Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Creating a life: Emil Artin in America
HTML articles powered by AMS MathViewer

by Della Dumbaugh and Joachim Schwermer PDF
Bull. Amer. Math. Soc. 50 (2013), 321-330 Request permission
References
  • Letter, Emil Artin to Robert F. Goheen, 15 March 1959, Artin File, PUA.
  • Letter, J. Douglas Brown to Robert F. Goheen, 3 July 1958, Artin File, PUA.
  • Letter, Father John O’Hara to H. B. Wells, 11 June 1938, Artin File, IUB.
  • Letter, Solomon Lefschetz to Father John O’Hara, 12 January 1937, Artin File (UDIS 101/43), UND.
  • Schedule of Lectures and Recitations, Office of the Registrar Records, Box 457p, IUB
  • Letter, Albert Tucker to J. Douglas Brown, 6 April 1958, Artin File, PUA.
  • Letter, Hermann Weyl to W. T. Martin, 15 January 1945, Artin File, PUA.
  • Letter, K. P. Williams to Fernandus Payne, 6 April 1938, Artin File, IUB [] Published sources
  • E. Artin, Notre Dame Mathematical Lectures No. 2 Galois Theory, Notre Dame: University of Notre Dame Press 1942.
  • E. Artin, Collected Papers. Edited by Serge Lang and John Tate. (New York, Heidelberg, Berlin: Springer-Verlag, 1965).
  • E. Artin and G. Whaples, Axiomatic characterization of fields by the product formula for valuations, Bull. Amer. Math. Soc., 51 (1945), 469–492.
  • E. Artin and G. Whaples, A note on axiomatic characterization of fields, Bull. Amer. Math. Soc., 52 (1946), 245–247.
  • R. Brauer, Emil Artin, Bull. Amer. Math. Soc., 73 (1967), 27–43.
  • J. W. S. Cassels and A. Fröhlich, eds., Algebraic Number Theory, Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union, pp. 305–347, Academic Press, London, 1967.
  • C. Chevalley, Sur la théorie du corps de classes dans les corps finis et le corps locaux, J. Fac. Sci. Univ. Tokyo, 2 (1933), 365–476.
  • C. Chevalley, La théorie du corps de classes, Ann. of Math., 41 (1940), 394–418.
  • D. D. Fenster, “Artin in America (1937–1958): A time of transition”, In Emil Artin (1898–1962) Beiträge zu Leben, Werk und Persönlichkeit (K. Reich and A. Kreuzer, eds., with the collaboration of Catrin Pieri), Algorismus 61, Dr. Erwin Rauner Verlag, Augsburg, 2007.
  • D. Gilbarg, The structure of the group of $\mathfrak {p}$-adic $1$-units, Duke Math. J., 9 (1942), 262–271.
  • L. Golland, B. McGuinness, and A. Sklar, eds., Karl Menger: Reminescences of the Vienna Circle and the Mathematical Colloquium, 20, Kluwer Academic Publishers, Dorcrecht, 1994.
  • E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung von Primzahlen. Erste Mitteilung, Math. Z., 1 (1918), 357–376.
  • E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung von Primzahlen. Zweite Mitteilung, Math. Z., 4 (1920), 11-51.
  • A. J. Hope, The Story of Notre Dame, University of Notre Dame Press, Notre Dame, IN, 1999.
  • S. Iyanaga, Travaux de Claude Chevalley sur la théorie du corps de classes: Introduction, Japan J. Math. 1 (2006), 25–85.
  • E. Koehler with K. Menger, “Memories of Kurt Gödel”, In Karl Menger: Reminescences of the Vienna Circle and the Mathematical Colloquium (L. Golland, B. McGuinness, and A. Sklar, eds.), 20, Kluwer Academic Publishers, Dorcrecht, 1994.
  • A. Matchett, Margaret Matchett: A Brief Biography, March, 2012 (unpublished).
  • M. Matchett, On the zeta function for idéles, Thesis (Ph.D.), Indiana University, 1946 (unpublished).
  • K. Reich, “Artin in Hamburg 1922–1937”, in Emil Artin (1898–1962) Beiträge zu Leben, Werk und Persönlichkeit (K. Reich and A. Kreuzer, eds., with the collaboration of Catrin Pieri), Algorismus 61, Dr. Erwin Rauner Verlag, Augsburg, 2007.
  • N. Reingold, Refugee Mathematicians in the United States of America, 1933–1941: Reception and Reaction, Ann. of Sci., 38 (1981), 313–338.
  • R. Rider, Alarm and Opportunity: Emigration of mathematicians and physicists to Britain and the United States, 1933–1945, Historical Studies in the Physical Sciences 15 (1984), 107–176.
  • J. Tate, “Fourier analysis in number fields and Hecke’s zeta-functions”, in Algebraic Number Theory, (J. W. S. Cassels and A. Fröhlich, eds.), pp. 305–347, Academic Press, London, 1967.
  • K. Tate, Natascha Artin-Brunswick, www.memorial2u.com/Biography/id/64/Natascha-Artin-Brunswick
Similar Articles
Additional Information
  • Della Dumbaugh
  • Affiliation: Department of Mathematics, University of Richmond, Richmond, Virginia
  • MR Author ID: 351423
  • Email: ddumbaugh@richmond.edu
  • Joachim Schwermer
  • Affiliation: Faculty of Mathematics, University of Vienna, Nordbergstrasse 15, A-1090 Vienna, Austria; and Erwin Schrödinger International Institute for Mathematical Physics, Boltzmanngasse 9, A-1090 Vienna, Austria
  • Email: Joachim.Schwermer@univie.ac.at
  • Received by editor(s): October 3, 2012
  • Published electronically: December 18, 2012
  • © Copyright 2012 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Bull. Amer. Math. Soc. 50 (2013), 321-330
  • MSC (2000): Primary 01A60, 01A70; Secondary 11R37, 11R42
  • DOI: https://doi.org/10.1090/S0273-0979-2012-01398-8
  • MathSciNet review: 3020829