Singular perturbations of complex polynomials
HTML articles powered by AMS MathViewer
- by Robert L. Devaney PDF
- Bull. Amer. Math. Soc. 50 (2013), 391-429 Request permission
Abstract:
In this paper we describe the dynamics of singularly perturbed complex polynomials. That is, we start with a complex polynomial whose dynamics are well understood. Then we perturb this map by adding a pole, i.e., by adding in a term of the form $\lambda /(z-a)^d$ where the parameter $\lambda$ is complex. This changes the polynomial into a rational map of higher degree and, as we shall see, the dynamical behavior explodes.
One aim of this paper is to give a survey of the many different topological structures that arise in the dynamical and parameter planes for these singularly perturbed maps. We shall show how Sierpiński curves arise in a myriad of different ways as the Julia sets for these singularly perturbed maps, and while these sets are always the same topologically, the dynamical behavior on them is often quite different. We shall also describe a number of interesting topological objects that arise in the parameter plane (the $\lambda$-plane) for these maps. These include Mandelpinski necklaces, Cantor webs, and Cantor sets of circles of Sierpiński curve Julia sets.
References
- Daniel S. Alexander, Felice Iavernaro, and Alessandro Rosa, Early days in complex dynamics, History of Mathematics, vol. 38, American Mathematical Society, Providence, RI; London Mathematical Society, London, 2012. A history of complex dynamics in one variable during 1906–1942. MR 2857586, DOI 10.1090/hmath/038
- Paul Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 85–141. MR 741725, DOI 10.1090/S0273-0979-1984-15240-6
- Blanchard, P., Çilingir, F., Cuzzocreo, D., Devaney, R. L., Look, D. M., and Russell, E. D. Checkerboard Julia Sets for Rational Maps. To appear.
- Paul Blanchard, Robert L. Devaney, Antonio Garijo, Sebastian M. Marotta, and Elizabeth D. Russell, The rabbit and other Julia sets wrapped in Sierpiński carpets, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 277–295. MR 2508261, DOI 10.1201/b10617-10
- Paul Blanchard, Robert L. Devaney, Daniel M. Look, Pradipta Seal, and Yakov Shapiro, Sierpinski-curve Julia sets and singular perturbations of complex polynomials, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1047–1055. MR 2158396, DOI 10.1017/S0143385704000380
- Paul Blanchard, Robert L. Devaney, Antonio Garijo, and Elizabeth D. Russell, A generalized version of the McMullen domain, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), no. 8, 2309–2318. MR 2463865, DOI 10.1142/S0218127408021725
- Branner, B. and Fagella, N. The Theory of Polynomial-Like Mappings — The Importance of Quadratic Polynomials. In Proc. 7th EWM Meeting, 57-70.
- Xavier Buff and Arnaud Chéritat, The Brjuno function continuously estimates the size of quadratic Siegel disks, Ann. of Math. (2) 164 (2006), no. 1, 265–312. MR 2233849, DOI 10.4007/annals.2006.164.265
- Gamaliel Ble, Adrien Douady, and Christian Henriksen, Round annuli, In the tradition of Ahlfors and Bers, III, Contemp. Math., vol. 355, Amer. Math. Soc., Providence, RI, 2004, pp. 71–76. MR 2145056, DOI 10.1090/conm/355/06445
- Figen Çilingir, Robert L. Devaney, and Elizabeth D. Russell, Extending external rays throughout the Julia sets of rational maps, J. Fixed Point Theory Appl. 7 (2010), no. 1, 223–240. MR 2652518, DOI 10.1007/s11784-010-0003-2
- Cuzzocreo, D. and Devaney, R. L. Simple Mandelpinski Necklaces for $z^2 + \lambda /z^2$. To appear.
