Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 3443397
Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Mark Green, Phillip A. Griffiths and Matt Kerr
Title: Mumford–Tate groups and domains: their geometry and arithmetic
Additional book information: Princeton University Press, Princeton, NJ, 2012, viii+289 pp., ISBN 978-0-691-154251

References [Enhancements On Off] (What's this?)

  • Salman Abdulali, Hodge structures of CM-type, J. Ramanujan Math. Soc. 20 (2005), no. 2, 155–162. MR 2169094
  • Daniel Allcock, James A. Carlson, and Domingo Toledo, The moduli space of cubic threefolds as a ball quotient, Mem. Amer. Math. Soc. 209 (2011), no. 985, xii+70. MR 2789835, DOI 10.1090/S0065-9266-10-00591-0
  • Daniel Allcock, James A. Carlson, and Domingo Toledo, The complex hyperbolic geometry of the moduli space of cubic surfaces, J. Algebraic Geom. 11 (2002), no. 4, 659–724. MR 1910264, DOI 10.1090/S1056-3911-02-00314-4
  • Yves André, Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part, Compositio Math. 82 (1992), no. 1, 1–24. MR 1154159
  • D. Arapura, Geometric Hodge structures with prescribed Hodge numbers, arxiv:1406.2142
  • Avner Ash, David Mumford, Michael Rapoport, and Yung-Sheng Tai, Smooth compactifications of locally symmetric varieties, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010. With the collaboration of Peter Scholze. MR 2590897, DOI 10.1017/CBO9780511674693
  • W. L. Baily Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442–528. MR 216035, DOI 10.2307/1970457
  • Patrick Brosnan and Gregory Pearlstein, On the algebraicity of the zero locus of an admissible normal function, Compos. Math. 149 (2013), no. 11, 1913–1962. MR 3133298, DOI 10.1112/S0010437X1300729X
  • P. Brosnan, G. Pearlstein, M. Saito, A generalization of the Néron models of Green, Griffiths and Kerr, (final form).
  • Henri Carayol, Limites dégénérées de séries discrètes, formes automorphes et variétés de Griffiths-Schmid: le cas du groupe $\textrm {U}(2,1)$, Compositio Math. 111 (1998), no. 1, 51–88 (French, with English summary). MR 1611063, DOI 10.1023/A:1000282229017
  • Henri Carayol, Cohomologie automorphe et compactifications partielles de certaines variétés de Griffiths-Schmid, Compos. Math. 141 (2005), no. 5, 1081–1102 (French, with English summary). MR 2157130, DOI 10.1112/S0010437X05001454
  • James A. Carlson, Eduardo H. Cattani, and Aroldo G. Kaplan, Mixed Hodge structures and compactifications of Siegel’s space (preliminary report), Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 77–105. MR 605337
  • James Carlson, Mark Green, and Phillip Griffiths, Variations of Hodge structure considered as an exterior differential system: old and new results, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper 087, 40. MR 2559674, DOI 10.3842/SIGMA.2009.087
  • James Carlson and Phillip Griffiths, What is ... a period domain?, Notices Amer. Math. Soc. 55 (2008), no. 11, 1418–1419. MR 2463994
  • J. Carlson, D. Toledo. Compact quotients of non-classical domains are not Kähler, Proceedings of the CBMS Conference on Hodge theory, Complex Geometry and Represntation Theory, Texas Christian University 2012.
  • Elie Cartan, Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm. Sup. (3) 27 (1910), 109–192 (French). MR 1509120
  • Sebastian Casalaina-Martin, David Jensen, and Radu Laza, The geometry of the ball quotient model of the moduli space of genus four curves, Compact moduli spaces and vector bundles, Contemp. Math., vol. 564, Amer. Math. Soc., Providence, RI, 2012, pp. 107–136. MR 2895186, DOI 10.1090/conm/564/11153
  • Eduardo Cattani, Pierre Deligne, and Aroldo Kaplan, On the locus of Hodge classes, J. Amer. Math. Soc. 8 (1995), no. 2, 483–506. MR 1273413, DOI 10.1090/S0894-0347-1995-1273413-2
  • Eduardo H. Cattani and Aroldo G. Kaplan, Extension of period mappings for Hodge structures of weight two, Duke Math. J. 44 (1977), no. 1, 1–43. MR 432925
  • Eduardo Cattani, Aroldo Kaplan, and Wilfried Schmid, Degeneration of Hodge structures, Ann. of Math. (2) 123 (1986), no. 3, 457–535. MR 840721, DOI 10.2307/1971333
  • François Charles and Christian Schnell, Notes on absolute Hodge classes, Hodge theory, Math. Notes, vol. 49, Princeton Univ. Press, Princeton, NJ, 2014, pp. 469–530. MR 3290133
  • Herbert Clemens, The Néron model for families of intermediate Jacobians acquiring “algebraic” singularities, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 5–18 (1984). MR 720929
  • G. da Silva, M. Kerr, G. Pearlstein, Arithmetic of degenerating principal variations of Hodge structure: examples arising from mirror symmetry and middle convolution, to appear, Canadian Journal of Mathematics.
  • Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551
  • Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325
  • Michael Dettweiler and Stefan Reiter, Rigid local systems and motives of type $G_2$, Compos. Math. 146 (2010), no. 4, 929–963. With an appendix by Michael Dettweiler and Nicholas M. Katz. MR 2660679, DOI 10.1112/S0010437X10004641
  • Charles Ehresmann, Sur les espaces fibrés différentiables, C. R. Acad. Sci. Paris 224 (1947), 1611–1612 (French). MR 20774
  • William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
  • M. Goresky, Compactification of Modular Varieites, in Harmonic Analysis, The Trace Formula, and Shimura Varieties, Proceedings of the Clay Mathematics Institute 2003 Summer School, Fields Institute, Toronto.
  • Phillip A. Griffiths, Periods of integrals on algebraic manifolds. I. Construction and properties of the modular varieties, Amer. J. Math. 90 (1968), 568–626. MR 229641, DOI 10.2307/2373545
  • Phillip A. Griffiths, Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems, Bull. Amer. Math. Soc. 76 (1970), 228–296. MR 258824, DOI 10.1090/S0002-9904-1970-12444-2
  • Mark Green, Phillip Griffiths, and Matt Kerr, Néron models and limits of Abel-Jacobi mappings, Compos. Math. 146 (2010), no. 2, 288–366. MR 2601630, DOI 10.1112/S0010437X09004400
  • Mark Green, Phillip Griffiths, and Matt Kerr, Mumford-Tate domains, Boll. Unione Mat. Ital. (9) 3 (2010), no. 2, 281–307. MR 2666359
  • ———, Hodge Theory, Complex Geometry, and Representation Theory, CBMS 118 (2013).
  • Phillip Griffiths, Colleen Robles, and Domingo Toledo, Quotients of non-classical flag domains are not algebraic, Algebr. Geom. 1 (2014), no. 1, 1–13. MR 3234111, DOI 10.14231/AG-2014-001
  • Harish-Chandra, Discrete series for semisimple Lie groups. II. Explicit determination of the characters, Acta Math. 116 (1966), 1–111. MR 219666, DOI 10.1007/BF02392813
  • Tatsuki Hayama, Néron models of Green-Griffiths-Kerr and log Néron models, Publ. Res. Inst. Math. Sci. 47 (2011), no. 3, 803–824. MR 2832807, DOI 10.2977/PRIMS/52
  • Kazuya Kato, Chikara Nakayama, and Sampei Usui, Log intermediate Jacobians, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 4, 73–78. MR 2657330
  • Kazuya Kato, Chikara Nakayama, and Sampei Usui, Analyticity of the closures of some Hodge theoretic subspaces, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), no. 9, 167–172. MR 2863360
  • Kazuya Kato and Sampei Usui, Classifying spaces of degenerating polarized Hodge structures, Annals of Mathematics Studies, vol. 169, Princeton University Press, Princeton, NJ, 2009. MR 2465224, DOI 10.1515/9781400837113
  • Matt Kerr and Gregory Pearlstein, An exponential history of functions with logarithmic growth, Topology of stratified spaces, Math. Sci. Res. Inst. Publ., vol. 58, Cambridge Univ. Press, Cambridge, 2011, pp. 281–374. MR 2796415
  • ———, Boundary components of Mumford-Tate domains, to appear, Duke Math. Journal.
  • ———, Naive boundary strata and nilpotent orbits (Limites de strates naïves et orbites nilpotentes), Ann. Inst. Fourier 64 (2014), 2659–2714
  • A. Knapp, Representation theory of Semisimple Lie Groups, Princeton Landmarks in Math. Springer-Verlag, 1994.
