras, Astérisque 91, 1982.
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