- Laura DeMarco, Iteration at the boundary of the space of rational maps, Duke Math. J. 130 (2005), no. 1, 169–197. MR 2176550, DOI 10.1215/S0012-7094-05-13015-0
- Robert L. Devaney, A myriad of Sierpinski curve Julia sets, Difference equations, special functions and orthogonal polynomials, World Sci. Publ., Hackensack, NJ, 2007, pp. 131–148. MR 2451164, DOI 10.1142/9789812770752_{0}011
- Robert L. Devaney, The McMullen domain: satellite Mandelbrot sets and Sierpinski holes, Conform. Geom. Dyn. 11 (2007), 164–190. MR 2346215, DOI 10.1090/S1088-4173-07-00166-X
- Robert L. Devaney, Baby Mandelbrot sets adorned with halos in families of rational maps, Complex dynamics, Contemp. Math., vol. 396, Amer. Math. Soc., Providence, RI, 2006, pp. 37–50. MR 2209085, DOI 10.1090/conm/396/07392
- Robert L. Devaney, Structure of the McMullen domain in the parameter planes for rational maps, Fund. Math. 185 (2005), no. 3, 267–285. MR 2161407, DOI 10.4064/fm185-3-5
- Robert L. Devaney, Cantor webs in the parameter and dynamical planes of rational maps, Holomorphic dynamics and renormalization, Fields Inst. Commun., vol. 53, Amer. Math. Soc., Providence, RI, 2008, pp. 105–123. MR 2477420
- Robert L. Devaney, Cantor sets of circles of Sierpiński curve Julia sets, Ergodic Theory Dynam. Systems 27 (2007), no. 5, 1525–1539. MR 2358976, DOI 10.1017/S0143385707000156
- Robert L. Devaney, Cantor necklaces and structurally unstable Sierpinski curve Julia sets for rational maps, Qual. Theory Dyn. Syst. 5 (2004), no. 2, 337–359. MR 2275444, DOI 10.1007/BF02972685
- Devaney, R. L., Cantor, Mandelbrot, Sierpiński Trees in the Parameter Planes for Rational Maps. To appear.
- Robert L. Devaney and Antonio Garijo, Julia sets converging to the unit disk, Proc. Amer. Math. Soc. 136 (2008), no. 3, 981–988. MR 2361872, DOI 10.1090/S0002-9939-07-09084-3
- Devaney, R. L. and Kozma, R. T. Julia sets converging to filled quadratic Julia sets. To appear in Ergod. Th. & Dynan. Sys.
- Robert L. Devaney, Daniel M. Look, and David Uminsky, The escape trichotomy for singularly perturbed rational maps, Indiana Univ. Math. J. 54 (2005), no. 6, 1621–1634. MR 2189680, DOI 10.1512/iumj.2005.54.2615
- Robert L. Devaney and Sebastian M. Marotta, The McMullen domain: rings around the boundary, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3251–3273. MR 2299454, DOI 10.1090/S0002-9947-07-04137-2
- Mark Morabito and Robert L. Devaney, Limiting Julia sets for singularly perturbed rational maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), no. 10, 3175–3181. MR 2482381, DOI 10.1142/S0218127408022342
- Robert L. Devaney, Mónica Moreno Rocha, and Stefan Siegmund, Rational maps with generalized Sierpinski gasket Julia sets, Topology Appl. 154 (2007), no. 1, 11–27. MR 2271770, DOI 10.1016/j.topol.2006.03.024
- Robert L. Devaney and Kevin M. Pilgrim, Dynamic classification of escape time Sierpiński curve Julia sets, Fund. Math. 202 (2009), no. 2, 181–198. MR 2506193, DOI 10.4064/fm202-2-5
- Devaney, R. L., Russell, E. D. Connectivity of Julia Sets for Singularly Perturbed Rational Maps. To appear.
- Adrien Douady, Systèmes dynamiques holomorphes, Bourbaki seminar, Vol. 1982/83, Astérisque, vol. 105, Soc. Math. France, Paris, 1983, pp. 39–63 (French). MR 728980
- Adrien Douady and John H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263–297. MR 1251582, DOI 10.1007/BF02392534
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 (French). MR 762431
- Fatou, P. Sur les solutions uniformes de certaines equations fonctionelles. C. R. Acad. Sci. Paris 143 (1906), 546-548.
- Fitzgibbon, E. and Silvestri, S. Rational Maps: Julia Sets of Accessible Mandelbrot Sets Are Not Homeomorphic. To appear.
- Antonio Garijo, Xavier Jarque, and Mónica Moreno Rocha, Non-landing hairs in Sierpiński curve Julia sets of transcendental entire maps, Fund. Math. 214 (2011), no. 2, 135–160. MR 2845719, DOI 10.4064/fm214-2-3
- Antonio Garijo and Sebastian M. Marotta, Singular perturbations of $z^n$ with a pole on the unit circle, J. Difference Equ. Appl. 16 (2010), no. 5-6, 573–595. MR 2642467, DOI 10.1080/10236190903257842
- Garijo, A., Marotta, S. and Russell, E. D. Singular Perturbations in the Quadratic Family with Multiple Poles. To appear in J. Diff. Eq. Appl.
- E. J. Hinch, Perturbation methods, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1991. MR 1138727, DOI 10.1017/CBO9781139172189
- Jane M. Hawkins and Daniel M. Look, Locally Sierpinski Julia sets of Weierstrass elliptic $\wp$ functions, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16 (2006), no. 5, 1505–1520. MR 2254870, DOI 10.1142/S0218127406015453
- Mark H. Holmes, Introduction to perturbation methods, Texts in Applied Mathematics, vol. 20, Springer-Verlag, New York, 1995. MR 1351250, DOI 10.1007/978-1-4612-5347-1
- Julia, G. Memoire sur l’itération des Fonctions Rationelles. J. Math. Pure Appl. 8 (1918), 47-245.
