Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

An overview of periodic elliptic operators
HTML articles powered by AMS MathViewer

by Peter Kuchment PDF
Bull. Amer. Math. Soc. 53 (2016), 343-414 Request permission

Abstract:

The article surveys the main topics, techniques, and results of the theory of periodic operators arising in mathematical physics and other areas. Close attention is paid to studying analytic properties of Bloch and Fermi varieties, which significantly influence most spectral features of such operators.

The approaches described are applicable not only to the standard model example of Schrödinger operator with periodic electric potential $-\Delta +V(x)$, but to a wide variety of elliptic periodic equations and systems, equations on graphs, $\overline {\partial }$-operator, and other operators on abelian coverings of compact bases.

Important applications are mentioned. However, due to the size restrictions, they are not dealt with in detail.

References
  • M. J. Ablowitz and P. A. Clarkson, Nonlinear evolution equations and inverse scattering, Cambridge University Press, Cambridge, UK, 2001.
  • Toshiaki Adachi and Toshikazu Sunada, Density of states in spectral geometry, Comment. Math. Helv. 68 (1993), no. 3, 480–493. MR 1236765, DOI 10.1007/BF02565831
  • Shmuel Agmon, On positive solutions of elliptic equations with periodic coefficients in $\textbf {R}^n$, spectral results and extensions to elliptic operators on Riemannian manifolds, Differential equations (Birmingham, Ala., 1983) North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 7–17. MR 799327, DOI 10.1016/S0304-0208(08)73672-7
  • Shmuel Agmon, Lectures on elliptic boundary value problems, AMS Chelsea Publishing, Providence, RI, 2010. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr.; Revised edition of the 1965 original. MR 2589244, DOI 10.1090/chel/369
  • GrĂ©goire Allaire and Carlos Conca, Bloch wave homogenization and spectral asymptotic analysis, J. Math. Pures Appl. (9) 77 (1998), no. 2, 153–208 (English, with English and French summaries). MR 1614641, DOI 10.1016/S0021-7824(98)80068-8
  • GrĂ©goire Allaire, Carlos Conca, and Muthusamy Vanninathan, The Bloch transform and applications, Actes du 29Ăšme CongrĂšs d’Analyse NumĂ©rique: CANum’97 (Larnas, 1997) ESAIM Proc., vol. 3, Soc. Math. Appl. Indust., Paris, 1998, pp. 65–84. MR 1642454, DOI 10.1051/proc:1998040
  • V. I. Arnolâ€Čd, Ordinary differential equations, MIT Press, Cambridge, Mass.-London, 1978. Translated from the Russian and edited by Richard A. Silverman. MR 0508209
  • V. I. Arnolâ€Čd, Geometrical methods in the theory of ordinary differential equations, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 250, Springer-Verlag, New York, 1988. Translated from the Russian by Joseph SzĂŒcs [JĂłzsef M. SzƱcs]. MR 947141, DOI 10.1007/978-1-4612-1037-5
  • V. I. Arnolâ€Čd, On the teaching of mathematics, Uspekhi Mat. Nauk 53 (1998), no. 1(319), 229–234 (Russian); English transl., Russian Math. Surveys 53 (1998), no. 1, 229–236. MR 1618209, DOI 10.1070/rm1998v053n01ABEH000005
  • F. M. Arscott, Periodic differential equations. An introduction to Mathieu, LamĂ©, and allied functions, A Pergamon Press Book, The Macmillan Company, New York, 1964. MR 0173798
  • N. W. Ashcroft and N. D. Mermin, Solid state physics, Holt, Rinehart and Winston, New York-London, 1976.
  • D. Auckly, J. Corbin, and P. Kuchment, On parseval frames of Wannier functions, in preparation (2015).
  • Louis Auslander, Izidor Gertner, and Richard Tolimieri, The finite Zak transform and the finite Fourier transform, Radar and sonar, Part II, IMA Vol. Math. Appl., vol. 39, Springer, New York, 1992, pp. 21–35. MR 1223150, DOI 10.1007/978-1-4684-7832-7_{3}
  • Louis Auslander and Richard Tolimieri, Abelian harmonic analysis, theta functions and function algebras on a nilmanifold, Lecture Notes in Mathematics, Vol. 436, Springer-Verlag, Berlin-New York, 1975. MR 0414785
  • Marco Avellaneda and Fang-Hua Lin, Un thĂ©orĂšme de Liouville pour des Ă©quations elliptiques Ă  coefficients pĂ©riodiques, C. R. Acad. Sci. Paris SĂ©r. I Math. 309 (1989), no. 5, 245–250 (French, with English summary). MR 1010728
  • J. E. Avron and B. Simon, Analytic properties of band functions, Ann. Physics 110 (1978), no. 1, 85–101. MR 475384, DOI 10.1016/0003-4916(78)90143-4
  • M. Babillot, ThĂ©orie du renouvellement pour des chaĂźnes semi-markoviennes transientes, Ann. Inst. H. PoincarĂ© Probab. Statist. 24 (1988), no. 4, 507–569 (French, with English summary). MR 978023
  • Martine Babillot, Asymptotics of Green functions on a class of solvable Lie groups, Potential Anal. 8 (1998), no. 1, 69–100. MR 1608646, DOI 10.1023/A:1017991923947
  • J. M. Barbaroux, J. M. Combes, and P. D. Hislop, Localization near band edges for random Schrödinger operators, Helv. Phys. Acta 70 (1997), no. 1-2, 16–43. Papers honouring the 60th birthday of Klaus Hepp and of Walter Hunziker, Part II (ZĂŒrich, 1995). MR 1441595
  • G. Barbatis and L. Parnovski, Bethe-Sommerfeld conjecture for pseudodifferential perturbation, Comm. Partial Differential Equations 34 (2009), no. 4-6, 383–418. MR 2530702, DOI 10.1080/03605300902769006
  • D. BĂ€ttig, A directional compactification of the complex Fermi surface and isospectrality, SĂ©minaire sur les Équations aux DĂ©rivĂ©es Partielles, 1989–1990, École Polytech., Palaiseau, 1990, pp. Exp. No. IV, 11. MR 1073179
  • Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330
  • Francois Bentosela, Pierre Duclos, and Pavel Exner, Absolute continuity in periodic thin tubes and strongly coupled leaky wires, Lett. Math. Phys. 65 (2003), no. 1, 75–82. MR 2019393, DOI 10.1023/A:1027362115133
  • Ju. M. Berezansâ€ČkiÄ­, Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, Vol. 17, American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. MR 0222718
  • F. A. Berezin and M. A. Shubin, The Schrödinger equation, Mathematics and its Applications (Soviet Series), vol. 66, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the 1983 Russian edition by Yu. Rajabov, D. A. LeÄ­tes and N. A. Sakharova and revised by Shubin; With contributions by G. L. Litvinov and LeÄ­tes. MR 1186643, DOI 10.1007/978-94-011-3154-4
  • G. Berkolaiko and A. Comech, Symmetry and Dirac points in graphene spectrum, arXiv:1412.8096 (2014).
  • Gregory Berkolaiko and Peter Kuchment, Introduction to quantum graphs, Mathematical Surveys and Monographs, vol. 186, American Mathematical Society, Providence, RI, 2013. MR 3013208, DOI 10.1090/surv/186
  • B. Andrei Bernevig, Topological insulators and topological superconductors, Princeton University Press, Princeton, NJ, 2013. With Taylor L. Hughes. MR 3185492, DOI 10.1515/9781400846733
  • M. V. Berry and M. Wilkinson, Diabolical points in the spectra of triangles, Proc. Roy. Soc. London Ser. A 392 (1984), no. 1802, 15–43. MR 738925
  • H. Bethe and A. Sommerfeld, Elektronentheorie der metalle, Handbuch der Physik (H. Geiger and K. Scheel, eds.), vol. 24,2, Springer, 1933, This nearly 300-page chapter was later published as a separate book: Elektronentheorie der Metalle (Springer, 1967), pp. 333–622.
  • Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5–42. MR 972342
  • Edward Bierstone and Pierre D. Milman, A simple constructive proof of canonical resolution of singularities, Effective methods in algebraic geometry (Castiglioncello, 1990) Progr. Math., vol. 94, BirkhĂ€user Boston, Boston, MA, 1991, pp. 11–30. MR 1106412, DOI 10.1007/978-1-4612-0441-1_{2}
  • M. Sh. Birman, On a discrete spectrum in gaps of a second-order perturbed periodic operator, Funktsional. Anal. i Prilozhen. 25 (1991), no. 2, 89–92 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 2, 158–161. MR 1142222, DOI 10.1007/BF01079605
  • M. Sh. Birman, The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations, Boundary value problems, Schrödinger operators, deformation quantization, Math. Top., vol. 8, Akademie Verlag, Berlin, 1995, pp. 334–352. MR 1389015
  • M. Sh. Birman, The discrete spectrum of the periodic Schrödinger operator perturbed by a decreasing potential, Algebra i Analiz 8 (1996), no. 1, 3–20 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 8 (1997), no. 1, 1–14. MR 1392011
  • M. Sh. Birman, The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. II. Nonregular perturbations, Algebra i Analiz 9 (1997), no. 6, 62–89 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 9 (1998), no. 6, 1073–1095. MR 1610239
  • M. Sh. Birman, On the averaging procedure for periodic operators in a neighborhood of an edge of an internal gap, Algebra i Analiz 15 (2003), no. 4, 61–71 (Russian); English transl., St. Petersburg Math. J. 15 (2004), no. 4, 507–513. MR 2068979, DOI 10.1090/S1061-0022-04-00819-2
  • M. Sh. Birman and T. A. Suslina, A periodic magnetic Hamiltonian with a variable metric. The problem of absolute continuity, Algebra i Analiz 11 (1999), no. 2, 1–40 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 11 (2000), no. 2, 203–232. MR 1702587
  • Michael Birman and Tatyana Suslina, Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics, Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000) Oper. Theory Adv. Appl., vol. 129, BirkhĂ€user, Basel, 2001, pp. 71–107. MR 1882692
  • M. Sh. Birman and T. A. Suslina, Periodic second-order differential operators. Threshold properties and averaging, Algebra i Analiz 15 (2003), no. 5, 1–108 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 15 (2004), no. 5, 639–714. MR 2068790, DOI 10.1090/S1061-0022-04-00827-1
  • M. Sh. Birman and T. A. Suslina, Homogenization of a multidimensional periodic elliptic operator in a neighborhood of an edge of an inner gap, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 318 (2004), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 36 [35], 60–74, 309 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 136 (2006), no. 2, 3682–3690. MR 2120232, DOI 10.1007/s10958-006-0192-9
  • M. Sh. Birman and T. A. Suslina, The limiting absorption principle and the homogenization procedure for periodic elliptic operators, Funktsional. Anal. i Prilozhen. 42 (2008), no. 4, 105–108 (Russian); English transl., Funct. Anal. Appl. 42 (2008), no. 4, 336–339. MR 2492431, DOI 10.1007/s10688-008-0047-x
  • M. Sh. Birman, T. A. Suslina, and R. G. Shterenberg, Absolute continuity of the two-dimensional Schrödinger operator with delta potential concentrated on a periodic system of curves, Algebra i Analiz 12 (2000), no. 6, 140–177 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 12 (2001), no. 6, 983–1012. MR 1816514
  • M. Sh. Birman and T. A. Suslina, The periodic Dirac operator is absolutely continuous, Integral Equations Operator Theory 34 (1999), no. 4, 377–395. MR 1702229, DOI 10.1007/BF01272881
  • M. Sh. Birman and T. A. Suslina, Two-dimensional periodic Pauli operator. The effective masses at the lower edge of the spectrum, Mathematical results in quantum mechanics (Prague, 1998) Oper. Theory Adv. Appl., vol. 108, BirkhĂ€user, Basel, 1999, pp. 13–31. MR 1708785
  • M. Sh. Birman and T. A. Suslina, On the absolute continuity of the periodic Schrödinger and Dirac operators with magnetic potential, Differential equations and mathematical physics (Birmingham, AL, 1999) AMS/IP Stud. Adv. Math., vol. 16, Amer. Math. Soc., Providence, RI, 2000, pp. 41–49. MR 1764740, DOI 10.1090/amsip/016/05
  • Michael Sh. Birman and Tatâ€Čyana A. Suslina, Absolute continuity of the spectrum of the periodic operator of elasticity theory for constant shear modulus, Nonlinear problems in mathematical physics and related topics, II, Int. Math. Ser. (N. Y.), vol. 2, Kluwer/Plenum, New York, 2002, pp. 69–74. MR 1971990, DOI 10.1007/978-1-4615-0701-7_{4}
  • Göran Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math. 78 (1946), 1–96 (German). MR 15185, DOI 10.1007/BF02421600
  • D. I. Borisov and K. V. Pankrashkin, On the extrema of band functions in periodic waveguides, Funktsional. Anal. i Prilozhen. 47 (2013), no. 3, 87–90 (Russian); English transl., Funct. Anal. Appl. 47 (2013), no. 3, 238–240. MR 3154842, DOI 10.1007/s10688-013-0030-z
  • Denis Borisov and Konstantin Pankrashkin, Quantum waveguides with small periodic perturbations: gaps and edges of Brillouin zones, J. Phys. A 46 (2013), no. 23, 235203, 18. MR 3064364, DOI 10.1088/1751-8113/46/23/235203
  • L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Theory of brillouin zones and symmetry properties of wave functions in crystals, Phys. Rev. 50 (1936), 58–67.
  • Ola Bratteli, Palle E. T. JĂžrgensen, and Derek W. Robinson, Spectral asymptotics of periodic elliptic operators, Math. Z. 232 (1999), no. 4, 621–650. MR 1727545, DOI 10.1007/PL00004773
  • L. Brillouin, Wave propagation in periodic structures. Electric filters and crystal lattices, Dover Publications, Inc., New York, N.Y., 1953. 2d ed. MR 0052978
  • LĂ©on Brillouin and Maurice Parodi, Propagation des ondes dans les milieux pĂ©riodiques, Masson et Cie, Paris; Dunod, Paris, 1956 (French). MR 0079952
  • Robert Brooks, The fundamental group and the spectrum of the Laplacian, Comment. Math. Helv. 56 (1981), no. 4, 581–598. MR 656213, DOI 10.1007/BF02566228
  • B. Malcolm Brown, Michael S. P. Eastham, and Karl Michael Schmidt, Periodic differential operators, Operator Theory: Advances and Applications, vol. 230, BirkhĂ€user/Springer Basel AG, Basel, 2013. MR 2978285, DOI 10.1007/978-3-0348-0528-5
  • B. M. Brown, V. Hoang, M. Plum, and I. G. Wood, Floquet-Bloch theory for elliptic problems with discontinuous coefficients, Spectral theory and analysis, Oper. Theory Adv. Appl., vol. 214, BirkhĂ€user/Springer Basel AG, Basel, 2011, pp. 1–20. MR 2808460, DOI 10.1007/978-3-7643-9994-8_{1}
  • Jochen BrĂŒning, Pavel Exner, and Vladimir A. Geyler, Large gaps in point-coupled periodic systems of manifolds, J. Phys. A 36 (2003), no. 17, 4875–4890. MR 1984016, DOI 10.1088/0305-4470/36/17/314
  • Jochen BrĂŒning and Toshikazu Sunada, On the spectrum of gauge-periodic elliptic operators, AstĂ©risque 210 (1992), 6, 65–74. MĂ©thodes semi-classiques, Vol. 2 (Nantes, 1991). MR 1221352
  • Jochen BrĂŒning and Toshikazu Sunada, On the spectrum of periodic elliptic operators, Nagoya Math. J. 126 (1992), 159–171. MR 1171598, DOI 10.1017/S0027763000004049
  • K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, Periodic nanostructures for photonics, Physics Reports 444 (2007), no. 3–6, 101–202.
