Perspectives on scissors congruence
Author:
Inna Zakharevich
Journal:
Bull. Amer. Math. Soc. 53 (2016), 269-294
MSC (2010):
Primary 52B45
DOI:
https://doi.org/10.1090/bull/1527
Published electronically:
January 25, 2016
MathSciNet review:
3474308
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we give a short introduction to the different theories of scissors congruence. We begin with classical scissors congruence, which considers equivalence classes of polyhedra under dissection. We then move to multi-dimensional scissors congruence along the lines of McMullen's polytope algebra and then to the Grothendieck ring of varieties. Tying our discussion together is the question of whether algebraic invariants are sufficient to distinguish scissors congruence classes.
- [BL81] Louis J. Billera and Carl W. Lee, A proof of the sufficiency of McMullen’s conditions for 𝑓-vectors of simplicial convex polytopes, J. Combin. Theory Ser. A 31 (1981), no. 3, 237–255. MR 635368, https://doi.org/10.1016/0097-3165(81)90058-3
- [Bli11] Manuel Blickle, A short course on geometric motivic integration, Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume I, London Math. Soc. Lecture Note Ser., vol. 383, Cambridge Univ. Press, Cambridge, 2011, pp. 189–243. MR 2885337
- [Bor]
Lev Borisov.
Class of the affine line is a zero divisor in the Grothendieck ring.
http://arxiv.org/pdf/1412.6194. - [Car86] Pierre Cartier, Décomposition des polyèdres: le point sur le troisième problème de Hilbert, Astérisque 133-134 (1986), 261–288 (French). Seminar Bourbaki, Vol. 1984/85. MR 837225
- [CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322
- [DL99] Jan Denef and François Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999), no. 1, 201–232. MR 1664700, https://doi.org/10.1007/s002220050284
- [Dri98] Lou van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998. MR 1633348
- [DS82] Chih Han Sah, Scissors congruences. I. The Gauss-Bonnet map, Math. Scand. 49 (1981), no. 2, 181–210 (1982). MR 661890, https://doi.org/10.7146/math.scand.a-11930
- [Dup82] Johan L. Dupont, Algebra of polytopes and homology of flag complexes, Osaka J. Math. 19 (1982), no. 3, 599–641. MR 676240
- [Dup01] Johan L. Dupont, Scissors congruences, group homology and characteristic classes, Nankai Tracts in Mathematics, vol. 1, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1832859
- [FS97] William Fulton and Bernd Sturmfels, Intersection theory on toric varieties, Topology 36 (1997), no. 2, 335–353. MR 1415592, https://doi.org/10.1016/0040-9383(96)00016-X
- [FW]
Benson Farb and Jesse Wolfson.
Topology and arithmetic of resultants, I: spaces of rational maps.
http://arxiv.org/pdf/1506.02713.pdf. - [Gon99] Alexander Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives, J. Amer. Math. Soc. 12 (1999), no. 2, 569–618. MR 1649192, https://doi.org/10.1090/S0894-0347-99-00293-3
- [Goo]
Thomas Goodwillie.
Total scissors congruence.
http://arxiv.org/abs/1410.7120. - [Gra81] Daniel R. Grayson, 𝑆𝐾₁ of an interesting principal ideal domain, J. Pure Appl. Algebra 20 (1981), no. 2, 157–163. MR 601681, https://doi.org/10.1016/0022-4049(81)90089-X
- [Jes68] Børge Jessen, The algebra of polyhedra and the Dehn-Sydler theorem, Math. Scand. 22 (1968), 241–256 (1969). MR 251633, https://doi.org/10.7146/math.scand.a-10888
- [JY]
Anders Jensen and Josephine Yu.
Stable intersections of tropical varieties.
http://arxiv.org/abs/1309.7064. - [Kar]
Ilya Karzhemanov.
