Quantitative ergodic theorems and their number-theoretic applications
HTML articles powered by AMS MathViewer
- by Alexander Gorodnik and Amos Nevo PDF
- Bull. Amer. Math. Soc. 52 (2015), 65-113 Request permission
Abstract:
We present an account of some recent applications of ergodic theorems for actions of algebraic and arithmetic groups to the solution of natural problems in Diophantine approximation and number theory. Our approach is based on spectral methods utilizing the unitary representation theory of the groups involved. This allows the derivation of ergodic theorems with a rate of convergence, an important phenomenon which does not arise in classical ergodic theory. Combining spectral and dynamical methods, quantitative ergodic theorems give rise to new and previously inaccessible applications. We demonstrate the remarkable diversity of such applications by deriving general uniform error estimates in non-Euclidean lattice points counting problems, explicit estimates in the sifting problem for almost-prime points on symmetric varieties, best-possible bounds for exponents of intrinsic Diophantine approximation on homogeneous algebraic varieties, and quantitative results on fast distribution of dense orbits on compact and non-compact homogeneous spaces.References
- Jon Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, Providence, RI, 1997. MR 1450400, DOI 10.1090/surv/050
- Claire Anantharaman, Jean-Philippe Anker, Martine Babillot, Aline Bonami, Bruno Demange, Sandrine Grellier, François Havard, Philippe Jaming, Emmanuel Lesigne, Patrick Maheux, Jean-Pierre Otal, Barbara Schapira, and Jean-Pierre Schreiber, Théorèmes ergodiques pour les actions de groupes, Monographies de L’Enseignement Mathématique [Monographs of L’Enseignement Mathématique], vol. 41, L’Enseignement Mathématique, Geneva, 2010 (French). With a foreword in English by Amos Nevo. MR 2643350
- Vladimir I. Arnold, Arnold’s problems, Springer-Verlag, Berlin; PHASIS, Moscow, 2004. Translated and revised edition of the 2000 Russian original; With a preface by V. Philippov, A. Yakivchik and M. Peters. MR 2078115
- V. I. Arnol′d and A. L. Krylov, Uniform distribution of points on a sphere and certain ergodic properties of solutions of linear ordinary differential equations in a complex domain, Dokl. Akad. Nauk SSSR 148 (1963), 9–12 (Russian). MR 0150374
- Martine Babillot, Points entiers et groupes discrets: de l’analyse aux systèmes dynamiques, Rigidité, groupe fondamental et dynamique, Panor. Synthèses, vol. 13, Soc. Math. France, Paris, 2002, pp. 1–119 (French, with English and French summaries). With an appendix by Emmanuel Breuillard. MR 1993148
- Hans-Jochen Bartels, Nichteuklidische Gitterpunktprobleme und Gleichverteilung in linearen algebraischen Gruppen, Comment. Math. Helv. 57 (1982), no. 1, 158–172 (German). MR 672852, DOI 10.1007/BF02565853
- B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s property (T). New Mathematical Monographs, 11. Cambridge University Press, Cambridge, 2008.
- Yves Benoist and Hee Oh, Effective equidistribution of $S$-integral points on symmetric varieties, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 5, 1889–1942 (English, with English and French summaries). MR 3025156, DOI 10.5802/aif.2738
- G. D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sci. USA 17 (1931), 656–660.
