Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
MathSciNet review:
3363153
Full text of review:
PDF
This review is available free of charge.
Book Information:
Authors:
G. Kresin and
V. Maz’ya
Title:
Maximum principles and sharp constants for solutions of elliptic and parabolic systems
Additional book information:
Mathematical Surveys and Monographs, vol.\ 183,
American Mathematical Society,
Providence, RI,
2012,
viii+317 pp.,
ISBN 978-0-8218-8981-7,
US $96.00.
Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943, DOI 10.1090/gsm/019
L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, vol. 128, Cambridge University Press, Cambridge, 2000. MR 1751289, DOI 10.1017/CBO9780511569203
Fritz John, Partial differential equations, 4th ed., Applied Mathematical Sciences, vol. 1, Springer-Verlag, New York, 1982. MR 831655, DOI 10.1007/978-1-4684-9333-7
Dmitry Khavinson, An extremal problem for harmonic functions in the ball, Canad. Math. Bull. 35 (1992), no. 2, 218–220. MR 1165171, DOI 10.4153/CMB-1992-031-8
Julián López-Gómez, Linear Second Order Elliptic Operators, World Scientific, Singapore, 2013.
Carlo Miranda, Partial differential equations of elliptic type, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2, Springer-Verlag, New York-Berlin, 1970. Second revised edition. Translated from the Italian by Zane C. Motteler. MR 0284700
Patrizia Pucci and James Serrin, The maximum principle, Progress in Nonlinear Differential Equations and their Applications, vol. 73, Birkhäuser Verlag, Basel, 2007. MR 2356201
Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825, DOI 10.1007/978-1-4612-5282-5
J. Radon, Uber die randwertaufgaben beim logaritmischen potential, Sitz.-Ber. Akad. Wiss. Wien Math. naturw. Kl 128 (1919), 1123–1167.
René P. Sperb, Maximum principles and their applications, Mathematics in Science and Engineering, vol. 157, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 615561
References
- Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943 (2011c:35002)
- L. E. Fraenkel, An introduction to maximum principles and symmetry in elliptic problems, Cambridge Tracts in Mathematics, vol. 128, Cambridge University Press, Cambridge, 2000. MR 1751289 (2001c:35042), DOI 10.1017/CBO9780511569203
- Fritz John, Partial differential equations, 4th ed., Applied Mathematical Sciences, vol. 1, Springer-Verlag, New York, 1982. MR 831655 (87g:35002), DOI 10.1007/978-1-4684-9333-7
- Dmitry Khavinson, An extremal problem for harmonic functions in the ball, Canad. Math. Bull. 35 (1992), no. 2, 218–220. MR 1165171 (93d:31005), DOI 10.4153/CMB-1992-031-8
- Julián López-Gómez, Linear Second Order Elliptic Operators, World Scientific, Singapore, 2013.
- Carlo Miranda, Partial differential equations of elliptic type, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2, Springer-Verlag, New York-Berlin, 1970. Second revised edition. Translated from the Italian by Zane C. Motteler. MR 0284700 (44 \#1924)
- Patrizia Pucci and James Serrin, The maximum principle, Progress in Nonlinear Differential Equations and their Applications, 73, Birkhäuser Verlag, Basel, 2007. MR 2356201 (2008m:35001)
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Springer-Verlag, New York, 1984. Corrected reprint of the 1967 original. MR 762825 (86f:35034), DOI 10.1007/978-1-4612-5282-5
- J. Radon, Uber die randwertaufgaben beim logaritmischen potential, Sitz.-Ber. Akad. Wiss. Wien Math. naturw. Kl 128 (1919), 1123–1167.
- René P. Sperb, Maximum principles and their applications, Mathematics in Science and Engineering, vol. 157, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 615561 (84a:35033)
Review Information:
Reviewer:
Dmitry Khavinson
Affiliation:
Department of Mathematics, University of South Florida
Journal:
Bull. Amer. Math. Soc.
51 (2014), 701-704
DOI:
https://doi.org/10.1090/S0273-0979-2014-01463-6
Published electronically:
May 29, 2014
Review copyright:
© Copyright 2014
American Mathematical Society