On the geometry of Outer space
Author:
Karen Vogtmann
Journal:
Bull. Amer. Math. Soc. 52 (2015), 27-46
MSC (2010):
Primary 20F65
DOI:
https://doi.org/10.1090/S0273-0979-2014-01466-1
Published electronically:
August 19, 2014
MathSciNet review:
3286480
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Outer space is a space of graphs used to study the group $\mathrm {Out}(F_n)$ of outer automorphisms of a finitely generated free group. We discuss an emerging metric theory for Outer space and some applications to $\mathrm {Out}(F_n)$.
- Yael Algom-Kfir, Strongly contracting geodesics in outer space, Geom. Topol. 15 (2011), no. 4, 2181–2233. MR 2862155, DOI https://doi.org/10.2140/gt.2011.15.2181
- Yael Algom-Kfir, The Metric Completion of Outer Space, arXiv:1202.6392.
- Yael Algom-Kfir and Mladen Bestvina, Asymmetry of outer space, Geom. Dedicata 156 (2012), 81–92. MR 2863547, DOI https://doi.org/10.1007/s10711-011-9591-2
- Lipman Bers, An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978), no. 1-2, 73–98. MR 477161, DOI https://doi.org/10.1007/BF02545743
- Gregory C. Bell and Koji Fujiwara, The asymptotic dimension of a curve graph is finite, J. Lond. Math. Soc. (2) 77 (2008), no. 1, 33–50. MR 2389915, DOI https://doi.org/10.1112/jlms/jdm090
- Mladen Bestvina, A Bers-like proof of the existence of train tracks for free group automorphisms, Fund. Math. 214 (2011), no. 1, 1–12. MR 2845630, DOI https://doi.org/10.4064/fm214-1-1
- Mladen Bestvina, PCMI Lectures on the geometry of Outer space, (2014), 1–34.
- Mladen Bestvina, Kenneth Bromberg, and Koji Fujiwara. Constructing group actions on quasi-trees and applications to mapping class groups, arXiv:1006.1939.
- Mladen Bestvina and Mark Feighn, A hyperbolic ${\rm Out}(F_n)$-complex, Groups Geom. Dyn. 4 (2010), no. 1, 31–58. MR 2566300, DOI https://doi.org/10.4171/GGD/74
- Mladen Bestvina and Mark Feighn, Hyperbolicity of the complex of free factors, arXiv:1107.3308. (2011).
- Mladen Bestvina and Mark Feighn, Subfactor projections, arXiv:1211.1730.
- Mladen Bestvina and Koji Fujiwara, Quasi-homomorphisms on mapping class groups, Glas. Mat. Ser. III 42(62) (2007), no. 1, 213–236. MR 2332668, DOI https://doi.org/10.3336/gm.42.1.15
- Mladen Bestvina and Michael Handel, Train tracks and automorphisms of free groups, Ann. of Math. (2) 135 (1992), no. 1, 1–51. MR 1147956, DOI https://doi.org/10.2307/2946562
- Brian H. Bowditch, Intersection numbers and the hyperbolicity of the curve complex, J. Reine Angew. Math. 598 (2006), 105–129. MR 2270568, DOI https://doi.org/10.1515/CRELLE.2006.070
- Daryl Cooper, Automorphisms of free groups have finitely generated fixed point sets, J. Algebra 111 (1987), no. 2, 453–456. MR 916179, DOI https://doi.org/10.1016/0021-8693%2887%2990229-8
- Marc Culler and Karen Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), no. 1, 91–119. MR 830040, DOI https://doi.org/10.1007/BF01388734
- Stefano Francaviglia and Armando Martino, Metric properties of outer space, Publ. Mat. 55 (2011), no. 2, 433–473. MR 2839451, DOI https://doi.org/10.5565/PUBLMAT_55211_09
- Ursula Hamenstädt, Lines of minima in outer space, Duke Math. J. 163 (2014), no. 4, 733–776. MR 3178431, DOI https://doi.org/10.1215/00127094-2429807
- Ursula Hamenstädt and Sebastian Hensel, Spheres and Projections for $\mathrm {Out}(F_n)$, arXiv:1109.2687.