- Valentin Blomer and Farrell Brumley, The role of the Ramanujan conjecture in analytic number theory, Bull. Amer. Math. Soc. (N.S.) 50 (2013), no. 2, 267–320. MR 3020828, DOI 10.1090/S0273-0979-2013-01404-6
- Armand Borel and Nolan R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, No. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 554917
- Jean Bourgain and Elena Fuchs, A proof of the positive density conjecture for integer Apollonian circle packings, J. Amer. Math. Soc. 24 (2011), no. 4, 945–967. MR 2813334, DOI 10.1090/S0894-0347-2011-00707-8
- J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69–85. MR 874045, DOI 10.1007/BF02792533
- Jean Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 5–45. With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein. MR 1019960
- Jean Bourgain, Alex Furman, Elon Lindenstrauss, and Shahar Mozes, Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus, J. Amer. Math. Soc. 24 (2011), no. 1, 231–280. MR 2726604, DOI 10.1090/S0894-0347-2010-00674-1
- Jean Bourgain, Alex Gamburd, and Peter Sarnak, Sieving and expanders, C. R. Math. Acad. Sci. Paris 343 (2006), no. 3, 155–159 (English, with English and French summaries). MR 2246331, DOI 10.1016/j.crma.2006.05.023
- Jean Bourgain, Alex Gamburd, and Peter Sarnak, Affine linear sieve, expanders, and sum-product, Invent. Math. 179 (2010), no. 3, 559–644. MR 2587341, DOI 10.1007/s00222-009-0225-3
- Jean Bourgain and Alex Kontorovich, On representations of integers in thin subgroups of $\textrm {SL}_2(\Bbb Z)$, Geom. Funct. Anal. 20 (2010), no. 5, 1144–1174. MR 2746949, DOI 10.1007/s00039-010-0093-4
- R. W. Bruggeman, R. J. Miatello, and N. R. Wallach, Resolvent and lattice points on symmetric spaces of strictly negative curvature, Math. Ann. 315 (1999), no. 4, 617–639. MR 1731464, DOI 10.1007/s002080050331
- Roelof Wichert Bruggeman, Fritz Grunewald, and Roberto Jorge Miatello, New lattice point asymptotics for products of upper half-planes, Int. Math. Res. Not. IMRN 7 (2011), 1510–1559. MR 2806513, DOI 10.1093/imrn/rnq120
- M. Burger and P. Sarnak, Ramanujan duals. II, Invent. Math. 106 (1991), no. 1, 1–11. MR 1123369, DOI 10.1007/BF01243900
- A. P. Calderon, A general ergodic theorem, Ann. of Math. (2) 58 (1953), 182–191. MR 55415, DOI 10.2307/1969828
- Antoine Chambert-Loir and Yuri Tschinkel, Igusa integrals and volume asymptotics in analytic and adelic geometry, Confluentes Math. 2 (2010), no. 3, 351–429. MR 2740045, DOI 10.1142/S1793744210000223
- Laurent Clozel, Démonstration de la conjecture $\tau$, Invent. Math. 151 (2003), no. 2, 297–328 (French). MR 1953260, DOI 10.1007/s00222-002-0253-8
- Ronald R. Coifman and Guido Weiss, Transference methods in analysis, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31, American Mathematical Society, Providence, R.I., 1976. MR 0481928
- B. Conrad, Modular forms and the Ramanujan conjecture, Cambridge University Press, 2011.
- Michael Cowling, The Kunze-Stein phenomenon, Ann. of Math. (2) 107 (1978), no. 2, 209–234. MR 507240, DOI 10.2307/1971142
- Michael Cowling, Sur les coefficients des représentations unitaires des groupes de Lie simples, Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg 1976–1978), II, Lecture Notes in Math., vol. 739, Springer, Berlin, 1979, pp. 132–178 (French). MR 560837
- M. Cowling and A. Nevo, Uniform estimates for spherical functions on complex semisimple Lie groups, Geom. Funct. Anal. 11 (2001), no. 5, 900–932. MR 1873133, DOI 10.1007/s00039-001-8220-x
- S. G. Dani, Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math. 359 (1985), 55–89; erratum: J. Reine Angew. Math. 359 (1985), 214.
