String theory and math: Why this marriage may last. Mathematics and dualities of quantum physics
HTML articles powered by AMS MathViewer
- by Mina Aganagic PDF
- Bull. Amer. Math. Soc. 53 (2016), 93-115 Request permission
Abstract:
String theory is changing the relationship between mathematics and physics. The central role is played by the phenomenon of duality, which is intrinsic to quantum physics and abundant in string theory.References
- J. Polchinski, String duality: A colloquium, Rev. Mod. Phys. 68 (1996), 1245 [hep-th/9607050].
- C. Vafa, Geometric physics, hep-th/9810149.
- J. Polchinski, Dualities of Fields and Strings, arXiv:1412.5704 [hep-th].
- G. Moore, Physical Mathematics and the Future, http://www.physics.rutgers.edu/gmoore/PhysicalMathematicsAndFuture.pdf
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- V. F. R. Jones, On knot invariants related to some statistical mechanical models, Pacific J. Math. 137 (1989), no. 2, 311–334. MR 990215
- Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772
- N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
- Kentaro Hori, Sheldon Katz, Albrecht Klemm, Rahul Pandharipande, Richard Thomas, Cumrun Vafa, Ravi Vakil, and Eric Zaslow, Mirror symmetry, Clay Mathematics Monographs, vol. 1, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2003. With a preface by Vafa. MR 2003030
- Andrei Okounkov, Random surfaces enumerating algebraic curves, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, pp. 751–768. MR 2185779
- R. Thomas, “The geometry of mirror symmetry”, Encylopedia of mathematical physics. Francoise, Naber, and Tsou (editors), Elsevier, Oxford.
- Edward Witten, Topological sigma models, Comm. Math. Phys. 118 (1988), no. 3, 411–449. MR 958805
- Edward Witten, On the structure of the topological phase of two-dimensional gravity, Nuclear Phys. B 340 (1990), no. 2-3, 281–332. MR 1068086, DOI 10.1016/0550-3213(90)90449-N
- Edward Witten, Mirror manifolds and topological field theory, Essays on mirror manifolds, Int. Press, Hong Kong, 1992, pp. 120–158. MR 1191422
- M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994), no. 2, 311–427. MR 1301851
- Wolfgang Lerche, Cumrun Vafa, and Nicholas P. Warner, Chiral rings in $N=2$ superconformal theories, Nuclear Phys. B 324 (1989), no. 2, 427–474. MR 1025424, DOI 10.1016/0550-3213(89)90474-4
- Philip Candelas, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), no. 1, 21–74. MR 1115626, DOI 10.1016/0550-3213(91)90292-6
- K. J. Costello and S. Li, “Quantum BCOV theory on Calabi–Yau manifolds and the higher genus B-model,” arXiv:1201.4501 [math.QA].
- E. Witten, Chern-Simons gauge theory as a string theory, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 637–678. MR 1362846
- Rajesh Gopakumar and Cumrun Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999), no. 5, 1415–1443. MR 1796682, DOI 10.4310/ATMP.1999.v3.n5.a5
- C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139 (2000), no. 1, 173–199. MR 1728879, DOI 10.1007/s002229900028
- Hirosi Ooguri and Cumrun Vafa, Knot invariants and topological strings, Nuclear Phys. B 577 (2000), no. 3, 419–438. MR 1765411, DOI 10.1016/S0550-3213(00)00118-8
- Clifford Henry Taubes, Lagrangians for the Gopakumar-Vafa conjecture, Adv. Theor. Math. Phys. 5 (2001), no. 1, 139–163. MR 1894340, DOI 10.4310/ATMP.2001.v5.n1.a5
- Dror Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), no. 2, 423–472. MR 1318886, DOI 10.1016/0040-9383(95)93237-2
- Marcos Mariño, Chern-Simons theory, matrix integrals, and perturbative three-manifold invariants, Comm. Math. Phys. 253 (2005), no. 1, 25–49. MR 2105636, DOI 10.1007/s00220-004-1194-4
- K. Fukaya, Talk at String-Math 2013, $http://media.scgp.stonybrook.edu/presentations/$ $20130618 2 fukaya.pdf$
- Sheldon Katz and Chiu-Chu Melissa Liu, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Adv. Theor. Math. Phys. 5 (2001), no. 1, 1–49. MR 1894336, DOI 10.4310/ATMP.2001.v5.n1.a1
- D. Maulik, A. Oblomkov, A. Okounkov, and R. Pandharipande, Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math. 186 (2011), no. 2, 435–479. MR 2845622, DOI 10.1007/s00222-011-0322-y
- G. ’t Hooft, “A planar diagram theory for strong interactions,” Nucl. Phys. B 72, 461 (1974).