  • K. Busch, S. Mingaleev, A. Garcia-Martin, M. Schillinger, and D. Hermann, The Wannier function approach to photonic crystal circuits, Journal of Physics: Condensed Matter 15 (2003), no. 30, R1233.
  • Joseph Callaway, Energy band theory, Pure and Applied Physics, Vol. 16, Academic Press, New York-London, 1964. MR 0162578
  • Shui-Nee Chow, Kening Lu, and John Mallet-Paret, Floquet theory for parabolic differential equations, J. Differential Equations 109 (1994), no. 1, 147–200. MR 1272403, DOI 10.1006/jdeq.1994.1047
  • Shui-Nee Chow, Kening Lu, and John Mallet-Paret, Floquet bundles for scalar parabolic equations, Arch. Rational Mech. Anal. 129 (1995), no. 3, 245–304. MR 1328478, DOI 10.1007/BF00383675
  • Shih-I Chu, Nonperturbative approaches to atomic and molecular multiphoton (half-collision) processes in intense laser fields, Multiparticle quantum scattering with applications to nuclear, atomic and molecular physics (Minneapolis, MN, 1995) IMA Vol. Math. Appl., vol. 89, Springer, New York, 1997, pp. 343–387. MR 1487928, DOI 10.1007/978-1-4612-1870-8_{1}3
  • Fan R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics, vol. 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997. MR 1421568
  • Earl A. Coddington and Robert Carlson, Linear ordinary differential equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. MR 1450591, DOI 10.1137/1.9781611971439
  • Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338
  • Tobias H. Colding and William P. Minicozzi II, Harmonic functions on manifolds, Ann. of Math. (2) 146 (1997), no. 3, 725–747. MR 1491451, DOI 10.2307/2952459
  • Yves Colin de VerdiĂšre, Sur les singularitĂ©s de van Hove gĂ©nĂ©riques, MĂ©m. Soc. Math. France (N.S.) 46 (1991), 99–110 (French). Analyse globale et physique mathĂ©matique (Lyon, 1989). MR 1125838
  • Y. Colin de VerdiĂšre and Th. Kappeler, On double eigenvalues of Hill’s operator, J. Funct. Anal. 86 (1989), no. 1, 127–135. MR 1013936, DOI 10.1016/0022-1236(89)90067-0
  • J. M. Combes and L. Thomas, Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators, Comm. Math. Phys. 34 (1973), 251–270. MR 391792
  • Carlos Conca, Rafael Orive, and Muthusamy Vanninathan, Bloch approximation in homogenization and applications, SIAM J. Math. Anal. 33 (2002), no. 5, 1166–1198. MR 1897707, DOI 10.1137/S0036141001382200
  • C. Conca, R. Orive, and M. Vanninathan, Bloch approximation in homogenization on bounded domains, Asymptot. Anal. 41 (2005), no. 1, 71–91. MR 2124894
  • C. Conca, J. Planchard, and M. Vanninathan, Fluids and periodic structures, RAM: Research in Applied Mathematics, vol. 38, John Wiley & Sons, Ltd., Chichester; Masson, Paris, 1995. MR 1652238
  • Carlos Conca and Muthusamy Vanninathan, Homogenization of periodic structures via Bloch decomposition, SIAM J. Appl. Math. 57 (1997), no. 6, 1639–1659. MR 1484944, DOI 10.1137/S0036139995294743
  • Carlos Conca and M. Vanninathan, Fourier approach to homogenization problems, ESAIM Control Optim. Calc. Var. 8 (2002), 489–511. A tribute to J. L. Lions. MR 1932961, DOI 10.1051/cocv:2002048
  • Lawrence J. Corwin and Frederick P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I, Cambridge Studies in Advanced Mathematics, vol. 18, Cambridge University Press, Cambridge, 1990. Basic theory and examples. MR 1070979
  • A. P. Cracknell, The Fermi surfaces of metals, Taylor & Francis, London, 1971.
  • A. P. Cracknell and K. S. Wong, The Fermi surface, Claredon Press, Oxford, 1973.
  • R. V. Craster, J. Kaplunov, E. Nolde, and S. Guenneau, Bloch dispersion and high frequency homogenization for separable doubly-periodic structures, Wave Motion 49 (2012), no. 2, 333–346. MR 2890754, DOI 10.1016/j.wavemoti.2011.11.005
  • H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643
  • B. E. J. Dahlberg and E. Trubowitz, A remark on two-dimensional periodic potentials, Comment. Math. Helv. 57 (1982), no. 1, 130–134. MR 672849, DOI 10.1007/BF02565850
  • Ju. L. Dalecâ€ČkiÄ­ and M. G. KreÄ­n, Stability of solutions of differential equations in Banach space, Translations of Mathematical Monographs, Vol. 43, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by S. Smith. MR 0352639
  • L. I. Danilov, On the spectrum of the Dirac operator in $\textbf {R}^n$ with periodic potential, Teoret. Mat. Fiz. 85 (1990), no. 1, 41–53 (Russian, with English summary); English transl., Theoret. and Math. Phys. 85 (1990), no. 1, 1039–1048 (1991). MR 1083951, DOI 10.1007/BF01017245
  • L. I. Danilov, Resolvent estimates and the spectrum of the Dirac operator with a periodic potential, Teoret. Mat. Fiz. 103 (1995), no. 1, 3–22 (Russian, with English and Russian summaries); English transl., Theoret. and Math. Phys. 103 (1995), no. 1, 349–365. MR 1470934, DOI 10.1007/BF02069779
  • L. I. Danilov, On the spectrum of the two-dimensional periodic Dirac operator, Teoret. Mat. Fiz. 118 (1999), no. 1, 3–14 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 118 (1999), no. 1, 1–11. MR 1702856, DOI 10.1007/BF02557191
  • L. I. Danilov, Absolute continuity of the spectrum of a periodic Dirac operator, Differ. Uravn. 36 (2000), no. 2, 233–240, 287 (Russian, with Russian summary); English transl., Differ. Equ. 36 (2000), no. 2, 262–271. MR 1773794, DOI 10.1007/BF02754212
  • L. I. Danilov, On the spectrum of the periodic Dirac operator, Teoret. Mat. Fiz. 124 (2000), no. 1, 3–17 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 124 (2000), no. 1, 859–871. MR 1821309, DOI 10.1007/BF02551063
  • L. I. Danilov, On the absolute continuity of the spectrum of a periodic Schrödinger operator, Mat. Zametki 73 (2003), no. 1, 49–62 (Russian, with Russian summary); English transl., Math. Notes 73 (2003), no. 1-2, 46–57. MR 1993539, DOI 10.1023/A:1022169916738
  • L. I. Danilov, On the spectrum of the two-dimensional periodic Schrödinger operator, Teoret. Mat. Fiz. 134 (2003), no. 3, 447–459 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 134 (2003), no. 3, 392–403. MR 2001818, DOI 10.1023/A:1022605623235
  • L. I. Danilov, On the nonexistence of eigenvalues in the spectrum of a generalized two-dimensional periodic Dirac operator, Algebra i Analiz 17 (2005), no. 3, 47–80 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 3, 409–433. MR 2167843, DOI 10.1090/S1061-0022-06-00911-3
  • L. I. Danilov, On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator, J. Phys. A 42 (2009), no. 27, 275204, 20. MR 2512122, DOI 10.1088/1751-8113/42/27/275204
  • L. I. Danilov, On absolute continuity of the spectrum of three- and four-dimensional periodic Schrödinger operators, J. Phys. A 43 (2010), no. 21, 215201, 13. MR 2644606, DOI 10.1088/1751-8113/43/21/215201
  • Leonid I. Danilov, On absolute continuity of the spectrum of a 3D periodic magnetic Dirac operator, Integral Equations Operator Theory 71 (2011), no. 4, 535–556. MR 2854864, DOI 10.1007/s00020-011-1906-z
  • E. B. Davies and B. Simon, Scattering theory for systems with different spatial asymptotics on the left and right, Comm. Math. Phys. 63 (1978), no. 3, 277–301. MR 513906
  • V. I. Derguzov, A mathematical investigation of periodic cylindrical wave guides. I, II, Vestnik Leningrad. Univ. 13 Mat. Meh. Astronom. Vyp. 3 (1972), 32–40, 149; ibid. No. 19 Mat. Meh. Astronom. Vyp. 3 (1972), 14–20, 145 (Russian, with English summary). MR 0340856
  • V. I. Derguzov, Linear equations with periodic coefficients and their applications to wave guide systems, Ph.D. thesis, Leningrad, 1975, (In Russian).