- S. G. Dani, Bounded orbits of flows on homogeneous spaces, Comment. Math. Helv. 61 (1986), no. 4, 636–660. MR 870710, DOI 10.1007/BF02621936
- S. G. Dani, On badly approximable numbers, Schmidt games and bounded orbits of flows, Number theory and dynamical systems (York, 1987) London Math. Soc. Lecture Note Ser., vol. 134, Cambridge Univ. Press, Cambridge, 1989, pp. 69–86. MR 1043706, DOI 10.1017/CBO9780511661983.006
- Pierre Deligne, Formes modulaires et représentations $l$-adiques, Séminaire Bourbaki. Vol. 1968/69: Exposés 347–363, Lecture Notes in Math., vol. 175, Springer, Berlin, 1971, pp. Exp. No. 355, 139–172 (French). MR 3077124
- Jean Delsarte, Sur le gitter fuchsien, C. R. Acad. Sci. Paris 214 (1942), 147–179 (French). MR 7769
- Harold G. Diamond and H. Halberstam, A higher-dimensional sieve method, Cambridge Tracts in Mathematics, vol. 177, Cambridge University Press, Cambridge, 2008. With an appendix (“Procedures for computing sieve functions”) by William F. Galway. MR 2458547, DOI 10.1017/CBO9780511542909
- W. Duke, Rational points on the sphere, Ramanujan J. 7 (2003), no. 1-3, 235–239. Rankin memorial issues. MR 2035804, DOI 10.1023/A:1026203430418
- W. Duke, Z. Rudnick, and P. Sarnak, Density of integer points on affine homogeneous varieties, Duke Math. J. 71 (1993), no. 1, 143–179. MR 1230289, DOI 10.1215/S0012-7094-93-07107-4
- Frederick P. Greenleaf and William R. Emerson, Group structure and the pointwise ergodic theorem for connected amenable groups, Advances in Math. 14 (1974), 153–172. MR 384997, DOI 10.1016/0001-8708(74)90027-9
- Alex Eskin and Curt McMullen, Mixing, counting, and equidistribution in Lie groups, Duke Math. J. 71 (1993), no. 1, 181–209. MR 1230290, DOI 10.1215/S0012-7094-93-07108-6
- Alex Eskin, Shahar Mozes, and Nimish Shah, Unipotent flows and counting lattice points on homogeneous varieties, Ann. of Math. (2) 143 (1996), no. 2, 253–299. MR 1381987, DOI 10.2307/2118644
- John B. Friedlander, Producing prime numbers via sieve methods, Analytic number theory, Lecture Notes in Math., vol. 1891, Springer, Berlin, 2006, pp. 1–49. MR 2277657, DOI 10.1007/978-3-540-36364-4_{1}
- John Friedlander and Henryk Iwaniec, Opera de cribro, American Mathematical Society Colloquium Publications, vol. 57, American Mathematical Society, Providence, RI, 2010. MR 2647984, DOI 10.1090/coll/057
- Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $\textrm {GL}(2)$ and $\textrm {GL}(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066
- Anish Ghosh, Alexander Gorodnik, and Amos Nevo, Diophantine approximation and automorphic spectrum, Int. Math. Res. Not. IMRN 21 (2013), 5002–5058. MR 3123673, DOI 10.1093/imrn/rns198
- A. Ghosh, A. Gorodnik and A. Nevo, Metric Diophantine approximation on homogeneous varieties. Math arXiv:1205.4426. To appear in Compositio Mathematica.
- A. Ghosh, A. Gorodnik and A. Nevo, Best possible rate of distribution of dense lattice orbits on homogeneous varieties. In preparation.
- A. Ghosh, A. Gorodnik and A. Nevo, Diophantine approximation exponents on homogeneous varieties. To appear in Contemporary Math, 2014.
- Anton Good, Local analysis of Selberg’s trace formula, Lecture Notes in Mathematics, vol. 1040, Springer-Verlag, Berlin, 1983. MR 727476, DOI 10.1007/BFb0073074
- Alexander Gorodnik, Lattice action on the boundary of $\textrm {SL}(n,\Bbb R)$, Ergodic Theory Dynam. Systems 23 (2003), no. 6, 1817–1837. MR 2032490, DOI 10.1017/S0143385703000154
- Alexander Gorodnik, Uniform distribution of orbits of lattices on spaces of frames, Duke Math. J. 122 (2004), no. 3, 549–589. MR 2057018, DOI 10.1215/S0012-7094-04-12234-1
- Alexander Gorodnik and Francois Maucourant, Proximality and equidistribution on the Furstenberg boundary, Geom. Dedicata 113 (2005), 197–213. MR 2171305, DOI 10.1007/s10711-005-5539-8
- Alexander Gorodnik and Amos Nevo, The ergodic theory of lattice subgroups, Annals of Mathematics Studies, vol. 172, Princeton University Press, Princeton, NJ, 2010. MR 2573139
- Alexander Gorodnik and Amos Nevo, Counting lattice points, J. Reine Angew. Math. 663 (2012), 127–176. MR 2889708, DOI 10.1515/CRELLE.2011.096
- Alexander Gorodnik and Amos Nevo, On Arnol′d’s and Kazhdan’s equidistribution problems, Ergodic Theory Dynam. Systems 32 (2012), no. 6, 1972–1990. MR 2995880, DOI 10.1017/S0143385711000721
- A. Gorodnik and A. Nevo, Lifting, restricting and sifting integral points on affine homogeneous varieties, Compositio Math. 2012, doi:10.1112/S0010437X12000516.
