Topology of nonarchimedean analytic spaces and relations to complex algebraic geometry
HTML articles powered by AMS MathViewer
- by Sam Payne PDF
- Bull. Amer. Math. Soc. 52 (2015), 223-247 Request permission
Abstract:
This note surveys basic topological properties of nonarchimedean analytic spaces, in the sense of Berkovich, including the recent tameness results of Hrushovski and Loeser. We also discuss interactions between the topology of nonarchimedean analytic spaces and classical algebraic geometry.References
- O. Amini and M. Baker, Linear series on metrized complexes of algebraic curves, preprint arXiv:1204.3508, 2012.
- K. Adiprasito and A. Björner, Filtered geometric lattices and Lefschetz section theorems over the tropical semiring, preprint arXiv:1401.7301, 2014.
- O. Amini, M. Baker, E. Brugallé, and J. Rabinoff, Lifting harmonic morphisms of tropical curves, metrized complexes, and Berkovich skeleta, preprint arXiv:1303.4812, 2013.
- Shreeram Abhyankar, On the valuations centered in a local domain, Amer. J. Math. 78 (1956), 321–348. MR 82477, DOI 10.2307/2372519
- Omid Amini and Lucia Caporaso, Riemann-Roch theory for weighted graphs and tropical curves, Adv. Math. 240 (2013), 1–23. MR 3046301, DOI 10.1016/j.aim.2013.03.003
- D. Abramovich, L. Caporaso, and S. Payne, The tropicalization of the moduli space of curves, preprint arXiv:1212.0373, 2012.
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- Matthew Baker, An introduction to Berkovich analytic spaces and non-Archimedean potential theory on curves, $p$-adic geometry, Univ. Lecture Ser., vol. 45, Amer. Math. Soc., Providence, RI, 2008, pp. 123–174. MR 2482347, DOI 10.1090/ulect/045/04
- Matthew Baker, Specialization of linear systems from curves to graphs, Algebra Number Theory 2 (2008), no. 6, 613–653. With an appendix by Brian Conrad. MR 2448666, DOI 10.2140/ant.2008.2.613
- Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709, DOI 10.1090/surv/033
- Vladimir G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Inst. Hautes Études Sci. Publ. Math. (1993), no. 78, 5–161 (1994).
- Vladimir G. Berkovich, Smooth $p$-adic analytic spaces are locally contractible, Invent. Math. 137 (1999), no. 1, 1–84. MR 1702143, DOI 10.1007/s002220050323
- Vladimir G. Berkovich, An analog of Tate’s conjecture over local and finitely generated fields, Internat. Math. Res. Notices 13 (2000), 665–680. MR 1772523, DOI 10.1155/S1073792800000362
- Vladimir G. Berkovich, Smooth $p$-adic analytic spaces are locally contractible. II, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin, 2004, pp. 293–370. MR 2023293
- S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften, vol. 261, Springer-Verlag, Berlin, 1984.
- Siegfried Bosch and Werner Lütkebohmert, Formal and rigid geometry. I. Rigid spaces, Math. Ann. 295 (1993), no. 2, 291–317. MR 1202394, DOI 10.1007/BF01444889
- Siegfried Bosch and Werner Lütkebohmert, Formal and rigid geometry. II. Flattening techniques, Math. Ann. 296 (1993), no. 3, 403–429. MR 1225983, DOI 10.1007/BF01445112
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Formal and rigid geometry. III. The relative maximum principle, Math. Ann. 302 (1995), no. 1, 1–29. MR 1329445, DOI 10.1007/BF01444485
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Formal and rigid geometry. IV. The reduced fibre theorem, Invent. Math. 119 (1995), no. 2, 361–398. MR 1312505, DOI 10.1007/BF01245187
- Matthew Baker and Serguei Norine, Riemann-Roch and Abel-Jacobi theory on a finite graph, Adv. Math. 215 (2007), no. 2, 766–788. MR 2355607, DOI 10.1016/j.aim.2007.04.012
- Matthew Baker and Serguei Norine, Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Not. IMRN 15 (2009), 2914–2955. MR 2525845, DOI 10.1093/imrn/rnp037
- Raoul Bott, On a theorem of Lefschetz, Michigan Math. J. 6 (1959), 211–216. MR 215323
- M. Baker, S. Payne, and J. Rabinoff, Nonarchimedean geometry, tropicalization, and metrics on curves, preprint, arXiv:1104.0320v1, 2011.
- M. Baker and J. Rabinoff, The skeleton of the Jacobian, the Jacobian of the skeleton, and lifting meromorphic functions from tropical to algebraic curves, To appear in Int. Math. Res. Not. arXiv:1308.3864, 2013.