- Daniel M. Look, Sierpinski carpets as Julia sets for imaginary 3-circle inversions, J. Difference Equ. Appl. 16 (2010), no. 5-6, 705–713. MR 2675601, DOI 10.1080/10236190903203911
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343
- Sebastian M. Marotta, Singular perturbations in the quadratic family, J. Difference Equ. Appl. 14 (2008), no. 6, 581–595. MR 2417010, DOI 10.1080/10236190701702429
- Sebastian M. Marotta, Singular perturbations of $z^n$ with multiple poles, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), no. 4, 1085–1100. MR 2422924, DOI 10.1142/S0218127408020859
- Curt McMullen, Automorphisms of rational maps, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) Math. Sci. Res. Inst. Publ., vol. 10, Springer, New York, 1988, pp. 31–60. MR 955807, DOI 10.1007/978-1-4613-9602-4_{3}
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- John Milnor, Dynamics in one complex variable, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR 2193309
- John Milnor, Geometry and dynamics of quadratic rational maps. Experimental Math. 2 (1993), 37-83.
- John Milnor, Geometry and dynamics of quadratic rational maps, Experiment. Math. 2 (1993), no. 1, 37–83. With an appendix by the author and Lei Tan. MR 1246482
- Moreno Rocha, M. A Combinatorial Invariant for Escape Time Sierpiński Rational Maps. To appear.
- Kevin M. Pilgrim, Rational maps whose Fatou components are Jordan domains, Ergodic Theory Dynam. Systems 16 (1996), no. 6, 1323–1343. MR 1424402, DOI 10.1017/S0143385700010051
- Weiyuan Qiu, Xiaoguang Wang, and Yongcheng Yin, Dynamics of McMullen maps, Adv. Math. 229 (2012), no. 4, 2525–2577. MR 2880231, DOI 10.1016/j.aim.2011.12.026
- Qiu, W., Roesch, P., Wang, X., and Yin, Y. Hyperbolic Components of McMullen Maps. To appear.
- P. Roesch, On capture zones for the family $f_\lambda (z)=z^2+\lambda /z^2$, Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, pp. 121–129. MR 2348958, DOI 10.4171/011-1/6
- Mitsuhiro Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 1, 1–29. MR 892140
- Silvestri, S. Non Homeomorphic Julia Sets of Singularly Perturbed Rational Maps. To appear.
- Norbert Steinmetz, On the dynamics of the McMullen family $R(z)=z^m+\lambda /z^l$, Conform. Geom. Dyn. 10 (2006), 159–183. MR 2261046, DOI 10.1090/S1088-4173-06-00149-4
- Norbert Steinmetz, Sierpiński curve Julia sets of rational maps, Comput. Methods Funct. Theory 6 (2006), no. 2, 317–327. MR 2291139, DOI 10.1007/BF03321617
- Dennis Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains, Ann. of Math. (2) 122 (1985), no. 3, 401–418. MR 819553, DOI 10.2307/1971308
- Sutherland, S. Bad Polynomials for Newton’s Method. In Linear and Complex Analysis, Springer-Verlag (1994).
- Lei Tan and Yongcheng Yin, Local connectivity of the Julia set for geometrically finite rational maps, Sci. China Ser. A 39 (1996), no. 1, 39–47. MR 1397233
- Thurston, W. Lecture Notes. CBMS Conference, University of Minnesota at Duluth, 1983.
- Ferdinand Verhulst, Methods and applications of singular perturbations, Texts in Applied Mathematics, vol. 50, Springer, New York, 2005. Boundary layers and multiple timescale dynamics. MR 2148856, DOI 10.1007/0-387-28313-7
- G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320–324. MR 99638, DOI 10.4064/fm-45-1-320-324
- Jean-Christophe Yoccoz, Linéarisation des germes de difféomorphismes holomorphes de $(\textbf {C}, 0)$, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 1, 55–58 (French, with English summary). MR 929279
Additional Information
- Robert L. Devaney
- Affiliation: Department of Mathematics, Boston University, Boston, Massachusetts 02215
- MR Author ID: 57240
- Email: bob@bu.edu
- Received by editor(s): June 12, 2012
- Published electronically: April 2, 2013
- Additional Notes: The authors work was partially supported by grant #208780 from the Simons Foundation
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Bull. Amer. Math. Soc. 50 (2013), 391-429
- MSC (2010): Primary 37F10; Secondary 37F45
- DOI: https://doi.org/10.1090/S0273-0979-2013-01410-1
- MathSciNet review: 3049870