- Alexander Gorodnik and Amos Nevo, Ergodic theory and the duality principle on homogeneous spaces, Geom. Funct. Anal. 24 (2014), no. 1, 159–244. MR 3177381, DOI 10.1007/s00039-014-0257-8
- Alex Gorodnik and Barak Weiss, Distribution of lattice orbits on homogeneous varieties, Geom. Funct. Anal. 17 (2007), no. 1, 58–115. MR 2306653, DOI 10.1007/s00039-006-0583-6
- George Greaves, Sieves in number theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 43, Springer-Verlag, Berlin, 2001. MR 1836967, DOI 10.1007/978-3-662-04658-6
- Andrew Granville, Different approaches to the distribution of primes, Milan J. Math. 78 (2010), no. 1, 65–84. MR 2684773, DOI 10.1007/s00032-010-0122-7
- Antonin Guilloux, Polynomial dynamic and lattice orbits in $S$-arithmetic homogeneous spaces, Confluentes Math. 2 (2010), no. 1, 1–35. MR 2649235, DOI 10.1142/S1793744210000120
- Yves Guivarc’h, Généralisation d’un théorème de von Neumann, C. R. Acad. Sci. Paris Sér. A-B 268 (1969), A1020–A1023 (French). MR 251191
- H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, No. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974. MR 0424730
- Glyn Harman, Prime-detecting sieves, London Mathematical Society Monographs Series, vol. 33, Princeton University Press, Princeton, NJ, 2007. MR 2331072
- Sa’ar Hersonsky and Frédéric Paulin, Hausdorff dimension of Diophantine geodesics in negatively curved manifolds, J. Reine Angew. Math. 539 (2001), 29–43. MR 1863852, DOI 10.1515/crll.2001.077
- Sa’ar Hersonsky and Frédéric Paulin, Diophantine approximation in negatively curved manifolds and in the Heisenberg group, Rigidity in dynamics and geometry (Cambridge, 2000) Springer, Berlin, 2002, pp. 203–226. MR 1919402
- Sa’ar Hersonsky and Frédéric Paulin, Diophantine approximation for negatively curved manifolds, Math. Z. 241 (2002), no. 1, 181–226. MR 1930990, DOI 10.1007/s002090200412
- Roger E. Howe and Calvin C. Moore, Asymptotic properties of unitary representations, J. Functional Analysis 32 (1979), no. 1, 72–96. MR 533220, DOI 10.1016/0022-1236(79)90078-8
- Roger Howe and Eng-Chye Tan, Nonabelian harmonic analysis, Universitext, Springer-Verlag, New York, 1992. Applications of $\textrm {SL}(2,\textbf {R})$. MR 1151617, DOI 10.1007/978-1-4613-9200-2
- Heinz Huber, Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene. I, Comment. Math. Helv. 30 (1956), 20–62 (1955) (German). MR 74536, DOI 10.1007/BF02564331
- Henryk Iwaniec, Almost-primes represented by quadratic polynomials, Invent. Math. 47 (1978), no. 2, 171–188. MR 485740, DOI 10.1007/BF01578070
- Henryk Iwaniec, The lowest eigenvalue for congruence groups, Topics in geometry, Progr. Nonlinear Differential Equations Appl., vol. 20, Birkhäuser Boston, Boston, MA, 1996, pp. 203–212. MR 1390315
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
- Roger L. Jones, Ergodic averages on spheres, J. Anal. Math. 61 (1993), 29–45. MR 1253437, DOI 10.1007/BF02788837
- Andrés del Junco and Joseph Rosenblatt, Counterexamples in ergodic theory and number theory, Math. Ann. 245 (1979), no. 3, 185–197. MR 553340, DOI 10.1007/BF01673506
- Yitzhak Katznelson and Benjamin Weiss, A simple proof of some ergodic theorems, Israel J. Math. 42 (1982), no. 4, 291–296. MR 682312, DOI 10.1007/BF02761409
- D. A. Každan, Uniform distribution on a plane, Trudy Moskov. Mat. Obšč. 14 (1965), 299–305 (Russian). MR 0193187
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 0209390
- H. Kim and P. Sarnak, Refined estimates towards the Ramanujan and Selberg conjectures, appendix in H. Kim, Functoriality for the exterior square of GL(4) and the symmetric fourth of GL(2). J. Amer. Math. Soc. 16 (2003), no. 1, 139–183.
