Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
MathSciNet review:
3363148
Full text of review:
PDF
This review is available free of charge.
Book Information:
Author:
László Lovász
Title:
Large networks and graph limits
Additional book information:
American Mathematical Society Colloquium Publications, 60,
American Mathematical Society,
Providence, RI,
2012,
xiv+475 pp.,
ISBN 978-0-8218-9085-1,
US $99.00
Ch. Borgs, J. T. Chayes, H. Cohn, Y. Zhao, An $L^p$ theory of sparse graph convergence I: limits, sparse random graph models, and power law distributions, arXiv:1401.2906v2 [math.CO] (2014)
S. Chatterjee, A. Dembo, Nonlinear large deviations, arXiv:1401.3495v3 [math.PR] (2014)
R. Glebov, A. Grzesik, T. Klimoová, D. Král′, Finitely forcible graphons and permutons, arXiv:1307.2444v3 [math.CO] (2013)
A. S. Kechris, The spaces of measure preserving equivalence relations and graphs., preprint (2013)
J. Nešetřil, P. Ossona de Mendez, A unified approach to structural limits, and limits of graphs with bounded tree-depth, arXiv:1303.6471v2 [math.CO] (2013)
A. Razborov, Flag algebras: an interim report, In: Mathematics of Paul Erdős II, Springer 2013, pp. 207–232.
Y. Zhao, Hypergraph limits: a regularity approach arXiv:1302.1634v2 [math.CO] (2013)
References
- Ch. Borgs, J. T. Chayes, H. Cohn, Y. Zhao, An $L^p$ theory of sparse graph convergence I: limits, sparse random graph models, and power law distributions, arXiv:1401.2906v2 [math.CO] (2014)
- S. Chatterjee, A. Dembo, Nonlinear large deviations, arXiv:1401.3495v3 [math.PR] (2014)
- R. Glebov, A. Grzesik, T. Klimoová, D. Král′, Finitely forcible graphons and permutons, arXiv:1307.2444v3 [math.CO] (2013)
- A. S. Kechris, The spaces of measure preserving equivalence relations and graphs., preprint (2013)
- J. Nešetřil, P. Ossona de Mendez, A unified approach to structural limits, and limits of graphs with bounded tree-depth, arXiv:1303.6471v2 [math.CO] (2013)
- A. Razborov, Flag algebras: an interim report, In: Mathematics of Paul Erdős II, Springer 2013, pp. 207–232.
- Y. Zhao, Hypergraph limits: a regularity approach arXiv:1302.1634v2 [math.CO] (2013)
Review Information:
Reviewer:
Jaroslav Nešetřil
Affiliation:
Institute of Theoretical Computer Science, Charles University, Prague, Praha, Czech Republic
Email:
nesetril@iuuk.mff.cuni.cz
Journal:
Bull. Amer. Math. Soc.
51 (2014), 663-667
DOI:
https://doi.org/10.1090/S0273-0979-2014-01455-7
Published electronically:
April 29, 2014
Review copyright:
© Copyright 2014
American Mathematical Society