- L. Caporaso, Gonality of algebraic curves and graphs, preprint arXiv:1201.6246v3, 2012.
- Wouter Castryck and Filip Cools, Newton polygons and curve gonalities, J. Algebraic Combin. 35 (2012), no. 3, 345–366. MR 2892979, DOI 10.1007/s10801-011-0304-6
- Filip Cools, Jan Draisma, Sam Payne, and Elina Robeva, A tropical proof of the Brill-Noether theorem, Adv. Math. 230 (2012), no. 2, 759–776. MR 2914965, DOI 10.1016/j.aim.2012.02.019
- M. Chan, S. Galatius, and S. Payne, in preparation, 2014.
- G. Cornelissen, F. Kato, and J. Kool, A combinatorial Li-Yau inequality and rational points on curves, preprint arXiv:1211.2681, 2012.
- V. I. Danilov, Polyhedra of schemes and algebraic varieties, Mat. Sb. (N.S.) 139 (1975), no. 1, 146–158, 160 (Russian); Russian transl., Math. USSR-Sb. 26 (1975), no. 1, 137–149 (1976). MR 0441970
- Pierre Deligne, La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252 (French). MR 601520, DOI 10.1007/BF02684780
- T. de Fernex, J. Kollár, and C. Xu, The dual complex of singularities, To appear in proceedings of the conference in honor of Yujiro Kawamata’s 60th birthday, Adv. Stud. Pure Math. arXiv:1212.1675v2, 2013.
- A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93. MR 1423020, DOI 10.1007/BF02698644
- Jan Denef and François Loeser, Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998), no. 3, 505–537. MR 1618144
- Antoine Ducros, Les espaces de Berkovich sont modérés (d’après Ehud Hrushovski et François Loeser), Astérisque 352 (2013), Exp. No. 1056, x, 459–507 (French, with French summary). Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043–1058. MR 3087354
- T. Foster, P. Gross, and S. Payne, Limits of tropicalizations, To appear in Israel J. Math. arXiv:1211.2718, 2012.
- Andreas Gathmann and Michael Kerber, A Riemann-Roch theorem in tropical geometry, Math. Z. 259 (2008), no. 1, 217–230. MR 2377750, DOI 10.1007/s00209-007-0222-4
- Walter Gubler, A guide to tropicalizations, Algebraic and combinatorial aspects of tropical geometry, Contemp. Math., vol. 589, Amer. Math. Soc., Providence, RI, 2013, pp. 125–189. MR 3088913, DOI 10.1090/conm/589/11745
- Paul Hacking, The homology of tropical varieties, Collect. Math. 59 (2008), no. 3, 263–273. MR 2452307, DOI 10.1007/BF03191187
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Deirdre Haskell, Ehud Hrushovski, and Dugald Macpherson, Stable domination and independence in algebraically closed valued fields, Lecture Notes in Logic, vol. 30, Association for Symbolic Logic, Chicago, IL; Cambridge University Press, Cambridge, 2008. MR 2369946
- Ehud Hrushovski and David Kazhdan, Integration in valued fields, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 261–405. MR 2263194, DOI 10.1007/978-0-8176-4532-8_{4}
- David Helm and Eric Katz, Monodromy filtrations and the topology of tropical varieties, Canad. J. Math. 64 (2012), no. 4, 845–868. MR 2957233, DOI 10.4153/CJM-2011-067-9
- E. Hrushovski and F. Loeser, Monodromy and the Lefschetz fixed point formula, preprint, arXiv:1111.1954, 2011.
- E. Hrushovski and F. Loeser, Nonarchimedean topology and stably dominated types, preprint, arXiv:1009.0252v3, 2012.
- E. Hrushovski, F. Loeser, and B. Poonen, Berkovich spaces embed in euclidean spaces, preprint, arXiv:1210.6485, 2012.
- Jun-ichi Igusa, Complex powers and asymptotic expansions. II. Asymptotic expansions, J. Reine Angew. Math. 278(279) (1975), 307–321. MR 404215, DOI 10.1515/crll.1975.278-279.307
- M Jonsson, Dynamics on Berkovich spaces of low dimensions, To appear in Berkovich spaces and applications. Séminaires et Congrès. arXiv:1201.1944v1, 2012.
- D. Jensen and S. Payne, Tropical multiplication maps and the Gieseker-Petri Theorem, preprint, arXiv:1401.2584, 2014.