- Dmitry Y. Kleinbock, Flows on homogeneous spaces and Diophantine properties of matrices, Duke Math. J. 95 (1998), no. 1, 107–124. MR 1646538, DOI 10.1215/S0012-7094-98-09503-5
- Dmitry Y. Kleinbock, Bounded orbits conjecture and Diophantine approximation, Lie groups and ergodic theory (Mumbai, 1996) Tata Inst. Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 119–130. MR 1699361
- Dmitry Kleinbock, Badly approximable systems of affine forms, J. Number Theory 79 (1999), no. 1, 83–102. MR 1724255, DOI 10.1006/jnth.1999.2419
- Dmitry Kleinbock, Some applications of homogeneous dynamics to number theory, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 639–660. MR 1858548, DOI 10.1090/pspum/069/1858548
- Dmitry Kleinbock, Quantitative nondivergence and its Diophantine applications, Homogeneous flows, moduli spaces and arithmetic, Clay Math. Proc., vol. 10, Amer. Math. Soc., Providence, RI, 2010, pp. 131–153. MR 2648694
- D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2) 148 (1998), no. 1, 339–360. MR 1652916, DOI 10.2307/120997
- D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math. 138 (1999), no. 3, 451–494. MR 1719827, DOI 10.1007/s002220050350
- D. Kleinbock and K. Merrill, Rational approximation on spheres. arXiv:1301.0989.
- Alex V. Kontorovich, The hyperbolic lattice point count in infinite volume with applications to sieves, Duke Math. J. 149 (2009), no. 1, 1–36. MR 2541126, DOI 10.1215/00127094-2009-035
- Alex Kontorovich, From Apollonius to Zaremba: local-global phenomena in thin orbits, Bull. Amer. Math. Soc. (N.S.) 50 (2013), no. 2, 187–228. MR 3020826, DOI 10.1090/S0273-0979-2013-01402-2
- Alex Kontorovich and Hee Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, J. Amer. Math. Soc. 24 (2011), no. 3, 603–648. With an appendix by Oh and Nimish Shah. MR 2784325, DOI 10.1090/S0894-0347-2011-00691-7
- E. Kowalski, The large sieve and its applications, Cambridge Tracts in Mathematics, vol. 175, Cambridge University Press, Cambridge, 2008. Arithmetic geometry, random walks and discrete groups. MR 2426239, DOI 10.1017/CBO9780511542947
- E. Kowalski: Sieve in expansion, Séminaire Bourbaki, Exposé 1028 (November 2010)
- E. Kowalski, Sieves in discrete groups, especially sparse. Math. arXiv, 1207.7051, January 2013.