  • Shigeyuki Kond\B{o}, A complex hyperbolic structure for the moduli space of curves of genus three, J. Reine Angew. Math. 525 (2000), 219–232. MR 1780433, DOI 10.1515/crll.2000.069
  • Bertram Kostant, Orbits, symplectic structures and representation theory, Proc. U.S.-Japan Seminar in Differential Geometry (Kyoto, 1965) Nippon Hyoronsha, Tokyo, 1966, pp. p. 71. MR 0213476
  • Björn Engquist and Wilfried Schmid (eds.), Mathematics unlimited—2001 and beyond, Springer-Verlag, Berlin, 2001. MR 1829883, DOI 10.1007/978-3-642-56478-9
  • R. P. Langlands, Dimension of spaces of automorphic forms, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 253–257. MR 0212135
  • James D. Lewis, A survey of the Hodge conjecture, 2nd ed., CRM Monograph Series, vol. 10, American Mathematical Society, Providence, RI, 1999. Appendix B by B. Brent Gordon. MR 1683216, DOI 10.1090/crmm/010
  • James S. Milne, What is $\dots$ a Shimura variety?, Notices Amer. Math. Soc. 59 (2012), no. 11, 1560–1561. MR 3027110, DOI 10.1090/noti923
  • Helge Holden and Ragni Piene (eds.), The Abel Prize 2008–2012, Springer, Heidelberg, 2014. MR 3185030, DOI 10.1007/978-3-642-39449-2
  • I. Mirković, On the localization for a singular infinitesimal character, Preprint, University of Massachusetts at Amherst, 1990.
  • David Mumford, Families of abelian varieties, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 347–351. MR 0206003
  • S. Patrikis, Mumford–Tate groups of polarizable Hodge structures, preprint.
  • Emile Picard, Sur des fonctions de deux variables indépendantes analogues aux fonctions modulaires, Acta Math. 2 (1883), no. 1, 114–135 (French). MR 1554595, DOI 10.1007/BF02415213
  • Henry Pohlmann, Algebraic cycles on abelian varieties of complex multiplication type, Ann. of Math. (2) 88 (1968), 161–180. MR 228500, DOI 10.2307/1970570
  • Jan Christian Rohde, Cyclic coverings, Calabi-Yau manifolds and complex multiplication, Lecture Notes in Mathematics, vol. 1975, Springer-Verlag, Berlin, 2009. MR 2510071, DOI 10.1007/978-3-642-00639-5
  • Wilfried Schmid, On a conjecture of Langlands, Ann. of Math. (2) 93 (1971), 1–42. MR 286942, DOI 10.2307/1970751
  • Wilfried Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211–319. MR 382272, DOI 10.1007/BF01389674
  • Wilfried Schmid, $L^{2}$-cohomology and the discrete series, Ann. of Math. (2) 103 (1976), no. 2, 375–394. MR 396856, DOI 10.2307/1970944
  • Wilfried Schmid, Discrete series, Representation theory and automorphic forms (Edinburgh, 1996) Proc. Sympos. Pure Math., vol. 61, Amer. Math. Soc., Providence, RI, 1997, pp. 83–113. MR 1476494, DOI 10.1090/pspum/061/1476494
  • Morihiko Saito, Admissible normal functions, J. Algebraic Geom. 5 (1996), no. 2, 235–276. MR 1374710
  • Christian Schnell, Complex analytic Néron models for arbitrary families of intermediate Jacobians, Invent. Math. 188 (2012), no. 1, 1–81. MR 2897692, DOI 10.1007/s00222-011-0341-8
  • Morihiko Saito and Christian Schnell, A variant of Néron models over curves, Manuscripta Math. 134 (2011), no. 3-4, 359–375. MR 2765716, DOI 10.1007/s00229-010-0398-5
  • B. Totaro, Hodge structures of type $(n,0,\dots ,0,n)$, International Research Notices, 2014
  • Claire Voisin, Hodge loci and absolute Hodge classes, Compos. Math. 143 (2007), no. 4, 945–958. MR 2339834, DOI 10.1112/S0010437X07002837
  • R. O. Wells Jr., Differential analysis on complex manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 65, Springer-Verlag, New York-Berlin, 1980. MR 608414
  • Steven Zucker, Generalized intermediate Jacobians and the theorem on normal functions, Invent. Math. 33 (1976), no. 3, 185–222. MR 412186, DOI 10.1007/BF01404203

  • Review Information:

    Reviewer: Gregory Pearlstein
    Affiliation: Texas A&M University
    Journal: Bull. Amer. Math. Soc. 52 (2015), 711-724
    Published electronically: June 25, 2015
    Review copyright: © Copyright 2015 American Mathematical Society