  • V. I. Derguzov, On the discrete spectrum of a periodic boundary value problem connected with the study of periodic waveguides, Sibirsk. Mat. Zh. 21 (1980), no. 5, 27–38, 189 (Russian). MR 592214
  • E. I. Dinaburg, Ya. G. Sinai, and A. B. Soshnikov, Splitting of the low Landau levels into a set of positive Lebesgue measure under small periodic perturbations, Comm. Math. Phys. 189 (1997), no. 2, 559–575. MR 1480033, DOI 10.1007/s002200050217
  • Jacques Dixmier, Les algĂšbres d’opĂ©rateurs dans l’espace hilbertien (AlgĂšbres de von Neumann), Cahiers Scientifiques, Fasc. XXV, Gauthier-Villars, Paris, 1957 (French). MR 0094722
  • Plamen Djakov and Boris Mityagin, Smoothness of Schrödinger operator potential in the case of Gevrey type asymptotics of the gaps, J. Funct. Anal. 195 (2002), no. 1, 89–128. MR 1934354, DOI 10.1006/jfan.2002.3975
  • P. Dzhakov and B. S. Mityagin, Instability zones of one-dimensional periodic Schrödinger and Dirac operators, Uspekhi Mat. Nauk 61 (2006), no. 4(370), 77–182 (Russian, with Russian summary); English transl., Russian Math. Surveys 61 (2006), no. 4, 663–766. MR 2279044, DOI 10.1070/RM2006v061n04ABEH004343
  • Plamen Djakov and Boris Mityagin, Spectral gaps of Schrödinger operators with periodic singular potentials, Dyn. Partial Differ. Equ. 6 (2009), no. 2, 95–165. MR 2542499, DOI 10.4310/DPDE.2009.v6.n2.a1
  • Ngoc Do, On the quantum graph spectra of graphyne nanotubes, Anal. Math. Phys. 5 (2015), no. 1, 39–65. MR 3305430, DOI 10.1007/s13324-014-0069-x
  • Ngoc T. Do and P. Kuchment, Quantum graph spectra of a graphyne structure, Nanoscale Systems: Mathematical Modeling, Theory and Applications 2 (2013), no. 1, 107–123.
  • Ngoc T. Do, P. Kuchment, and B. Ong. On resonant spectral gap opening in quantum graph networks arXiv:1601.04774 (2016), to appear.
  • Ngoc T. Do, P. Kuchment, and F. Sottile, On the generic structure of spectral edges for periodic difference operators, In preparation (2015).
  • W. Dörfler, A. Lechleiter, M. Plum, G. Schneider, and C. Wieners, Photonic crystals: Mathematical analysis and numerical approximation, Oberwolfach SEminars, vol. 42.
  • J. P. Dowling, Photonic and acoustic band-gap bibliography, \verb+http://phys.lsu.edu/+ \verb+ jdowling/pbgbib.html+.
  • B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, Integrable systems. I [ MR0842910 (87k:58112)], Dynamical systems, IV, Encyclopaedia Math. Sci., vol. 4, Springer, Berlin, 2001, pp. 177–332. MR 1866633, DOI 10.1007/978-3-662-06791-8_{3}
  • B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, Topological and algebraic geometry methods in contemporary mathematical physics, Classic Reviews in Mathematics and Mathematical Physics, vol. 2, Cambridge Scientific Publishers, Cambridge, 2004. MR 2187099
  • Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Spectral theory. Selfadjoint operators in Hilbert space; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1009163
  • V. V. Dyakin and S. I. PetrukhnovskiÄ­, Some geometric properties of Fermi surfaces, Dokl. Akad. Nauk SSSR 264 (1982), no. 5, 1117–1119 (Russian). MR 672029
  • V. V. Dyakin and S. I. PetrukhnovskiÄ­, On the discreteness of the spectrum of some operator pencils connected with the periodic Schrödinger equation, Teoret. Mat. Fiz. 74 (1988), no. 1, 94–102 (Russian, with English summary); English transl., Theoret. and Math. Phys. 74 (1988), no. 1, 66–72. MR 940464, DOI 10.1007/BF01018212
  • M. S. P. Eastham, The spectral theory of periodic differential equations, Texts in Mathematics (Edinburgh), Scottish Academic Press, Edinburgh; Hafner Press, New York, 1973. MR 3075381
  • Michael S. P. Eastham and Hubert Kalf, Schrödinger-type operators with continuous spectra, Research Notes in Mathematics, vol. 65, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 667015
  • D. V. Efremov and M. A. Shubin, The spectral asymptotics of elliptic operators of Schrödinger type on a hyperbolic space, J. Soviet Math. 60 (1992), no. 5, 1637–1662. MR 1181097, DOI 10.1007/BF01097529
  • Leon Ehrenpreis, Fourier analysis in several complex variables, Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1970. MR 0285849
  • Daniel M. Elton, The Bethe-Sommerfield conjecture for the 3-dimensional periodic Landau operator, Rev. Math. Phys. 16 (2004), no. 10, 1259–1290. MR 2114599, DOI 10.1142/S0129055X04002242
  • A. Enyanshin and A. Ivanovskii, Graphene allotropes: stability, structural and electronic properties from df-tb calculations, Phys. Status Solidi (B) 248 (2011), 1879–1883.
  • G. Eskin, Inverse spectral problem for the Schrödinger equation with periodic vector potential, Comm. Math. Phys. 125 (1989), no. 2, 263–300. MR 1016872
  • G. Eskin, Inverse spectral problem for the Schrödinger operator with periodic magnetic and electric potentials, SĂ©minaire sur les Équations aux DĂ©rivĂ©es Partielles, 1988–1989, École Polytech., Palaiseau, 1989, pp. Exp. No. XIII, 6. MR 1032289
  • Gregory Eskin, James Ralston, and Eugene Trubowitz, Isospectral periodic potentials on $\textbf {R}^n$, Inverse problems (New York, 1983) SIAM-AMS Proc., vol. 14, Amer. Math. Soc., Providence, RI, 1984, pp. 91–96. MR 773705
  • G. Eskin, J. Ralston, and E. Trubowitz, The multidimensional inverse spectral problem with a periodic potential, Microlocal analysis (Boulder, Colo., 1983) Contemp. Math., vol. 27, Amer. Math. Soc., Providence, RI, 1984, pp. 45–56. MR 741038, DOI 10.1090/conm/027/741038
  • Gregory Eskin, James Ralston, and Eugene Trubowitz, On isospectral periodic potentials in $\textbf {R}^{n}$. II, Comm. Pure Appl. Math. 37 (1984), no. 6, 715–753. MR 762871, DOI 10.1002/cpa.3160370602
  • L. Euler, De integratione aequationum differentialium altiorum gradum, Miscellanea berol. 7 (1743), 193–242.