- Michael Kapovich and János Kollár, Fundamental groups of links of isolated singularities, J. Amer. Math. Soc. 27 (2014), no. 4, 929–952. MR 3230815, DOI 10.1090/S0894-0347-2014-00807-9
- G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518, DOI 10.1007/BFb0070318
- János Kollár, Links of complex analytic singularities, Surveys in differential geometry. Geometry and topology, Surv. Differ. Geom., vol. 18, Int. Press, Somerville, MA, 2013, pp. 157–193. MR 3087919, DOI 10.4310/SDG.2013.v18.n1.a4
- Maxim Kontsevich and Yan Soibelman, Affine structures and non-Archimedean analytic spaces, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 321–385. MR 2181810, DOI 10.1007/0-8176-4467-9_{9}
- Eric Katz and Alan Stapledon, Tropical geometry and the motivic nearby fiber, Compos. Math. 148 (2012), no. 1, 269–294. MR 2881316, DOI 10.1112/S0010437X11005446
- Moritz Kerz and Shuji Saito, Cohomological Hasse principle and motivic cohomology for arithmetic schemes, Publ. Math. Inst. Hautes Études Sci. 115 (2012), 123–183. MR 2929729, DOI 10.1007/s10240-011-0038-y
- M. Kontsevich and Y. Tschinkel, Nonarchimedean Kähler geometry, unpublished, 2002.
- François Loeser and Julien Sebag, Motivic integration on smooth rigid varieties and invariants of degenerations, Duke Math. J. 119 (2003), no. 2, 315–344. MR 1997948, DOI 10.1215/S0012-7094-03-11924-9
- David Marker, Model theory, Graduate Texts in Mathematics, vol. 217, Springer-Verlag, New York, 2002. An introduction. MR 1924282
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
- M. Mustaţă and J. Nicaise, Weight functions on non-archimedean analytic spaces and the Kontsevich-Soibelman skeleton, preprint, arXiv:1212.6328, 2012.
- Grigory Mikhalkin and Ilia Zharkov, Tropical curves, their Jacobians and theta functions, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 203–230. MR 2457739, DOI 10.1090/conm/465/09104
- Johannes Nicaise, Singular cohomology of the analytic Milnor fiber, and mixed Hodge structure on the nearby cohomology, J. Algebraic Geom. 20 (2011), no. 2, 199–237. MR 2762990, DOI 10.1090/S1056-3911-10-00526-6
- Johannes Nicaise and Julien Sebag, Motivic Serre invariants, ramification, and the analytic Milnor fiber, Invent. Math. 168 (2007), no. 1, 133–173. MR 2285749, DOI 10.1007/s00222-006-0029-7
- J. Nicaise and C. Xu, The essential skeleton of a degeneration of algebraic varieties, arXiv:1307.4041, 2013.
- Sam Payne, Analytification is the limit of all tropicalizations, Math. Res. Lett. 16 (2009), no. 3, 543–556. MR 2511632, DOI 10.4310/MRL.2009.v16.n3.a13
- Sam Payne, Boundary complexes and weight filtrations, Michigan Math. J. 62 (2013), no. 2, 293–322. MR 3079265, DOI 10.1307/mmj/1370870374
- Michel Raynaud, Géométrie analytique rigide d’après Tate, Kiehl,$\cdots$, Table Ronde d’Analyse non archimédienne (Paris, 1972) Bull. Soc. Math. France, Mém. No. 39–40, Soc. Math. France, Paris, 1974, pp. 319–327 (French). MR 0470254, DOI 10.24033/msmf.170
- G. Smith, Brill-Noether theory of curves in toric surfaces, preprint arXiv:1403.2317. To appear in J. Pure Appl. Alg., 2014.
- D. A. Stepanov, A remark on the dual complex of a resolution of singularities, Uspekhi Mat. Nauk 61 (2006), no. 1(367), 185–186 (Russian); English transl., Russian Math. Surveys 61 (2006), no. 1, 181–183. MR 2239783, DOI 10.1070/RM2006v061n01ABEH004309
- A. Thuillier, Théorie du potentiel sur ler courbes en géométrie analytique non archimédienne. Applications à la theéorie d’Arakelov, Ph.D. thesis, University of Rennes, 2005.
- Amaury Thuillier, Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels, Manuscripta Math. 123 (2007), no. 4, 381–451 (French, with English summary). MR 2320738, DOI 10.1007/s00229-007-0094-2
Additional Information
- Sam Payne
- Affiliation: Department of Mathematics, Yale University, 10 Hillhouse Ave., New Haven, Connecticut 06511
- MR Author ID: 652681
- Email: sam.payne@yale.edu
- Received by editor(s): September 30, 2013
- Published electronically: August 18, 2014
- Additional Notes: The author was partially supported by NSF DMS-1068689 and NSF CAREER DMS-1149054.
- © Copyright 2014 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 52 (2015), 223-247
- MSC (2010): Primary 32K10; Secondary 14B05, 14T05, 32J05, 32S45, 32S50
- DOI: https://doi.org/10.1090/S0273-0979-2014-01469-7
- MathSciNet review: 3312632