- Alex Kontorovich and Hee Oh, Almost prime Pythagorean triples in thin orbits, J. Reine Angew. Math. 667 (2012), 89–131. MR 2929673, DOI 10.1515/crelle.2011.128
- R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis of the $2\times 2$ real unimodular group, Amer. J. Math. 82 (1960), 1–62. MR 163988, DOI 10.2307/2372876
- Bertram Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627–642. MR 245725, DOI 10.1090/S0002-9904-1969-12235-4
- Michael T. Lacey, Ergodic averages on circles, J. Anal. Math. 67 (1995), 199–206. MR 1383493, DOI 10.1007/BF02787789
- Steven P. Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math. 163 (1989), no. 1-2, 1–55. MR 1007619, DOI 10.1007/BF02392732
- Serge Lang, Report on diophantine approximations, Bull. Soc. Math. France 93 (1965), 177–192. MR 193064
- Peter D. Lax and Ralph S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Functional Analysis 46 (1982), no. 3, 280–350. MR 661875, DOI 10.1016/0022-1236(82)90050-7
- Elon Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146 (2001), no. 2, 259–295. MR 1865397, DOI 10.1007/s002220100162
- François Ledrappier, Distribution des orbites des réseaux sur le plan réel, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 1, 61–64 (French, with English and French summaries). MR 1703338, DOI 10.1016/S0764-4442(99)80462-5
- F. Ledrappier and M. Pollicott, Ergodic properties of linear actions of $(2\times 2)$-matrices, Duke Math. J. 116 (2003), no. 2, 353–388. MR 1953296, DOI 10.1215/S0012-7094-03-11626-9
- Jian-Shu Li, The minimal decay of matrix coefficients for classical groups, Harmonic analysis in China, Math. Appl., vol. 327, Kluwer Acad. Publ., Dordrecht, 1995, pp. 146–169. MR 1355801
- Jian-Shu Li and Chen-Bo Zhu, On the decay of matrix coefficients for exceptional groups, Math. Ann. 305 (1996), no. 2, 249–270. MR 1391214, DOI 10.1007/BF01444220
- U. V. Linnik, On the least prime in an arithmetic progression. I. The basic theorem, Rec. Math. [Mat. Sbornik] N.S. 15(57) (1944), 139–178 (English, with Russian summary). MR 0012111
- U. V. Linnik, On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon, Rec. Math. [Mat. Sbornik] N.S. 15(57) (1944), 347–368 (English, with Russian summary). MR 0012112
- Jianya Liu and Peter Sarnak, Integral points on quadrics in three variables whose coordinates have few prime factors, Israel J. Math. 178 (2010), 393–426. MR 2733075, DOI 10.1007/s11856-010-0069-y
- Alexander Lubotzky, Expander graphs in pure and applied mathematics, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 1, 113–162. MR 2869010, DOI 10.1090/S0273-0979-2011-01359-3
- A. Lubotzky, R. Phillips, and P. Sarnak, Hecke operators and distributing points on the sphere. I, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S149–S186. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861487, DOI 10.1002/cpa.3160390710
- A. Lubotzky, R. Phillips, and P. Sarnak, Hecke operators and distributing points on $S^2$. II, Comm. Pure Appl. Math. 40 (1987), no. 4, 401–420. MR 890171, DOI 10.1002/cpa.3160400402
- W. Luo, Z. Rudnick, and P. Sarnak, On Selberg’s eigenvalue conjecture, Geom. Funct. Anal. 5 (1995), no. 2, 387–401. MR 1334872, DOI 10.1007/BF01895672
- Akos Magyar, Diophantine equations and ergodic theorems, Amer. J. Math. 124 (2002), no. 5, 921–953. MR 1925339
- Gregory Margulis, Diophantine approximation, lattices and flows on homogeneous spaces, A panorama of number theory or the view from Baker’s garden (Zürich, 1999) Cambridge Univ. Press, Cambridge, 2002, pp. 280–310. MR 1975458, DOI 10.1017/CBO9780511542961.019
- Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Translated from the Russian by Valentina Vladimirovna Szulikowska. MR 2035655, DOI 10.1007/978-3-662-09070-1
- G. A. Margulis, A. Nevo, and E. M. Stein, Analogs of Wiener’s ergodic theorems for semisimple Lie groups. II, Duke Math. J. 103 (2000), no. 2, 233–259. MR 1760627, DOI 10.1215/S0012-7094-00-10323-7
- F. Maucourant, Approximation diophantienne, dynamique des chambres de Weyl et répartitions d’orbites de réseaux, PhD Thesis, Université de Lille, 2002.