- Mina Aganagic, Albrecht Klemm, Marcos Mariño, and Cumrun Vafa, The topological vertex, Comm. Math. Phys. 254 (2005), no. 2, 425–478. MR 2117633, DOI 10.1007/s00220-004-1162-z
- S. K. Donaldson and R. P. Thomas, Gauge theory in higher dimensions, The geometric universe (Oxford, 1996) Oxford Univ. Press, Oxford, 1998, pp. 31–47. MR 1634503
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263–1285. MR 2264664, DOI 10.1112/S0010437X06002302
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math. 142 (2006), no. 5, 1286–1304. MR 2264665, DOI 10.1112/S0010437X06002314
- Andrei Okounkov, Nikolai Reshetikhin, and Cumrun Vafa, Quantum Calabi-Yau and classical crystals, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 597–618. MR 2181817, DOI 10.1007/0-8176-4467-9_{1}6
- Amer Iqbal, Cumrun Vafa, Nikita Nekrasov, and Andrei Okounkov, Quantum foam and topological strings, J. High Energy Phys. 4 (2008), 011, 47. MR 2425292, DOI 10.1088/1126-6708/2008/04/011
- R. Dijkgraaf, C. Vafa and E. Verlinde, “M-theory and a topological string duality,” hep-th/0602087.
- Maxim Kontsevich, Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 120–139. MR 1403918
- Yuichi Nohara and Kazushi Ueda, Homological mirror symmetry for the quintic 3-fold, Geom. Topol. 16 (2012), no. 4, 1967–2001. MR 2975297, DOI 10.2140/gt.2012.16.1967
- Andrew Strominger, Shing-Tung Yau, and Eric Zaslow, Mirror symmetry is $T$-duality, Nuclear Phys. B 479 (1996), no. 1-2, 243–259. MR 1429831, DOI 10.1016/0550-3213(96)00434-8
- Mark Gross, Mirror symmetry and the Strominger-Yau-Zaslow conjecture, Current developments in mathematics 2012, Int. Press, Somerville, MA, 2013, pp. 133–191. MR 3204345
- M. Aganagic and C. Vafa, “Large N Duality, Mirror Symmetry, and a Q-deformed A-polynomial for Knots,” arXiv:1204.4709;
- Mina Aganagic, Tobias Ekholm, Lenhard Ng, and Cumrun Vafa, Topological strings, D-model, and knot contact homology, Adv. Theor. Math. Phys. 18 (2014), no. 4, 827–956. MR 3277674
- Lenhard Ng, Combinatorial knot contact homology and transverse knots, Adv. Math. 227 (2011), no. 6, 2189–2219. MR 2807087, DOI 10.1016/j.aim.2011.04.014
- Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), no. 3, 359–426. MR 1740682, DOI 10.1215/S0012-7094-00-10131-7
- Webster, B., “Knot invariants and higher representation theory” arXiv:1309.3796
- Webster, B., “Tensor product algebras, Grassmannians and Khovanov homology” arXiv:1312.7357
- Sergei Gukov, Albert Schwarz, and Cumrun Vafa, Khovanov-Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005), no. 1, 53–74. MR 2193547, DOI 10.1007/s11005-005-0008-8
- Edward Witten, Fivebranes and knots, Quantum Topol. 3 (2012), no. 1, 1–137. MR 2852941, DOI 10.4171/QT/26
- Edward Witten, Khovanov homology and gauge theory, Proceedings of the Freedman Fest, Geom. Topol. Monogr., vol. 18, Geom. Topol. Publ., Coventry, 2012, pp. 291–308. MR 3084242, DOI 10.2140/gtm.2012.18.291
- Davide Gaiotto and Edward Witten, Knot invariants from four-dimensional gauge theory, Adv. Theor. Math. Phys. 16 (2012), no. 3, 935–1086. MR 3024278
- M. Aganagic and S. Shakirov, “Knot Homology from Refined Chern–Simons Theory,” arXiv:1105.5117 [hep-th].