  • Pavel Exner and Rupert L. Frank, Absolute continuity of the spectrum for periodically modulated leaky wires in $\Bbb R^3$, Ann. Henri PoincarĂ© 8 (2007), no. 2, 241–263. MR 2314447, DOI 10.1007/s00023-006-0307-3
  • Pavel Exner, Peter Kuchment, and Brian Winn, On the location of spectral edges in $\Bbb Z$-periodic media, J. Phys. A 43 (2010), no. 47, 474022, 8. MR 2738117, DOI 10.1088/1751-8113/43/47/474022
  • Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
  • Charles L. Fefferman, James P. Lee-Thorp, and Michael I. Weinstein, Topologically protected states in one-dimensional continuous systems and Dirac points, Proc. Natl. Acad. Sci. USA 111 (2014), no. 24, 8759–8763. MR 3263410, DOI 10.1073/pnas.1407391111
  • C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein, Bifurcations of edge states – topologically protected and non-protected – in continuous 2d honeycomb structures, \verb+arXiv:1509.+ \verb+08957+ (2015).
  • C. L. Fefferman, J. P. Lee-Thorp, and M. I. Weinstein, Edge states in honeycomb structures, arXiv:1506.06111 (2015).
  • Charles L. Fefferman and Michael I. Weinstein, Honeycomb lattice potentials and Dirac points, J. Amer. Math. Soc. 25 (2012), no. 4, 1169–1220. MR 2947949, DOI 10.1090/S0894-0347-2012-00745-0
  • Charles L. Fefferman and Michael I. Weinstein, Wave packets in honeycomb structures and two-dimensional Dirac equations, Comm. Math. Phys. 326 (2014), no. 1, 251–286. MR 3162492, DOI 10.1007/s00220-013-1847-2
  • Joel Feldman, Horst Knörrer, and Eugene Trubowitz, The perturbatively stable spectrum of a periodic Schrödinger operator, Invent. Math. 100 (1990), no. 2, 259–300. MR 1047135, DOI 10.1007/BF01231187
  • Joel Feldman, Horst Knörrer, and Eugene Trubowitz, Perturbatively unstable eigenvalues of a periodic Schrödinger operator, Comment. Math. Helv. 66 (1991), no. 4, 557–579. MR 1129797, DOI 10.1007/BF02566665
  • Joel Feldman, Horst Knörrer, and Eugene Trubowitz, There is no two-dimensional analogue of Lamé’s equation, Math. Ann. 294 (1992), no. 2, 295–324. MR 1183408, DOI 10.1007/BF01934328
  • The Fermi Surface Database, http://www.phys.ufl.edu/fermisurface/.
  • Alex Figotin and Peter Kuchment, Band-gap structure of spectra of periodic dielectric and acoustic media. I. Scalar model, SIAM J. Appl. Math. 56 (1996), no. 1, 68–88. MR 1372891, DOI 10.1137/S0036139994263859
  • A. Figotin and P. Kuchment, Band-gap structure of spectra of periodic dielectric and acoustic media. II. Two-dimensional photonic crystals, SIAM J. Appl. Math. 56 (1996), no. 6, 1561–1620. MR 1417473, DOI 10.1137/S0036139995285236
  • A. Figotin and P. Kuchment, Spectral properties of classical waves in high-contrast periodic media, SIAM J. Appl. Math. 58 (1998), no. 2, 683–702. MR 1617610, DOI 10.1137/S0036139996297249
  • N. Filonov, Second-order elliptic equation of divergence form having a compactly supported solution, J. Math. Sci. (New York) 106 (2001), no. 3, 3078–3086. Function theory and phase transitions. MR 1906035, DOI 10.1023/A:1011379807662
  • N. Filonov, Gaps in the spectrum of the Maxwell operator with periodic coefficients, Comm. Math. Phys. 240 (2003), no. 1-2, 161–170. MR 2004984, DOI 10.1007/s00220-003-0904-7
  • N. Filonov and I. Kachkovskii, On the structure of band edges of 2d periodic elliptic operators, preprint arXiv:1510.04367 (2015).
  • N. Filonov and F. Klopp, Absolute continuity of the spectrum of a Schrödinger operator with a potential which is periodic in some directions and decays in others, Doc. Math. 9 (2004), 107–121. MR 2054982
  • N. Filonov and F. Klopp, Erratum to: “Absolute continuity of the spectrum of a Schrödinger operator with a potential which is periodic in some directions and decays in others” [Doc. Math. 9 (2004), 107–121; MR2054982], Doc. Math. 9 (2004), 135–136. MR 2054984
  • N. Filonov and F. Klopp, Absolutely continuous spectrum for the isotropic Maxwell operator and coefficients that are periodic in some directions and decay in others, Comm. Math. Phys. 258 (2005), no. 1, 75–85. MR 2166840, DOI 10.1007/s00220-005-1303-z
  • N. Filonov and A. V. Sobolev, Absence of the singular continuous component in the spectrum of analytic direct integrals, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 318 (2004), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 36 [35], 298–307, 313 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 136 (2006), no. 2, 3826–3831. MR 2120804, DOI 10.1007/s10958-006-0203-x
  • N. E. Firsova, The Riemann surface of a quasimomentum, and scattering theory for a perturbed Hill operator, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 51 (1975), 183–196, 220 (Russian). Mathematical questions in the theory of wave propagation, 7. MR 0417858
  • N. E. Firsova, On the global quasimomentum in solid state physics, Mathematical methods in physics (Londrina, 1999) World Sci. Publ., River Edge, NJ, 2000, pp. 98–141. MR 1775625
  • G. Floquet, Sur les Ă©quations diffĂ©rentielles linĂ©aires Ă  coefficients pĂ©riodiques, Ann. Ecole Norm. 12 (1883), no. 2, 47–89.
  • Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028
  • Rupert L. Frank, On the scattering theory of the Laplacian with a periodic boundary condition. I. Existence of wave operators, Doc. Math. 8 (2003), 547–565. MR 2029173
  • Rupert L. Frank and Roman G. Shterenberg, On the scattering theory of the Laplacian with a periodic boundary condition. II. Additional channels of scattering, Doc. Math. 9 (2004), 57–77. MR 2054980
  • Leonid Friedlander, On the spectrum of the periodic problem for the Schrödinger operator, Comm. Partial Differential Equations 15 (1990), no. 11, 1631–1647. MR 1079606, DOI 10.1080/03605309908820740
  • Leonid Friedlander, Erratum to: “On the spectrum of the periodic problem for the Schrödinger operator”, Comm. Partial Differential Equations 16 (1991), no. 2-3, 527–529. MR 1104109
  • Leonid Friedlander, On the density of states of periodic media in the large coupling limit, Comm. Partial Differential Equations 27 (2002), no. 1-2, 355–380. MR 1886963, DOI 10.1081/PDE-120002790
  • L. Friedlander, On the spectrum of a class of second order periodic elliptic differential operators, Comm. Math. Phys. 229 (2002), no. 1, 49–55. MR 1917673, DOI 10.1007/s00220-002-0675-6
  • Leonid Friedlander, Absolute continuity of the spectra of periodic waveguides, Waves in periodic and random media (South Hadley, MA, 2002) Contemp. Math., vol. 339, Amer. Math. Soc., Providence, RI, 2003, pp. 37–42. MR 2042530, DOI 10.1090/conm/339/06098
  • R. Froese, I. Herbst, M. Hoffmann-Ostenhof, and T. Hoffmann-Ostenhof, $L^{2}$-lower bounds to solutions of one-body Schrödinger equations, Proc. Roy. Soc. Edinburgh Sect. A 95 (1983), no. 1-2, 25–38. MR 723095, DOI 10.1017/S0308210500015778
  • John Garnett and Eugene Trubowitz, Gaps and bands of one-dimensional periodic Schrödinger operators, Comment. Math. Helv. 59 (1984), no. 2, 258–312. MR 749109, DOI 10.1007/BF02566350
  • John Garnett and Eugene Trubowitz, Gaps and bands of one-dimensional periodic Schrödinger operators. II, Comment. Math. Helv. 62 (1987), no. 1, 18–37. MR 882963, DOI 10.1007/BF02564436
  • M. Gavrila, Atomic structure and decay in high-frequency fields, in atoms in intense laser fields, Atoms in Intense Laser Fields, Academic Press, 1992, pp. 435–510.
