The Cobordism hypothesis
Author:
Daniel S. Freed
Journal:
Bull. Amer. Math. Soc. 50 (2013), 57-92
MSC (2010):
Primary 57R56
DOI:
https://doi.org/10.1090/S0273-0979-2012-01393-9
Published electronically:
October 11, 2012
Previous version:
Original version posted October 11, 2012
MathSciNet review:
2994995
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this expository paper we introduce extended topological quantum field theories and the cobordism hypothesis.
- M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 200–208. MR 126856, DOI https://doi.org/10.1017/s0305004100035064
- Michael Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 175–186 (1989). MR 1001453
- Lowell Abrams, Two-dimensional topological quantum field theories and Frobenius algebras, J. Knot Theory Ramifications 5 (1996), no. 5, 569–587. MR 1414088, DOI https://doi.org/10.1142/S0218216596000333
- Dror Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002), 337–370. MR 1917056, DOI https://doi.org/10.2140/agt.2002.2.337
- Clark Barwick, (infinity, n)-Cat as a closed model category, ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)–University of Pennsylvania. MR 2706984
- Martin Betz and Ralph L. Cohen, Graph moduli spaces and cohomology operations, Turkish J. Math. 18 (1994), no. 1, 23–41. MR 1270436
- Andrew J. Blumberg, Ralph L. Cohen, and Constantin Teleman, Open-closed field theories, string topology, and Hochschild homology, Alpine perspectives on algebraic topology, Contemp. Math., vol. 504, Amer. Math. Soc., Providence, RI, 2009, pp. 53–76. MR 2581905, DOI https://doi.org/10.1090/conm/504/09875
- John C. Baez and James Dolan, Higher-dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995), no. 11, 6073–6105. MR 1355899, DOI https://doi.org/10.1063/1.531236
- Arthur Bartels, Christopher L. Douglas, and André G. Henriques, Conformal nets and local field theory, 0912.5307.
- Julia E. Bergner, A survey of $(\infty ,1)$-categories, Towards higher categories, IMA Vol. Math. Appl., vol. 152, Springer, New York, 2010, pp. 69–83. MR 2664620, DOI https://doi.org/10.1007/978-1-4419-1524-5_2
- Alexander Beilinson and Vladimir Drinfeld, Chiral algebras, American Mathematical Society Colloquium Publications, vol. 51, American Mathematical Society, Providence, RI, 2004. MR 2058353
- David Ben-Zvi, John Francis, and David Nadler, Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc. 23 (2010), no. 4, 909–966. MR 2669705, DOI https://doi.org/10.1090/S0894-0347-10-00669-7
- David Ben-Zvi and David Nadler, The Character Theory of a Complex Group, 0904.1247. preprint.
- Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068–3071. MR 843307, DOI https://doi.org/10.1073/pnas.83.10.3068
- Clark Barwick and Christopher Schommer-Pries, On the Unicity of the Homotopy Theory of Higher Categories, 1112.0040.
- Jean Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5–173 (French). MR 292089
- Louis Crane and Igor B. Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35 (1994), no. 10, 5136–5154. Topology and physics. MR 1295461, DOI https://doi.org/10.1063/1.530746
- K. Costello and O. Gwilliam, Factorization algebras in perturbative quantum field theory. http://math.northwestern.edu/$\sim$costello/factorization_public.html. in preparation.
- Kevin Costello, Topological conformal field theories and Calabi-Yau categories, Adv. Math. 210 (2007), no. 1, 165–214. MR 2298823, DOI https://doi.org/10.1016/j.aim.2006.06.004
- Moira Chas and Dennis Sullivan, String Topology, math/9911159.
- S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990), no. 3, 257–315. MR 1066174, DOI https://doi.org/10.1016/0040-9383%2890%2990001-Z
- O. Davidovich, State sums in $2$-dimensional fully extended topological field theories, Ph.D. thesis, University of Texas at Austin, 2011. http://repositories. lib.utexas.edu/handle/2152/ETD-UT-2011-05-3139.
- C. Douglas, A. Henriques, and C. Schommer-Pries, The $3$-category of tensor categories. in preparation.
- R. Dijkgraaf, A geometrical approach to two-dimensional conformal field theory, Ph.D. thesis, University of Utrecht, 1989. http://igitur-archive. library.uu.nl/dissertations/2011-0929-200347/UUindex.html.
- Robbert Dijkgraaf and Edward Witten, Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990), no. 2, 393–429. MR 1048699
- Yakov M. Eliashberg and Nikolai M. Mishachev, The space of framed functions is contractible, 1108.1000.
- Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. MR 2183279, DOI https://doi.org/10.4007/annals.2005.162.581
- Daniel S. Freed, Higher algebraic structures and quantization, Comm. Math. Phys. 159 (1994), no. 2, 343–398. MR 1256993
- Ludwig Faddeev, Elementary introduction to quantum field theory, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 513–550. MR 1701606
- Daniel S. Freed, Michael J. Hopkins, Jacob Lurie, and Constantin Teleman, Topological quantum field theories from compact Lie groups, A celebration of the mathematical legacy of Raoul Bott, CRM Proc. Lecture Notes, vol. 50, Amer. Math. Soc., Providence, RI, 2010, pp. 367–403. MR 2648901, DOI https://doi.org/10.1090/crmp/050/26
- Daniel S. Freed, Michael J. Hopkins, and Constantin Teleman, Consistent orientation of moduli spaces, The many facets of geometry, Oxford Univ. Press, Oxford, 2010, pp. 395–419. MR 2681705, DOI https://doi.org/10.1093/acprof%3Aoso/9780199534920.003.0019
- Daniel S. Freed and Frank Quinn, Chern-Simons theory with finite gauge group, Comm. Math. Phys. 156 (1993), no. 3, 435–472. MR 1240583
- E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), no. 2, 265–285. MR 1256989
- Davide Gaiotto, $N=2$ dualities, JHEP 1208 (2011), 034, arXiv:0904.2715.
- James Glimm and Arthur Jaffe, Quantum physics, 2nd ed., Springer-Verlag, New York, 1987. A functional integral point of view. MR 887102
- Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke, Wall-crossing, Hitchin Systems, and the WKB Approximation, 0907.3987.
- Søren Galatius, Ulrike Tillmann, Ib Madsen, and Michael Weiss, The homotopy type of the cobordism category, Acta Math. 202 (2009), no. 2, 195–239. MR 2506750, DOI https://doi.org/10.1007/s11511-009-0036-9
- Sergei Gukov, Albert Schwarz, and Cumrun Vafa, Khovanov-Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005), no. 1, 53–74. MR 2193547, DOI https://doi.org/10.1007/s11005-005-0008-8
- Rudolf Haag, Local quantum physics, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996. Fields, particles, algebras. MR 1405610
- Kiyoshi Igusa, The space of framed functions, Trans. Amer. Math. Soc. 301 (1987), no. 2, 431–477. MR 882699, DOI https://doi.org/10.1090/S0002-9947-1987-0882699-7
- Robion Kirby, A calculus for framed links in $S^{3}$, Invent. Math. 45 (1978), no. 1, 35–56. MR 467753, DOI https://doi.org/10.1007/BF01406222
- Daniel M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), 294–329. MR 131451, DOI https://doi.org/10.1090/S0002-9947-1958-0131451-0
- Anton Kapustin, Topological field theory, higher categories, and their applications, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010, pp. 2021–2043. MR 2827874
- Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426. MR 1740682, DOI https://doi.org/10.1215/S0012-7094-00-10131-7
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244
- Joachim Kock, Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts, vol. 59, Cambridge University Press, Cambridge, 2004. MR 2037238
- M. Kontsevich and Y. Soibelman, Notes on $A_\infty $-algebras, $A_\infty $-categories and non-commutative geometry, Homological mirror symmetry, Lecture Notes in Phys., vol. 757, Springer, Berlin, 2009, pp. 153–219. MR 2596638
- Anton Kapustin and Edward Witten, Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007), no. 1, 1–236. MR 2306566, DOI https://doi.org/10.4310/CNTP.2007.v1.n1.a1
- Jacob Lurie, On the classification of topological field theories, Current developments in mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 129–280. MR 2555928
- ---, Higher Algebra. http://math.harvard.edu/l̃urie/papers/higheralgebra.pdf. draft version.
- ---, Lectures on the cobordism hypothesis. http://www.ma.utexas.edu/video/perspectives.html. Perspectives in Geometry lectures at University of Texas, January, 2009.
- Bong H. Lian and Gregg J. Zuckerman, New perspectives on the BRST-algebraic structure of string theory, Comm. Math. Phys. 154 (1993), no. 3, 613–646. MR 1224094
- George W. Mackey, The mathematical foundations of quantum mechanics, Mathematical Physics Monograph Series, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1980. A lecture-note volume; Reprint of the 1963 original. MR 676642
- J. P. May, Stable algebraic topology, 1945–1966, History of topology, North-Holland, Amsterdam, 1999, pp. 665–723.
- Saunders MacLane, Categories for the working mathematician, Springer-Verlag, New York-Berlin, 1971. Graduate Texts in Mathematics, Vol. 5. MR 0354798
- John W. Milnor, Topology from the differentiable viewpoint, The University Press of Virginia, Charlottesville, Va., 1965. Based on notes by David W. Weaver. MR 0226651
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR 0163331
- John Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, N.J., 1965. Notes by L. Siebenmann and J. Sondow. MR 0190942
- Gregory W. Moore and Yuji Tachikawa, On $2d$ TQFTs whose values are holomorphic symplectic varieties, 1106.5698.