- M. Aganagic, N. Haouzi and S. Shakirov, “$A_n$-Triality,” arXiv:1403.3657 [hep-th].
- Oblomkov, A., Rasmussen, J., & Shende, V., “The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link”, arXiv:1201.2115
- Hiraku Nakajima, Refined Chern-Simons theory and Hilbert schemes of points on the plane, Perspectives in representation theory, Contemp. Math., vol. 610, Amer. Math. Soc., Providence, RI, 2014, pp. 305–331. MR 3220632, DOI 10.1090/conm/610/12157
- Gorsky, E., & Negut, A., “Refined Knot Invariants and Hilbert Schemes”, arXiv:1304.3328
- N. Nekrasov and A. Okounkov, “Membranes and Sheaves,” arXiv:1404.2323 [math.AG].
- R. Gopakumar and C. Vafa, “M theory and topological strings. 1.,” hep-th/9809187.
- R. Gopakumar and C. Vafa, “M theory and topological strings. 2.,” hep-th/9812127.
- Amihay Hanany and Edward Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nuclear Phys. B 492 (1997), no. 1-2, 152–190. MR 1451054, DOI 10.1016/S0550-3213(97)00157-0
- K. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996), no. 3, 513–519. MR 1413696, DOI 10.1016/0370-2693(96)01088-X
- Davide Gaiotto and Edward Witten, Supersymmetric boundary conditions in $\scr N=4$ super Yang-Mills theory, J. Stat. Phys. 135 (2009), no. 5-6, 789–855. MR 2548595, DOI 10.1007/s10955-009-9687-3
- Tom Braden, Nicholas Proudfoot, Ben Webster: “Quantizations of conical symplectic resolutions I: local and global structure”, arXiv:1208.3863; “Quantizations of conical symplectic resolutions II: category $\mathcal O$ and symplectic duality”, arXiv: 1407.0964
- N. Seiberg and E. Witten, Erratum: “Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang-Mills theory”, Nuclear Phys. B 430 (1994), no. 2, 485–486. MR 1303306, DOI 10.1016/0550-3213(94)00449-8
- Edward Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769–796. MR 1306021, DOI 10.4310/MRL.1994.v1.n6.a13
- Davide Gaiotto, $N=2$ dualities, J. High Energy Phys. 8 (2012), 034, front matter + 57. MR 3006961, DOI 10.1007/JHEP08(2012)034
- Luis F. Alday, Davide Gaiotto, and Yuji Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010), no. 2, 167–197. MR 2586871, DOI 10.1007/s11005-010-0369-5
- A. Braverman, M. Finkelberg, H. Nakajima, “Instanton moduli spaces and W-algebras”, arxiv:1406.2381[math:QA]
- C. Montonen and D. Olive, Phys. Lett. B72 (1977) 117; P. Goddard, J. Nyuts and D. Olive, Nucl. Phys. B125 (1977) 1.
- Cumrun Vafa and Edward Witten, A strong coupling test of $S$-duality, Nuclear Phys. B 431 (1994), no. 1-2, 3–77. MR 1305096, DOI 10.1016/0550-3213(94)90097-3
- Anton Kapustin and Edward Witten, Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007), no. 1, 1–236. MR 2306566, DOI 10.4310/CNTP.2007.v1.n1.a1
- R. Donagi and T. Pantev, Langlands duality for Hitchin systems, Invent. Math. 189 (2012), no. 3, 653–735. MR 2957305, DOI 10.1007/s00222-012-0373-8
- E. Frenkel, “Lectures on the Langlands program and conformal field theory,” hep-th/0512172.
Additional Information
- Mina Aganagic
- Affiliation: Departments of Mathematics and Physics, University of California, Berkeley, California
- Email: aganacic@berkeley.edu
- Received by editor(s): May 1, 2015
- Published electronically: August 31, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 53 (2016), 93-115
- MSC (2010): Primary 00-XX, 81-XX, 51-XX
- DOI: https://doi.org/10.1090/bull/1517
- MathSciNet review: 3403082