  • I. M. Gelâ€Čfand, Expansion into eigenfunctions of an equation with periodic coefficients, Dokl. Akad. Nauk SSSR (N.S.) 73 (1950), 1117–1120.
  • Christian GĂ©rard, Resonance theory for periodic Schrödinger operators, Bull. Soc. Math. France 118 (1990), no. 1, 27–54 (English, with French summary). MR 1077086
  • Christian GĂ©rard, A proof of the abstract limiting absorption principle by energy estimates, J. Funct. Anal. 254 (2008), no. 11, 2707–2724. MR 2414218, DOI 10.1016/j.jfa.2008.02.015
  • Christian GĂ©rard and Francis Nier, The Mourre theory for analytically fibered operators, J. Funct. Anal. 152 (1998), no. 1, 202–219. MR 1600082, DOI 10.1006/jfan.1997.3154
  • Christian GĂ©rard and Francis Nier, Scattering theory for the perturbations of periodic Schrödinger operators, J. Math. Kyoto Univ. 38 (1998), no. 4, 595–634. MR 1669979, DOI 10.1215/kjm/1250518000
  • Afshin Ghoreishi and Roger Logan, Positive solutions to a system of periodic parabolic partial differential equations, Differential Integral Equations 9 (1996), no. 3, 607–618. MR 1371711
  • D. Gieseker, H. Knörrer, and E. Trubowitz, An overview of the geometry of algebraic Fermi curves, Algebraic geometry: Sundance 1988, Contemp. Math., vol. 116, Amer. Math. Soc., Providence, RI, 1991, pp. 19–46. MR 1108630, DOI 10.1090/conm/116/1108630
  • D. Gieseker, H. Knörrer, and E. Trubowitz, The geometry of algebraic Fermi curves, Perspectives in Mathematics, vol. 14, Academic Press, Inc., Boston, MA, 1993. MR 1184395
  • I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Translations, Jerusalem, 1965; Daniel Davey & Co., Inc., New York, 1966. Translated from the Russian by the IPST staff. MR 0190800
  • I. C. Gohberg and M. G. KreÄ­n, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142
  • Carolyn S. Gordon, Pierre Guerini, Thomas Kappeler, and David L. Webb, Inverse spectral results on even dimensional tori, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 7, 2445–2501 (English, with English and French summaries). MR 2498357
  • Carolyn S. Gordon and Thomas Kappeler, On isospectral potentials on tori, Duke Math. J. 63 (1991), no. 1, 217–233. MR 1106944, DOI 10.1215/S0012-7094-91-06310-6
  • Carolyn S. Gordon and Thomas Kappeler, On isospectral potentials on flat tori. II, Comm. Partial Differential Equations 20 (1995), no. 3-4, 709–728. MR 1318086, DOI 10.1080/03605309508821109
  • Hans Grauert, Analytische Faserungen ĂŒber holomorph-vollstĂ€ndigen RĂ€umen, Math. Ann. 135 (1958), 263–273 (German). MR 98199, DOI 10.1007/BF01351803
  • Hans Grauert and Reinhold Remmert, Theory of Stein spaces, Classics in Mathematics, Springer-Verlag, Berlin, 2004. Translated from the German by Alan Huckleberry; Reprint of the 1979 translation. MR 2029201, DOI 10.1007/978-3-642-18921-0
  • Edward Lee Green, Spectral theory of Laplace-Beltrami operators with periodic metrics, ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)–Georgia Institute of Technology. MR 2686892
  • Edward L. Green, Spectral theory of Laplace-Beltrami operators with periodic metrics, J. Differential Equations 133 (1997), no. 1, 15–29. MR 1426755, DOI 10.1006/jdeq.1996.3204
  • Michael J. Gruber, Noncommutative Bloch theory, J. Math. Phys. 42 (2001), no. 6, 2438–2465. MR 1821870, DOI 10.1063/1.1369122
  • Michael J. Gruber, Measures of Fermi surfaces and absence of singular continuous spectrum for magnetic Schrödinger operators, Math. Nachr. 233/234 (2002), 111–127. MR 1879867, DOI 10.1002/1522-2616(200201)233:1<111::AID-MANA111>3.3.CO;2-L
  • Michael J. Gruber, Positive measure spectrum for Schrödinger operators with periodic magnetic fields, J. Math. Phys. 44 (2003), no. 4, 1584–1595. MR 1963090, DOI 10.1063/1.1556551
  • V. V. Grushin, Application of the multiparameter theory of perturbations of Fredholm operators to Bloch functions, Mat. Zametki 86 (2009), no. 6, 819–828 (Russian, with Russian summary); English transl., Math. Notes 86 (2009), no. 5-6, 767–774. MR 2643450, DOI 10.1134/S0001434609110194
  • Victor Guillemin, Spectral theory on $S^{2}$: some open questions, Adv. in Math. 42 (1981), no. 3, 283–298. MR 642394, DOI 10.1016/0001-8708(81)90043-8
  • V. Guillemin, Inverse spectral results on two-dimensional tori, J. Amer. Math. Soc. 3 (1990), no. 2, 375–387. MR 1035414, DOI 10.1090/S0894-0347-1990-1035414-4
  • Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, AMS Chelsea Publishing, Providence, RI, 2009. Reprint of the 1965 original. MR 2568219, DOI 10.1090/chel/368
  • J. M. Harrison, P. Kuchment, A. Sobolev, and B. Winn, On occurrence of spectral edges for periodic operators inside the Brillouin zone, J. Phys. A 40 (2007), no. 27, 7597–7618. MR 2369966, DOI 10.1088/1751-8113/40/27/011
  • W. A. Harrison and M. B. Webb (eds.), The Fermi surface, John Wiley & Sons, New York, London, 1960.
  • J. E. Heebner, R. W. Boyd, and Q. Park, Scissor solitons and other propagation effects in microresonator modified waveguides, JOSA B 19 (2002), 722–731.