- François Maucourant, Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices, Duke Math. J. 136 (2007), no. 2, 357–399. MR 2286635, DOI 10.1215/S0012-7094-07-13626-3
- François Maucourant and Barak Weiss, Lattice actions on the plane revisited, Geom. Dedicata 157 (2012), 1–21. MR 2893477, DOI 10.1007/s10711-011-9596-x
- R. Miatello and N. R. Wallach, The resolvent of the Laplacian on locally symmetric spaces, J. Differential Geom. 36 (1992), no. 3, 663–698. MR 1189500
- R. A. Mollin, An overview of sieve methods, Int. J. Contemp. Math. Sci. 5 (2010), no. 1-4, 67–80. MR 2667834
- Yoichi Motohashi, An overview of sieve methods and their history [translation of Sūgaku 57 (2005), no. 2, 138–163; MR2142054], Sugaku Expositions 21 (2008), no. 1, 1–32. Sugaku Expositions. MR 2406271
- Amos Nevo, Harmonic analysis and pointwise ergodic theorems for noncommuting transformations, J. Amer. Math. Soc. 7 (1994), no. 4, 875–902. MR 1266737, DOI 10.1090/S0894-0347-1994-1266737-5
- Amos Nevo, Pointwise ergodic theorems for radial averages on simple Lie groups. I, Duke Math. J. 76 (1994), no. 1, 113–140. MR 1301188, DOI 10.1215/S0012-7094-94-07605-9
- Amos Nevo, Pointwise ergodic theorems for radial averages on simple Lie groups. II, Duke Math. J. 86 (1997), no. 2, 239–259. MR 1430433, DOI 10.1215/S0012-7094-97-08607-5
- Amos Nevo, Spectral transfer and pointwise ergodic theorems for semi-simple Kazhdan groups, Math. Res. Lett. 5 (1998), no. 3, 305–325. MR 1637840, DOI 10.4310/MRL.1998.v5.n3.a5
- Amos Nevo, Pointwise ergodic theorems for actions of groups, Handbook of dynamical systems. Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 871–982. MR 2186253, DOI 10.1016/S1874-575X(06)80038-X
- Amos Nevo and Peter Sarnak, Prime and almost prime integral points on principal homogeneous spaces, Acta Math. 205 (2010), no. 2, 361–402. MR 2746350, DOI 10.1007/s11511-010-0057-4
- Amos Nevo and Elias M. Stein, A generalization of Birkhoff’s pointwise ergodic theorem, Acta Math. 173 (1994), no. 1, 135–154. MR 1294672, DOI 10.1007/BF02392571
- Amos Nevo and Elias M. Stein, Analogs of Wiener’s ergodic theorems for semisimple groups. I, Ann. of Math. (2) 145 (1997), no. 3, 565–595. MR 1454704, DOI 10.2307/2951845
- Amos Nevo and Sundaram Thangavelu, Pointwise ergodic theorems for radial averages on the Heisenberg group, Adv. Math. 127 (1997), no. 2, 307–334. MR 1448717, DOI 10.1006/aima.1997.1641
- Markus Neuhauser, Kazhdan constants and matrix coefficients of $\textrm {Sp}(n,\textbf {R})$, J. Lie Theory 13 (2003), no. 1, 133–154. MR 1958578
- Arnaldo Nogueira, Orbit distribution on $\Bbb R^2$ under the natural action of $\textrm {SL}(2,\Bbb Z)$, Indag. Math. (N.S.) 13 (2002), no. 1, 103–124. MR 2014978, DOI 10.1016/S0019-3577(02)90009-1
- Arnaldo Nogueira, Lattice orbit distribution on $\Bbb R^2$, Ergodic Theory Dynam. Systems 30 (2010), no. 4, 1201–1214. MR 2669417, DOI 10.1017/S0143385709000558
- Hee Oh, Tempered subgroups and representations with minimal decay of matrix coefficients, Bull. Soc. Math. France 126 (1998), no. 3, 355–380 (English, with English and French summaries). MR 1682805
- Hee Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J. 113 (2002), no. 1, 133–192. MR 1905394, DOI 10.1215/S0012-7094-02-11314-3
- Hee Oh, Orbital counting via mixing and unipotent flows, Homogeneous flows, moduli spaces and arithmetic, Clay Math. Proc., vol. 10, Amer. Math. Soc., Providence, RI, 2010, pp. 339–375. MR 2648698
- H. Oh, Harmonic analysis, ergodic theory and counting for thin groups. arXiv:1208.4148.
- Hee Oh, Apollonian circle packings: dynamics and number theory, Jpn. J. Math. 9 (2014), no. 1, 69–97. MR 3173439, DOI 10.1007/s11537-014-1384-6
- S. J. Patterson, A lattice-point problem in hyperbolic space, Mathematika 22 (1975), no. 1, 81–88. MR 422160, DOI 10.1112/S0025579300004526
- Adam Parusiński, Subanalytic functions, Trans. Amer. Math. Soc. 344 (1994), no. 2, 583–595. MR 1160156, DOI 10.1090/S0002-9947-1994-1160156-4
- Mark Pollicott, A symbolic proof of a theorem of Margulis on geodesic arcs on negatively curved manifolds, Amer. J. Math. 117 (1995), no. 2, 289–305. MR 1323676, DOI 10.2307/2374915
- Frederick Riesz, Some Mean Ergodic Theorems, J. London Math. Soc. 13 (1938), no. 4, 274–278. MR 1574977, DOI 10.1112/jlms/s1-13.4.274
- J. Rogawski, Modular forms, the Ramanujan conjecture, and the Jacquet-Langlands correspondence; appendix in A. Lubotzky, Discrete groups, expanding graphs and invariant measures. Progress in Mathematics, 125. Birkhaäuser Verlag, Basel, 1994.
