On the geometry of Outer space
HTML articles powered by AMS MathViewer
- by Karen Vogtmann PDF
- Bull. Amer. Math. Soc. 52 (2015), 27-46 Request permission
Abstract:
Outer space is a space of graphs used to study the group $\mathrm {Out}(F_n)$ of outer automorphisms of a finitely generated free group. We discuss an emerging metric theory for Outer space and some applications to $\mathrm {Out}(F_n)$.References
- Yael Algom-Kfir, Strongly contracting geodesics in outer space, Geom. Topol. 15 (2011), no. 4, 2181–2233. MR 2862155, DOI 10.2140/gt.2011.15.2181
- Yael Algom-Kfir, The Metric Completion of Outer Space, arXiv:1202.6392.
- Yael Algom-Kfir and Mladen Bestvina, Asymmetry of outer space, Geom. Dedicata 156 (2012), 81–92. MR 2863547, DOI 10.1007/s10711-011-9591-2
- Lipman Bers, An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978), no. 1-2, 73–98. MR 477161, DOI 10.1007/BF02545743
- Gregory C. Bell and Koji Fujiwara, The asymptotic dimension of a curve graph is finite, J. Lond. Math. Soc. (2) 77 (2008), no. 1, 33–50. MR 2389915, DOI 10.1112/jlms/jdm090
- Mladen Bestvina, A Bers-like proof of the existence of train tracks for free group automorphisms, Fund. Math. 214 (2011), no. 1, 1–12. MR 2845630, DOI 10.4064/fm214-1-1
- Mladen Bestvina, PCMI Lectures on the geometry of Outer space, (2014), 1–34.
- Mladen Bestvina, Kenneth Bromberg, and Koji Fujiwara. Constructing group actions on quasi-trees and applications to mapping class groups, arXiv:1006.1939.
- Mladen Bestvina and Mark Feighn, A hyperbolic $\textrm {Out}(F_n)$-complex, Groups Geom. Dyn. 4 (2010), no. 1, 31–58. MR 2566300, DOI 10.4171/GGD/74
- Mladen Bestvina and Mark Feighn, Hyperbolicity of the complex of free factors, arXiv:1107.3308. (2011).
- Mladen Bestvina and Mark Feighn, Subfactor projections, arXiv:1211.1730.
- Mladen Bestvina and Koji Fujiwara, Quasi-homomorphisms on mapping class groups, Glas. Mat. Ser. III 42(62) (2007), no. 1, 213–236. MR 2332668, DOI 10.3336/gm.42.1.15
- Mladen Bestvina and Michael Handel, Train tracks and automorphisms of free groups, Ann. of Math. (2) 135 (1992), no. 1, 1–51. MR 1147956, DOI 10.2307/2946562
- Brian H. Bowditch, Intersection numbers and the hyperbolicity of the curve complex, J. Reine Angew. Math. 598 (2006), 105–129. MR 2270568, DOI 10.1515/CRELLE.2006.070
- Daryl Cooper, Automorphisms of free groups have finitely generated fixed point sets, J. Algebra 111 (1987), no. 2, 453–456. MR 916179, DOI 10.1016/0021-8693(87)90229-8
- Marc Culler and Karen Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), no. 1, 91–119. MR 830040, DOI 10.1007/BF01388734
- Stefano Francaviglia and Armando Martino, Metric properties of outer space, Publ. Mat. 55 (2011), no. 2, 433–473. MR 2839451, DOI 10.5565/PUBLMAT_{5}5211_{0}9
- Ursula Hamenstädt, Lines of minima in outer space, Duke Math. J. 163 (2014), no. 4, 733–776. MR 3178431, DOI 10.1215/00127094-2429807
- Ursula Hamenstädt and Sebastian Hensel, Spheres and Projections for $\mathrm {Out}(F_n)$, arXiv:1109.2687.
