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Let us start with the well-known fact that the base b expansion (b ≥ 2 an
integer) of a rational number is periodic from some index on, and that the sequence
of partial quotients of a quadratic number is periodic from some index on as well.
These properties characterize rationals, respectively, quadratic irrationals. On the
other hand, constructing a real number with more complicated patterns, such as

0.1100010000000000000000010 · · · =
∑

n≥1

10−n!

yields a transcendental number (Liouville number). This is also the case for the
Barbier–Champernowne number, whose expansion in base 10 is obtained by con-
catenating after the decimal point all the base 10 expansions of the consecutive
integers

0.1234567891011121314151617181920 · · · .
This leads to the natural question of whether the arithmetical nature of a real
number can be inferred from its decimal expansion and vice-versa. In particular,
what can be said about the digits of

√
2 or about the digits of π? Most of the

elementary questions one can imagine of about the decimal digits of these two
numbers are still unanswered, e.g., does a fixed digit (say 7) occur infinitely often
in any of these two expansions? The nice book of Bugeaud looks at a variety of
similar questions and leads the reader to the state of the art, including very recent
results.

First note that a random real number (i.e., “almost any” for the Lebesgue mea-
sure) has a quite regular distribution of its digits. Namely, each single decimal digit
occurs with frequency 1/10, every pair of digits occurs with frequency 1/100, . . .
every block of k digits occurs with frequency 1/10k, . . . . Such a number is said

to be “normal to base 10”. Borel asked in the 1950s whether
√
2 is normal to

base 10: the answer is still unknown (also when replacing base 10 with any integer
base). Another hard-to-believe statement is that, although almost all real numbers
are normal to any integer base, it is very difficult to provide an example of such a
number.

Then note the following result and think about how to prove it: a real number
ξ is normal to base b if and only if the sequence (ξbn)n≥0 is uniformly distributed
modulo 1. Here a sequence (xn)n≥0 is said to be uniformly distributed modulo 1 if
the proportion of integers n between 1 and N for which {xn} (the fractional part
of xn) belongs to any subinterval of [0, 1] is asymptotically equal to the length of
this interval, i.e., if

∀u, v, 0 ≤ u < v ≤ 1, lim
n→∞

1

N
�{n, 1 ≤ n ≤ N, u ≤ {xn} ≤ v} = v − u.
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This shows one of the reasons for studying sequences that are uniformly distributed
modulo 1. Unfortunately, not very much is known in this field for some specific
sequences either: e.g., on one hand the sequence (ξαn)n≥0 is uniformly distributed
modulo 1 for all α > 1 and almost all real numbers ξ, as well as for almost all
α > 1 and all nonzero real numbers ξ; on the other hand, frustratingly enough, one
does not know whether the sequence (( 32 )

n)n≥0 is uniformly distributed modulo 1
(or even whether its limit points form a dense subset of the interval [0, 1)), and
the answer is unknown if 3

2 is replaced by any rational number p
q > 1 such that

p
q is not an integer. Of course it is not a surprise that Pisot numbers enter this

picture (recall that a Pisot number is a real algebraic number > 1 such that all its
conjugates lie inside the unit disk, hence the sequence of powers of a Pisot number
tends to 0 modulo 1). Maybe less well known is a link between the distribution
of (( 32 )

n)n≥0 modulo 1 and the Waring problem. Namely, let g(n) be the smallest
integer such that every positive integer can be expressed as the sum of at most g(n)
nth powers (n ≥ 2). Then we have g(n) ≥ 2n+ �(3/2)n�− 2. It can be proven that
equality holds for n if ‖(3/2)n‖ ≥ (3/4)n−1 (where ‖x‖ is the distance between x
and its nearest integer neighbor). Note that Mahler proved that this last inequality
is true for n large enough.

Another both fascinating and frustrating question in distribution modulo 1 is
the existence of the so-called Mahler Z-numbers: a positive integer ξ is called a
Z-number if for any n ≥ 0 one has 0 ≤ {ξ(3/2)n} < (1/2). A classical conjecture is
that Z-numbers do not exist. Among the results in this direction, it can be proven
that if b is an integer, then for any irrational number ξ the numbers {ξbn} cannot
all lie in an interval of length < 1/b. Curiously enough, equality is attained for
“Sturmian numbers”. Recall that a number is Sturmian if its binary expansion
is the coding of the trajectory with irrational initial slope of a ball bouncing on
a square billiard, where bounces on vertical sides are coded by 0 and bounces on
horizontal sides are coded by 1.

Changing the integer b in some other integer base b′ in the study of (ξbn)n≥0

involves comparing the expansion of a real number in two different bases. Again
not much is known in the “interesting case” where the two bases b and b′ are

multiplicatively independent (i.e., log b′

log b is irrational). We cite the Cassels–Schmidt

result:

Let r and s be two multiplicatively independent integers ≥ 2. Then
the set of real numbers that are normal in base r and not normal
in base s is uncountable.

Actually they prove more: the result still holds if one looks at the set of real numbers
that are normal in base r but not even simply normal in base s (a number is said
simply normal in base s if each digit in {0, 1, . . . , s− 1} occurs in it with frequency
1/s).

We mention in passing that the above studies and questions are not only linked
to transcendence of real numbers but also to “good approximations” of reals by
rationals. Furthermore, they are linked to the study of real numbers with missing
digits in a given base, to questions about noninteger numeration bases (introduced
by Rényi), etc.