  • B. Helffer and T. Hoffmann-Ostenhof, Spectral theory for periodic Schrödinger operators with reflection symmetries, Comm. Math. Phys. 242 (2003), no. 3, 501–529. MR 2020278, DOI 10.1007/s00220-003-0953-y
  • Bernard Helffer and Abderemane Mohamed, Asymptotic of the density of states for the Schrödinger operator with periodic electric potential, Duke Math. J. 92 (1998), no. 1, 1–60. MR 1609321, DOI 10.1215/S0012-7094-98-09201-8
  • R. Hempel and I. Herbst, Bands and gaps for periodic magnetic Hamiltonians, Partial differential operators and mathematical physics (Holzhau, 1994) Oper. Theory Adv. Appl., vol. 78, BirkhĂ€user, Basel, 1995, pp. 175–184. MR 1365330
  • Rainer Hempel and Karsten Lienau, Spectral properties of periodic media in the large coupling limit, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1445–1470. MR 1765136, DOI 10.1080/03605300008821555
  • Rainer Hempel and Olaf Post, Spectral gaps for periodic elliptic operators with high contrast: an overview, Progress in analysis, Vol. I, II (Berlin, 2001) World Sci. Publ., River Edge, NJ, 2003, pp. 577–587. MR 2032728
  • P. Hess, Positive solutions of periodic-parabolic problems and stability, Nonlinear parabolic equations: qualitative properties of solutions (Rome, 1985) Pitman Res. Notes Math. Ser., vol. 149, Longman Sci. Tech., Harlow, 1987, pp. 129–136. MR 901101
  • Yusuke Higuchi and Tomoyuki Shirai, Some spectral and geometric properties for infinite graphs, Discrete geometric analysis, Contemp. Math., vol. 347, Amer. Math. Soc., Providence, RI, 2004, pp. 29–56. MR 2077029, DOI 10.1090/conm/347/06265
  • Vu Hoang and Maria Radosz, Absence of bound states for waveguides in two-dimensional periodic structures, J. Math. Phys. 55 (2014), no. 3, 033506, 20. MR 3221271, DOI 10.1063/1.4868480
  • James S. Howland, Scattering theory for Hamiltonians periodic in time, Indiana Univ. Math. J. 28 (1979), no. 3, 471–494. MR 529679, DOI 10.1512/iumj.1979.28.28033
  • James S. Howland, Floquet operators with singular spectrum. I, II, Ann. Inst. H. PoincarĂ© Phys. ThĂ©or. 50 (1989), no. 3, 309–323, 325–334 (English, with French summary). MR 1017967
  • James S. Howland, Quantum stability, Schrödinger operators (Aarhus, 1991) Lecture Notes in Phys., vol. 403, Springer, Berlin, 1992, pp. 100–122. MR 1181243, DOI 10.1007/3-540-55490-4_{7}
  • James S. Howland, Floquet operators with singular spectrum. III, Ann. Inst. H. PoincarĂ© Phys. ThĂ©or. 69 (1998), no. 2, 265–273 (English, with English and French summaries). MR 1638899
  • V. V. Jikov, S. M. Kozlov, and O. A. OleÄ­nik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosifâ€Čyan]. MR 1329546, DOI 10.1007/978-3-642-84659-5
  • J. D. Joannopoulos, S. Johnson, R. D. Meade, and J. N. Winn, Photonic crystals: Molding the flow of light, 2nd ed., Princeton University Press, Princeton, N.J., 2008.
  • I. KachkovskiÄ­ and N. Filonov, Absolute continuity of the spectrum of a periodic Schrödinger operator in a multidimensional cylinder, Algebra i Analiz 21 (2009), no. 1, 133–152 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 21 (2010), no. 1, 95–109. MR 2553054, DOI 10.1090/S1061-0022-09-01087-5
  • I. KachkovskiÄ­ and N. Filonov, Absolute continuity of the spectrum of the periodic Schrödinger operator in a layer and in a smooth cylinder, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 385 (2010), no. Kraevye Zadachi MatematicheskoÄ­ Fiziki i Smezhnye Voprosy Teorii FunktsiÄ­. 41, 69–81, 235 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 178 (2011), no. 3, 274–281. MR 2749370, DOI 10.1007/s10958-011-0547-8
  • Thomas Kappeler, On isospectral periodic potentials on a discrete lattice. I, Duke Math. J. 57 (1988), no. 1, 135–150. MR 952228, DOI 10.1215/S0012-7094-88-05705-5
  • Thomas Kappeler, On isospectral potentials on a discrete lattice. II, Adv. in Appl. Math. 9 (1988), no. 4, 428–438. MR 968676, DOI 10.1016/0196-8858(88)90021-8
  • Thomas Kappeler, Isospectral potentials on a discrete lattice. III, Trans. Amer. Math. Soc. 314 (1989), no. 2, 815–824. MR 961624, DOI 10.1090/S0002-9947-1989-0961624-6
  • T. Kappeler, B. Schaad, and P. Topalov, Asymptotics of spectral quantities of Schrödinger operators, Spectral geometry, Proc. Sympos. Pure Math., vol. 84, Amer. Math. Soc., Providence, RI, 2012, pp. 243–284. MR 2985321, DOI 10.1090/pspum/084/1360
  • Yulia E. Karpeshina, Perturbation theory for the Schrödinger operator with a periodic potential, Lecture Notes in Mathematics, vol. 1663, Springer-Verlag, Berlin, 1997. MR 1472485, DOI 10.1007/BFb0094264
  • Yulia E. Karpeshina, On the density of states for the periodic Schrödinger operator, Ark. Mat. 38 (2000), no. 1, 111–137. MR 1749362, DOI 10.1007/BF02384494
  • Yulia Karpeshina, Spectral properties of the periodic magnetic Schrödinger operator in the high-energy region. Two-dimensional case, Comm. Math. Phys. 251 (2004), no. 3, 473–514. MR 2102328, DOI 10.1007/s00220-004-1129-0
  • Yulia Karpeshina and Young-Ran Lee, Absolutely continuous spectrum of a polyharmonic operator with a limit periodic potential in dimension two, Comm. Partial Differential Equations 33 (2008), no. 7-9, 1711–1728. MR 2450178, DOI 10.1080/03605300802289220
  • Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
  • M. I. Katsnelson, Graphene: carbon in two dimensions, Cambridge Univ. Press, 2012.
  • M. Kha, Green’s function asymptotics of periodic elliptic operators on abelian coverings of compact manifolds, submitted, preprint arXiv:1511.00276.
  • M. Kha, P. Kuchment, and A. Raich, Green’s function asymptotics near the internal edges of spectra of periodic elliptic operators: spectral gap interior, J. Spectral Theory (to appear), arXiv:1508.06703, (2015).
  • Andrii Khrabustovskyi, Periodic elliptic operators with asymptotically preassigned spectrum, Asymptot. Anal. 82 (2013), no. 1-2, 1–37. MR 3088339
  • Andrii Khrabustovskyi, Opening up and control of spectral gaps of the Laplacian in periodic domains, J. Math. Phys. 55 (2014), no. 12, 121502, 23. MR 3390523, DOI 10.1063/1.4902935
  • Andrii Khrabustovskyi and Evgeni Khruslov, Gaps in the spectrum of the Neumann Laplacian generated by a system of periodically distributed traps, Math. Methods Appl. Sci. 38 (2015), no. 1, 11–26. MR 3291299, DOI 10.1002/mma.3046
  • Werner Kirsch and Barry Simon, Comparison theorems for the gap of Schrödinger operators, J. Funct. Anal. 75 (1987), no. 2, 396–410. MR 916759, DOI 10.1016/0022-1236(87)90103-0
  • C. Kittel, Introduction to solid state physics, Wiley, New York, 1976.