- Michael Handel and Lee Mosher, Axes in outer space, Mem. Amer. Math. Soc. 213 (2011), no. 1004, vi+104. MR 2858636, DOI https://doi.org/10.1090/S0065-9266-2011-00620-9
- Michael Handel and Lee Mosher, Lipschitz retraction and distortion for subgroups of ${\rm Out}(F_n)$, Geom. Topol. 17 (2013), no. 3, 1535–1579. MR 3073930, DOI https://doi.org/10.2140/gt.2013.17.1535
- Michael Handel and Lee Mosher, The free splitting complex of a free group, I: hyperbolicity, Geom. Topol. 17 (2013), no. 3, 1581–1672. MR 3073931, DOI https://doi.org/10.2140/gt.2013.17.1581
- Michael Handel and Lee Mosher, Subgroup decomposition in $\mathrm {Out}(F_n)$, Part I: Geometric Models, arXiv:1302.2378.
- Michael Handel and Lee Mosher, Subgroup decomposition in $\mathrm {Out}(F_n)$, Part II: A relative Kolchin theorem, arXiv:1302.2379.
- Michael Handel and Lee Mosher, Subgroup decomposition in $\mathrm {Out}(F_n)$, Part III: Weak attraction theory, arXiv:1306.4712.
- Michael Handel and Lee Mosher, Subgroup decomposition in $\mathrm {Out}(F_n)$, Part IV: Relatively irreducible subgroups, arXiv:1306.4711.
- Allen Hatcher, Homological stability for automorphism groups of free groups, Comment. Math. Helv. 70 (1995), no. 1, 39–62. MR 1314940, DOI https://doi.org/10.1007/BF02565999
- Arnaud Hilion and Camille Horbez, The hyperbolicity of the sphere complex via surgery paths, arXiv:1210.6183.
- Camille Horbez, Sphere paths in outer space, Algebr. Geom. Topol. 12 (2012), no. 4, 2493–2517. MR 3020214, DOI https://doi.org/10.2140/agt.2012.12.2493
- Ilya Kapovich and Kasra Rafi, On hyperbolicity of free splitting and free factor complexes, arXiv:1206.3626.
- F. Laudenbach, Sur les $2$-sphères d’une variété de dimension $3$, Ann. of Math. (2) 97 (1973), 57–81 (French). MR 314054, DOI https://doi.org/10.2307/1970877
- Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149. MR 1714338, DOI https://doi.org/10.1007/s002220050343
- H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), no. 4, 902–974. MR 1791145, DOI https://doi.org/10.1007/PL00001643
- Yair N. Minsky, Quasi-projections in Teichmüller space, J. Reine Angew. Math. 473 (1996), 121–136. MR 1390685, DOI https://doi.org/10.1515/crll.1995.473.121
- Lucas Sabalka and Dmitri Savchuk, Submanifold projection, arXiv:1211.3111.
- Lucas Sabalka and Dmitri Savchuk, On the geometry of a proposed curve complex analogue for $Out(F_n)$, arXiv:1007.1998.
- John R. Stallings, Finite graphs and free groups, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982) Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 79–84. MR 813103, DOI https://doi.org/10.1090/conm/044/813103
- Samuel J. Taylor, A note on subfactor projections, Algebr. Geom. Topol. 14 (2014), no. 2, 805–821. MR 3159971, DOI https://doi.org/10.2140/agt.2014.14.805
- William P. Thurston, The geometry and topology of three-manifolds, Princeton Univ. Press (1978).
- William P. Thurston, Minimal stretch maps between hyperbolic surfaces, arXiv:9801.039.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 20F65
Retrieve articles in all journals with MSC (2010): 20F65
Additional Information
Karen Vogtmann
Affiliation:
University of Warwick and Cornell University
MR Author ID:
179085
ORCID:
0000-0002-6518-1290
Email:
k.vogtmann@warwick.ac.uk
Received by editor(s):
May 31, 2014
Published electronically:
August 19, 2014
Article copyright:
© Copyright 2014
American Mathematical Society