Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


MathSciNet review: 3049873
Full text of review: PDF   This review is available free of charge.
Book Information:

Author: József Beck
Title: Inevitable randomness in discrete mathematics
Additional book information: University Lecture Series, 49, American Mathematical Society, Providence, RI, 2009, xiii+250 pp., ISBN 978-0-8218-4756-5, US $59.00

References [Enhancements On Off] (What's this?)

  • Leonard M. Adleman and Ming-Deh A. Huang, Primality testing and abelian varieties over finite fields, Lecture Notes in Mathematics, vol. 1512, Springer-Verlag, Berlin, 1992. MR 1176511, DOI 10.1007/BFb0090185
  • Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, PRIMES is in P, Ann. of Math. (2) 160 (2004), no. 2, 781–793. MR 2123939, DOI 10.4007/annals.2004.160.781
  • Sanjeev Arora and Boaz Barak, Computational complexity, Cambridge University Press, Cambridge, 2009. A modern approach. MR 2500087, DOI 10.1017/CBO9780511804090
  • József Beck, Combinatorial games, Encyclopedia of Mathematics and its Applications, vol. 114, Cambridge University Press, Cambridge, 2008. Tic-tac-toe theory. MR 2402857, DOI 10.1017/CBO9780511735202
  • Martin E. Dyer and Alan M. Frieze, On the complexity of computing the volume of a polyhedron, SIAM J. Comput., 17 (1988), no. 5, 967–974.
  • Martin Dyer, Alan Frieze, and Ravi Kannan, A random polynomial-time algorithm for approximating the volume of convex bodies, J. Assoc. Comput. Mach. 38 (1991), no. 1, 1–17. MR 1095916, DOI 10.1145/102782.102783
  • Herbert Edelsbrunner, Algorithms in combinatorial geometry, EATCS Monographs on Theoretical Computer Science, vol. 10, Springer-Verlag, Berlin, 1987. MR 904271, DOI 10.1007/978-3-642-61568-9
  • Lance Fortnow, The status of the $\mathbf {P}$ versus $\mathbf {NP}$ problem, Commun. ACM 52 (2009), no. 9, 78–86.
  • Valentine Kabanets and Russell Impagliazzo, Derandomizing polynomial identity tests means proving circuit lower bounds, Comput. Complexity 13 (2004), no. 1-2, 1–46. MR 2105971, DOI 10.1007/s00037-004-0182-6
  • Russell Impagliazzo and Avi Wigderson, $\textrm {P}=\textrm {BPP}$ if $\textrm {E}$ requires exponential circuits: derandomizing the XOR lemma, STOC ’97 (El Paso, TX), ACM, New York, 1999, pp. 220–229. MR 1715634
  • Pascal Koiran, Shallow Circuits with High-Powered Inputs, in Proceedings of Innovations in Computer Science (ICS 2011, Jan. 6–9, 2011, Beijing China), Tsinghua University Press, Beijing.
  • Richard Lipton, Gödel’s Lost Letter and $\mathbf {P}\!=\!\mathbf {NP}$, blog entry, http://rjlipton. wordpress.com/the-gdel-letter .
  • Christos H. Papadimitriou, Computational complexity, Addison-Wesley Publishing Company, Reading, MA, 1994. MR 1251285
  • Miklós Simonovits, How to compute the volume in high dimension?, Math. Program. 97 (2003), no. 1-2, Ser. B, 337–374. ISMP, 2003 (Copenhagen). MR 2004402, DOI 10.1007/s10107-003-0447-x
  • Michael Sipser, The history and status of the $\mathbf {P}$ versus $\mathbf {NP}$ question, in Proceedings STOC ’92 (Twenty-Fourth Annual ACM Symposium on Theory of Computing), pp. 603–618, ACM Press, 1992.
  • R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput. 6 (1977), no. 1, 84–85. MR 429721, DOI 10.1137/0206006
  • Arne Storjohann, Algorithms for matrix canonical forms, doctoral dissertation, Swiss Federal Institute of Technology, Zurich, 2000.
  • E. Szemerédi, On sets of integers containing no $k$ elements in arithmetic progression, Acta Arith. 27 (1975), 199–245. MR 369312, DOI 10.4064/aa-27-1-199-245
  • Terence Tao, A quantitative ergodic theory proof of Szemerédi’s theorem, Electron. J. Combin. 13 (2006), no. 1, Research Paper 99, 49. MR 2274314

  • Review Information:

    Reviewer: J. Maurice Rojas
    Journal: Bull. Amer. Math. Soc. 50 (2013), 481-487
    DOI: https://doi.org/10.1090/S0273-0979-2013-01407-1
    Published electronically: April 5, 2013
    Additional Notes: Partially supported by NSF MCS grant DMS-0915245, DOE ASCR grant DE-SC0002505, and Sandia National Laboratories.
    Review copyright: © Copyright 2013 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.