- A. Salehi Golsefidy and Péter P. Varjú, Expansion in perfect groups, Geom. Funct. Anal. 22 (2012), no. 6, 1832–1891. MR 3000503, DOI 10.1007/s00039-012-0190-7
- Alireza Salehi Golsefidy and Peter Sarnak, The affine sieve, J. Amer. Math. Soc. 26 (2013), no. 4, 1085–1105. MR 3073885, DOI 10.1090/S0894-0347-2013-00764-X
- Peter Sarnak, Selberg’s eigenvalue conjecture, Notices Amer. Math. Soc. 42 (1995), no. 11, 1272–1277. MR 1355461
- Peter Sarnak, Spectra of hyperbolic surfaces, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 4, 441–478. MR 1997348, DOI 10.1090/S0273-0979-03-00991-1
- Peter Sarnak, Notes on the generalized Ramanujan conjectures, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 659–685. MR 2192019
- P. Sarnak, Letter to Lagarias on integral Apollonian packings, http://www.math.princeton.edu/sarnak/
- P. Sarnak, Equidistribution and primes, http://www.math.princeton.edu/sarnak/
- P. Sarnak, Integral Apollonian Packings, http://www.math.princeton.edu/sarnak/
- Klaus Schmidt, Amenability, Kazhdan’s property $T$, strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory Dynam. Systems 1 (1981), no. 2, 223–236. MR 661821, DOI 10.1017/s014338570000924x
- Eric Schmutz, Rational points on the unit sphere, Cent. Eur. J. Math. 6 (2008), no. 3, 482–487. MR 2425007, DOI 10.2478/s11533-008-0038-4
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- Atle Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 1–15. MR 0182610
- E. M. Stein, On the maximal ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1894–1897. MR 131517, DOI 10.1073/pnas.47.12.1894
- Elias M. Stein and Stephen Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1239–1295. MR 508453, DOI 10.1090/S0002-9904-1978-14554-6
- A. A. Tempel′man, Ergodic theorems for general dynamical systems, Dokl. Akad. Nauk SSSR 176 (1967), 790–793 (Russian). MR 0219700
- Arkady Tempelman, Ergodic theorems for group actions, Mathematics and its Applications, vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992. Informational and thermodynamical aspects; Translated and revised from the 1986 Russian original. MR 1172319, DOI 10.1007/978-94-017-1460-0
- P. Varjú, Random walks in Euclidean space. arXiv:1205.3399.
- J. von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. USA 18 (1932), 70–82.
- Michel Waldschmidt, Density measure of rational points on abelian varieties, Nagoya Math. J. 155 (1999), 27–53. MR 1711387, DOI 10.1017/S002776300000698X
- Norbert Wiener, The ergodic theorem, Duke Math. J. 5 (1939), no. 1, 1–18. MR 1546100, DOI 10.1215/S0012-7094-39-00501-6
Additional Information
- Alexander Gorodnik
- Affiliation: School of Mathematics, University of Bristol, Bristol, United Kingdom
- Email: a.gorodnik@bristol.ac.uk
- Amos Nevo
- Affiliation: Department of Mathematics, Technion, Israel
- Email: anevo@tx.technion.ac.il
- Received by editor(s): April 25, 2013
- Published electronically: June 11, 2014
- Additional Notes: The first author was supported in part by EPSRC, ERC, and RCUK
The second author was supported by an ISF grant - © Copyright 2014 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 52 (2015), 65-113
- MSC (2010): Primary 37A15, 37P55, 22E46, 11J83, 11F70
- DOI: https://doi.org/10.1090/S0273-0979-2014-01462-4
- MathSciNet review: 3286482