Before discussing continued fractions, we would like to point out two subjects
that are addressed or alluded to in Bugeaud’s book. The first one concerns real
numbers ξ whose base b expansion is d-automatic. Recall that a sequence (an)n≥0
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is called d-automatic (d is an integer > 1) if the set of subsequences {(adkn+j)n≥0,

k ≥ 0, j ∈ [0, dk−1]} (the “d-kernel” of the sequence) is finite. Such sequences take
necessarily only finitely many values; classical examples of nonperiodic 2-automatic
sequences are the Thue–Morse and the Shapiro–Rudin sequence. The Thue–Morse
sequence can be defined by an = s2(n) mod 2, where s2(n) stands for the sum of bi-
nary digits of the integer n. The Shapiro–Rudin sequence (bn)n≥0 can be defined as
follows: bn is the number, reduced modulo 2, of (possibly overlapping) occurrences
of the block 11 in the binary expansion of the integer n. Automatic sequences (the
concept comes from theoretical computer science and can be given a more algorith-
mic definition) can be seen intuitively as sequences that can be computed by some
sort of “easy” algorithm. One question about real numbers such that their base b
expansion is a d-automatic sequence is to prove that they cannot be algebraic irra-
tional. In other words, they are necessarily rational—the “trivial” case where the
expansion is ultimately periodic—or transcendental. Another formulation is that
the digits of a number like

√
2 cannot be computed by a “too simple algorithm”,

such as a d-automaton). Mahler proved long ago that the Thue–Morse number is
indeed transcendental; then Loxton and van der Poorten obtained partial results.
The final result is due to Adamczewski and Bugeaud who used a clever mixture
of Schmidt’s subspace theorem and of combinatorial properties of “stammering se-
quences”. Note that the statement that automatic real numbers are necessarily
rational or transcendental can be seen as a precise formulation of a particular case
of a “meta-theorem” stating that “algebraic irrationals cannot have too simple base
b expansions”.

The second subject we would like to cite in this section is the base b expansion
of real numbers for b > 1 not necessarily being an integer. The author cites the
fundamental result of Parry which gives a combinatorial characterization of the
(closure of the) set of all possible b-expansions. Getting further in this direction
would have lead the author to add another large amount of material. In particular,
without entering details, we just want to recall that Erdős, Joó, and Komornik
introduced, for a base b ∈ (1, 2), the set of real numbers between 0 and 1 that
admit a unique expansion as

∑
anb

−n with an ∈ {0, 1}. The b’s such that 1
admits a unique base b such expansion were later called “univoque”. The reader
will see the flavor of these numbers and the links with combinatorics of “words”
(i.e., finite sequences on a finite alphabet) if we add that univoque numbers b can
be characterized by the expansion of 1: b is univoque if and only if the (unique)
sequence (an)n≥0 such that 1 =

∑
anb

−n satisfies (1 − an)n≥0 < (an+k)n≥0 <
(an)n≥0 for all k > 0, where < is the lexicographical order on binary sequences.

Expanding a real number in some (possibly noninteger) base can be replaced by
expanding a positive real number into a continued fraction. It can be proved for
example that almost all reals in [0, 1] have a “normal” continued fraction expansion
(for a reasonable definition of normality). But nothing is known about the continued
fractions of algebraic numbers of degree ≥ 3: it is not known for example whether
there exist algebraic numbers of degree ≥ 3 having bounded partial quotients (ac-
tually it is not known either whether there exist algebraic numbers of degree ≥ 3
having unbounded partial quotients; these questions were asked by Khintchine). As
above, one of the questions that can be asked is whether continued fractions hav-
ing a d-automatic sequence of partial quotients must be either quadratic—this is
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the “trivial case” where the sequence of partial quotients is ultimately periodic—or
transcendental.

As it would be impossible to cite here all the results in the book, nor the nice
open questions given at the end, we recommend that the readers just open the book:
they will, without noticing, jump from chapter to chapter and through (part of)
the bibliography (of 751 items), eager to learn more about all these simple-to-state
but hard-to-solve-or-still-open questions. We however cannot resist giving (only)
five jewels: three are about the best results to date related to the questions of Borel
and of Khintchine, two are open questions.

1. (Adamczewski and Bugeaud). Let ξ be a positive real number. Let pξ,b(n)
be the number of distinct blocks of digits of length n in the base b expansion of ξ.
If ξ is algebraic irrational, then

lim
n→∞

pξ,b(n)

n
= +∞.

A consequence of this result is that automatic real numbers are rational or tran-
scendental.

2. (Bugeaud and Evertse). Let ξ be a positive real number. Let Dξ,b(n) be the
number of digit changes up to the nth digit in the base b expansion of ξ, i.e., if
ξ =

∑
akb

−k with ak ∈ [0, b), then Dξ,b(n) = �{k, 1 ≤ k ≤ n, ak �= ak+1}. If ξ
is algebraic irrational, then there exists an effectively computable constant n0(ξ, b)
depending only on ξ and b such that, for any integer n ≥ n0(ξ, b),

Dξ,b(n) ≥ (log n)5/4.

3. (Bugeaud). Automatic continued fractions are transcendental or quadratic.
(An automatic continued fraction is a continued fraction whose sequence of partial
quotients is d-automatic for some integer d ≥ 2.)

4. Open question (Furstenberg). Suppose that the integers p and q are multi-
plicatively independent (i.e., they are not powers of the same integer). Then, in the
expansion of pn to base pq, every digit and every combination of digits will occur,
as soon as n is sufficiently large.

5. One of the open questions was asked by Mendès France (he attributes it to
Mahler). Let (cn)n≥1 be a sequence of 0’s and 1’s. If the real numbers

∑
cn2

−n

and
∑

cn3
−n are both algebraic, then they are both rational (i.e., the sequence

(cn)n≥1 is ultimately periodic). This would be proved if another stronger question
(Mahler) had an affirmative answer: is it true that the middle third Cantor set does
not contain any algebraic irrational number? Of course this last question would
be answered affirmatively if, as Borel asked, not only

√
2 but also all algebraic

irrational numbers would be proven to be normal in any base.
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