- Scott Morrison and Kevin Walker, Higher categories, colimits, and the blob complex, Proc. Natl. Acad. Sci. USA 108 (2011), no. 20, 8139–8145. MR 2806651, DOI https://doi.org/10.1073/pnas.1018168108
- Paul S. Aspinwall, Tom Bridgeland, Alastair Craw, Michael R. Douglas, Mark Gross, Anton Kapustin, Gregory W. Moore, Graeme Segal, Balázs Szendrői, and P. M. H. Wilson, Dirichlet branes and mirror symmetry, Clay Mathematics Monographs, vol. 4, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2009. MR 2567952
- Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177–254. MR 1002038
- Ib Madsen and Ulrike Tillmann, The stable mapping class group and $Q(\Bbb C \mathrm P^\infty _+)$, Invent. Math. 145 (2001), no. 3, 509–544. MR 1856399, DOI https://doi.org/10.1007/PL00005807
- Ib Madsen and Michael Weiss, The stable moduli space of Riemann surfaces: Mumford’s conjecture, Ann. of Math. (2) 165 (2007), no. 3, 843–941. MR 2335797, DOI https://doi.org/10.4007/annals.2007.165.843
- David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR 717614
- L. S. Pontryagin, Smooth manifolds and their applications in homotopy theory, American Mathematical Society Translations, Ser. 2, Vol. 11, American Mathematical Society, Providence, R.I., 1959, pp. 1–114. MR 0115178
- Richard S. Palais, Seminar on the Atiyah-Singer index theorem, Annals of Mathematics Studies, No. 57, Princeton University Press, Princeton, N.J., 1965. With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay. MR 0198494
- Frank Quinn, Lectures on axiomatic topological quantum field theory, Geometry and quantum field theory (Park City, UT, 1991) IAS/Park City Math. Ser., vol. 1, Amer. Math. Soc., Providence, RI, 1995, pp. 323–453. MR 1338394, DOI https://doi.org/10.1090/pcms/001/05
- Charles Rezk, A Cartesian presentation of weak $n$-categories, Geom. Topol. 14 (2010), no. 1, 521–571. MR 2578310, DOI https://doi.org/10.2140/gt.2010.14.521
- N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1–26. MR 1036112
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI https://doi.org/10.1007/BF01239527
- G. B. Segal, Felix Klein Lectures 2011. http://www.mpim-bonn.mpg.de/node/3372/abstracts.
- Graeme Segal, The definition of conformal field theory, Topology, geometry and quantum field theory, London Math. Soc. Lecture Note Ser., vol. 308, Cambridge Univ. Press, Cambridge, 2004, pp. 421–577. MR 2079383
- ---, String algebras. http://www.cgtp.duke.edu/ITP99/segal/stanford/ lect5.pdf.
- S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387–399. MR 153022, DOI https://doi.org/10.2307/2372978
- Edwin H. Spanier, Algebraic topology, Springer-Verlag, New York-Berlin, 1981. Corrected reprint. MR 666554
- R. F. Streater and A. S. Wightman, PCT, spin and statistics, and all that, Princeton Landmarks in Physics, Princeton University Press, Princeton, NJ, 2000. Corrected third printing of the 1978 edition. MR 1884336
- René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, DOI https://doi.org/10.1007/BF02566923
- Constantin Teleman, Topological field theories in 2 dimensions, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2010, pp. 197–210. MR 2648326, DOI https://doi.org/10.4171/077-1/9
- ---, Lie group actions in categories and Langlands duality. http://www.ma.utexas.edu/video/perspectives.html. Perspectives in Geometry lectures at University of Texas, October, 2011.
- Ulrike Tillmann, The classifying space of the $(1+1)$-dimensional cobordism category, J. Reine Angew. Math. 479 (1996), 67–75. MR 1414388, DOI https://doi.org/10.1515/crll.1996.479.67
- Ulrike Tillmann, On the homotopy of the stable mapping class group, Invent. Math. 130 (1997), no. 2, 257–275. MR 1474157, DOI https://doi.org/10.1007/s002220050184
- V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. MR 1292673
- Edward Witten, Topological quantum field theory, Comm. Math. Phys. 117 (1988), no. 3, 353–386. MR 953828
- Edward Witten, Topological sigma models, Comm. Math. Phys. 118 (1988), no. 3, 411–449. MR 958805
- Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772
- Edward Witten, Fivebranes and knots, Quantum Topol. 3 (2012), no. 1, 1–137. MR 2852941, DOI https://doi.org/10.4171/QT/26
- K. Walker, On Witten’s $3$-manifold invariants. http://canyon23.net/math/1991TQFTNotes.pdf.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 57R56
Retrieve articles in all journals with MSC (2010): 57R56
Additional Information
Daniel S. Freed
Affiliation:
The University of Texas at Austin, Mathematics Department RLM 8.100, 2515 Speedway Stop C1200, Austin, Texas 78712-1202
Email:
dafr@math.utexas.edu
Received by editor(s):
November 15, 2011
Received by editor(s) in revised form:
September 14, 2012
Published electronically:
October 11, 2012
Additional Notes:
The work of this author was supported by the National Science Foundation under grant DMS-0603964
Article copyright:
© Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.