On the cut-and-paste property of algebraic varieties.
http://arxiv.org/abs/1411.6084. - [LL03] Michael Larsen and Valery A. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3 (2003), no. 1, 85–95, 259 (English, with English and Russian summaries). MR 1996804, https://doi.org/10.17323/1609-4514-2003-3-1-85-95
- [Loo02] Eduard Looijenga, Motivic measures, Astérisque 276 (2002), 267–297. Séminaire Bourbaki, Vol. 1999/2000. MR 1886763
- [LS10] Qing Liu and Julien Sebag, The Grothendieck ring of varieties and piecewise isomorphisms, Math. Z. 265 (2010), no. 2, 321–342. MR 2609314, https://doi.org/10.1007/s00209-009-0518-7
- [McM89] Peter McMullen, The polytope algebra, Adv. Math. 78 (1989), no. 1, 76–130. MR 1021549, https://doi.org/10.1016/0001-8708(89)90029-7
- [McM93] Peter McMullen, On simple polytopes, Invent. Math. 113 (1993), no. 2, 419–444. MR 1228132, https://doi.org/10.1007/BF01244313
- [Mor93A] Robert Morelli, The 𝐾-theory of a toric variety, Adv. Math. 100 (1993), no. 2, 154–182. MR 1234308, https://doi.org/10.1006/aima.1993.1032
- [Mor93B] Robert Morelli, Pick’s theorem and the Todd class of a toric variety, Adv. Math. 100 (1993), no. 2, 183–231. MR 1234309, https://doi.org/10.1006/aima.1993.1033
- [Mor93C] Robert Morelli, A theory of polyhedra, Adv. Math. 97 (1993), no. 1, 1–73. MR 1200289, https://doi.org/10.1006/aima.1993.1001
- [NS11] Johannes Nicaise and Julien Sebag, The Grothendieck ring of varieties, Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume I, London Math. Soc. Lecture Note Ser., vol. 383, Cambridge Univ. Press, Cambridge, 2011, pp. 145–188. MR 2885336
- [Poo02] Bjorn Poonen, The Grothendieck ring of varieties is not a domain, Math. Res. Lett. 9 (2002), no. 4, 493–497. MR 1928868, https://doi.org/10.4310/MRL.2002.v9.n4.a8
- [PT04] James Pommersheim and Hugh Thomas, Cycles representing the Todd class of a toric variety, J. Amer. Math. Soc. 17 (2004), no. 4, 983–994. MR 2083474, https://doi.org/10.1090/S0894-0347-04-00460-6
- [Qui73] Daniel Quillen, Higher algebraic 𝐾-theory. I, Algebraic 𝐾-theory, I: Higher 𝐾-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129
- [Sah79] C. H. Sah, Hilbert’s third problem: scissors congruence, Research Notes in Mathematics, vol. 33, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 554756
- [Sta80] Richard P. Stanley, The number of faces of a simplicial convex polytope, Adv. in Math. 35 (1980), no. 3, 236–238. MR 563925, https://doi.org/10.1016/0001-8708(80)90050-X
- [Syd65] J.-P. Sydler, Conditions nécessaires et suffisantes pour l’équivalence des polyèdres de l’espace euclidien à trois dimensions, Comment. Math. Helv. 40 (1965), 43–80 (French). MR 192407, https://doi.org/10.1007/BF02564364
- [ZakA]
Inna Zakharevich.
The annihilator of the Lefschetz motive.
http://arxiv.org/abs/1506.06200. - [ZakB]
Inna Zakharevich.
The-theory of assemblers.
http://arxiv.org/abs/1401.3712. - [ZakC]
Inna Zakharevich.
Onof an assembler.
http://arxiv.org/abs/1506.06197.
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 52B45
Retrieve articles in all journals with MSC (2010): 52B45
Additional Information
Inna Zakharevich
Affiliation:
Department of Mathematics, University of Chicago, Chicago, Illinois
DOI:
https://doi.org/10.1090/bull/1527
Received by editor(s):
October 2, 2015
Published electronically:
January 25, 2016
Article copyright:
© Copyright 2016
American Mathematical Society