- Michael Handel and Lee Mosher, Axes in outer space, Mem. Amer. Math. Soc. 213 (2011), no. 1004, vi+104. MR 2858636, DOI 10.1090/S0065-9266-2011-00620-9
- Michael Handel and Lee Mosher, Lipschitz retraction and distortion for subgroups of $\textrm {Out}(F_n)$, Geom. Topol. 17 (2013), no. 3, 1535–1579. MR 3073930, DOI 10.2140/gt.2013.17.1535
- Michael Handel and Lee Mosher, The free splitting complex of a free group, I: hyperbolicity, Geom. Topol. 17 (2013), no. 3, 1581–1672. MR 3073931, DOI 10.2140/gt.2013.17.1581
- Michael Handel and Lee Mosher, Subgroup decomposition in $\mathrm {Out}(F_n)$, Part I: Geometric Models, arXiv:1302.2378.
- Michael Handel and Lee Mosher, Subgroup decomposition in $\mathrm {Out}(F_n)$, Part II: A relative Kolchin theorem, arXiv:1302.2379.
- Michael Handel and Lee Mosher, Subgroup decomposition in $\mathrm {Out}(F_n)$, Part III: Weak attraction theory, arXiv:1306.4712.
- Michael Handel and Lee Mosher, Subgroup decomposition in $\mathrm {Out}(F_n)$, Part IV: Relatively irreducible subgroups, arXiv:1306.4711.
- Allen Hatcher, Homological stability for automorphism groups of free groups, Comment. Math. Helv. 70 (1995), no. 1, 39–62. MR 1314940, DOI 10.1007/BF02565999
- Arnaud Hilion and Camille Horbez, The hyperbolicity of the sphere complex via surgery paths, arXiv:1210.6183.
- Camille Horbez, Sphere paths in outer space, Algebr. Geom. Topol. 12 (2012), no. 4, 2493–2517. MR 3020214, DOI 10.2140/agt.2012.12.2493
- Ilya Kapovich and Kasra Rafi, On hyperbolicity of free splitting and free factor complexes, arXiv:1206.3626.
- F. Laudenbach, Sur les $2$-sphères d’une variété de dimension $3$, Ann. of Math. (2) 97 (1973), 57–81 (French). MR 314054, DOI 10.2307/1970877
- Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149. MR 1714338, DOI 10.1007/s002220050343
- H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), no. 4, 902–974. MR 1791145, DOI 10.1007/PL00001643
- Yair N. Minsky, Quasi-projections in Teichmüller space, J. Reine Angew. Math. 473 (1996), 121–136. MR 1390685, DOI 10.1515/crll.1995.473.121
- Lucas Sabalka and Dmitri Savchuk, Submanifold projection, arXiv:1211.3111.
- Lucas Sabalka and Dmitri Savchuk, On the geometry of a proposed curve complex analogue for $Out(F_n)$, arXiv:1007.1998.
- John R. Stallings, Finite graphs and free groups, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982) Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 79–84. MR 813103, DOI 10.1090/conm/044/813103
- Samuel J. Taylor, A note on subfactor projections, Algebr. Geom. Topol. 14 (2014), no. 2, 805–821. MR 3159971, DOI 10.2140/agt.2014.14.805
- William P. Thurston, The geometry and topology of three-manifolds, Princeton Univ. Press (1978).
- William P. Thurston, Minimal stretch maps between hyperbolic surfaces, arXiv:9801.039.
Additional Information
- Karen Vogtmann
- Affiliation: University of Warwick and Cornell University
- MR Author ID: 179085
- ORCID: 0000-0002-6518-1290
- Email: k.vogtmann@warwick.ac.uk
- Received by editor(s): May 31, 2014
- Published electronically: August 19, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 52 (2015), 27-46
- MSC (2010): Primary 20F65
- DOI: https://doi.org/10.1090/S0273-0979-2014-01466-1
- MathSciNet review: 3286480