  • Abel Klein, Andrew Koines, and Maximilian Seifert, Generalized eigenfunctions for waves in inhomogeneous media, J. Funct. Anal. 190 (2002), no. 1, 255–291. Special issue dedicated to the memory of I. E. Segal. MR 1895534, DOI 10.1006/jfan.2001.3887
  • FrĂ©dĂ©ric Klopp, Absolute continuity of the spectrum of a Landau Hamiltonian perturbed by a generic periodic potential, Math. Ann. 347 (2010), no. 3, 675–687. MR 2640047, DOI 10.1007/s00208-009-0452-3
  • FrĂ©dĂ©ric Klopp and James Ralston, Endpoints of the spectrum of periodic operators are generically simple, Methods Appl. Anal. 7 (2000), no. 3, 459–463 (English, with English and French summaries). Cathleen Morawetz: a great mathematician. MR 1869296, DOI 10.4310/MAA.2000.v7.n3.a2
  • H. Knörrer and E. Trubowitz, A directional compactification of the complex Bloch variety, Comment. Math. Helv. 65 (1990), no. 1, 114–149. MR 1036133, DOI 10.1007/BF02566598
  • Toshiyuki Kobayashi, Kaoru Ono, and Toshikazu Sunada, Periodic Schrödinger operators on a manifold, Forum Math. 1 (1989), no. 1, 69–79. MR 978976, DOI 10.1515/form.1989.1.69
  • W. Kohn, Analytic properties of Bloch waves and Wannier functions, Phys. Rev. (2) 115 (1959), 809–821. MR 108284
  • Yuri A. Kordyukov, Spectral gaps for periodic Schrödinger operators with strong magnetic fields, Comm. Math. Phys. 253 (2005), no. 2, 371–384. MR 2140253, DOI 10.1007/s00220-004-1134-3
  • Yuri A. Kordyukov, Semiclassical asymptotics and spectral gaps for periodic magnetic Schrödinger operators on covering manifolds, $C^\ast$-algebras and elliptic theory, Trends Math., BirkhĂ€user, Basel, 2006, pp. 129–150. MR 2276917, DOI 10.1007/978-3-7643-7687-1_{6}
  • Evgeny Korotyaev and Igor Lobanov, Schrödinger operators on zigzag nanotubes, Ann. Henri PoincarĂ© 8 (2007), no. 6, 1151–1176. MR 2355344, DOI 10.1007/s00023-007-0331-y
  • E. Korotyaev and A. Pushnitski, On the high-energy asymptotics of the integrated density of states, Bull. London Math. Soc. 35 (2003), no. 6, 770–776. MR 2000023, DOI 10.1112/S0024609303002467
  • Steven G. Krantz and Harold R. Parks, A primer of real analytic functions, 2nd ed., BirkhĂ€user Advanced Texts: Basler LehrbĂŒcher. [BirkhĂ€user Advanced Texts: Basel Textbooks], BirkhĂ€user Boston, Inc., Boston, MA, 2002. MR 1916029, DOI 10.1007/978-0-8176-8134-0
  • K. Krupchyk and G. Uhlmann, Absolute continuity of the periodic schrödinger operator in transversal geometry, arXiv:1312.2989.
  • P. A. Kučment, Representations of solutions of invariant differential equations on some symmetric spaces, Dokl. Akad. Nauk SSSR 259 (1981), no. 3, 532–535 (Russian). MR 625758
  • P. A. Kuchment, Floquet theory for partial differential equations, Uspekhi Mat. Nauk 37 (1982), no. 4(226), 3–52, 240 (Russian). MR 667973
  • P. A. Kuchment, Floquet theory for partial differential equations, Uspekhi Mat. Nauk 37 (1982), no. 4(226), 3–52, 240 (Russian). MR 667973
  • P. A. Kuchment, Spectral synthesis in spaces of solutions of differential equations invariant with respect to groups of transformations, Application of topology in modern analysis (Russian), Novoe Global. Anal., Voronezh. Gos. Univ., Voronezh, 1985, pp. 87–105, 176 (Russian). MR 831671
  • P. A. Kuchment, Spherical representation of solutions of invariant differential equations on a Riemannian symmetric space of noncompact type, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 6, 1260–1273, 1343 (Russian). MR 816856
  • P. A. Kuchment, On the Floquet theory of periodic difference equations, Geometrical and algebraical aspects in several complex variables (Cetraro, 1989) Sem. Conf., vol. 8, EditEl, Rende, 1991, pp. 201–209. MR 1222215
  • Peter Kuchment, Floquet theory for partial differential equations, Operator Theory: Advances and Applications, vol. 60, BirkhĂ€user Verlag, Basel, 1993. MR 1232660, DOI 10.1007/978-3-0348-8573-7
  • Peter Kuchment, The mathematics of photonic crystals, Mathematical modeling in optical science, Frontiers Appl. Math., vol. 22, SIAM, Philadelphia, PA, 2001, pp. 207–272. MR 1831334
  • Peter Kuchment, Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs, J. Phys. A 38 (2005), no. 22, 4887–4900. MR 2148631, DOI 10.1088/0305-4470/38/22/013
  • Peter Kuchment, Integral representations of solutions of periodic elliptic equations, Probability and mathematical physics, CRM Proc. Lecture Notes, vol. 42, Amer. Math. Soc., Providence, RI, 2007, pp. 323–339. MR 2352277, DOI 10.1090/crmp/042/18
  • P. Kuchment, On Sunada’s no gap conjecture, unpublished (2007).
  • Peter Kuchment, Tight frames of exponentially decaying Wannier functions, J. Phys. A 42 (2009), no. 2, 025203, 16. MR 2525287, DOI 10.1088/1751-8113/42/2/025203
  • P. Kuchment, Introduction to periodic operators, video at \verb+http://www.newton.ac.uk/event/+ \verb+pepw01/timetable+, 2015.
  • Peter Kuchment and Leonid A. Kunyansky, Spectral properties of high contrast band-gap materials and operators on graphs, Experiment. Math. 8 (1999), no. 1, 1–28. MR 1685034
  • Peter Kuchment and Sergei LevendorskiĂź, On the structure of spectra of periodic elliptic operators, Trans. Amer. Math. Soc. 354 (2002), no. 2, 537–569. MR 1862558, DOI 10.1090/S0002-9947-01-02878-1
  • Peter Kuchment and Yehuda Pinchover, Integral representations and Liouville theorems for solutions of periodic elliptic equations, J. Funct. Anal. 181 (2001), no. 2, 402–446. MR 1821702, DOI 10.1006/jfan.2000.3727
  • Peter Kuchment and Yehuda Pinchover, Liouville theorems and spectral edge behavior on abelian coverings of compact manifolds, Trans. Amer. Math. Soc. 359 (2007), no. 12, 5777–5815. MR 2336306, DOI 10.1090/S0002-9947-07-04196-7
  • Peter Kuchment and Olaf Post, On the spectra of carbon nano-structures, Comm. Math. Phys. 275 (2007), no. 3, 805–826. MR 2336365, DOI 10.1007/s00220-007-0316-1
  • Peter Kuchment and Andrew Raich, Green’s function asymptotics near the internal edges of spectra of periodic elliptic operators. Spectral edge case, Math. Nachr. 285 (2012), no. 14-15, 1880–1894. MR 2988010, DOI 10.1002/mana.201100272
  • Peter Kuchment and Boris Vainberg, On embedded eigenvalues of perturbed periodic Schrödinger operators, Spectral and scattering theory (Newark, DE, 1997) Plenum, New York, 1998, pp. 67–75. MR 1625271
  • Peter Kuchment and Boris Vainberg, On absence of embedded eigenvalues for Schrödinger operators with perturbed periodic potentials, Comm. Partial Differential Equations 25 (2000), no. 9-10, 1809–1826. MR 1778781, DOI 10.1080/03605300008821568
  • Peter Kuchment and Boris Vainberg, On the structure of eigenfunctions corresponding to embedded eigenvalues of locally perturbed periodic graph operators, Comm. Math. Phys. 268 (2006), no. 3, 673–686. MR 2259210, DOI 10.1007/s00220-006-0105-2
  • P. Kuchment and L. Zelenko, On the floquet representations of exponentially increasing solutions of elliptic equations with periodic coefficients, Soviet Math. Dokl. 19 (1978), no. 2, 506–507.
  • I. S. Lapin, One version of the Bethe-Sommerfeld conjecture, J. Math. Sci. (N.Y.) 117 (2003), no. 3, 4157–4166. Nonlinear problems and function theory. MR 2027452, DOI 10.1023/A:1024812419240
  • Peter D. Lax, Periodic solutions of the KdV equation, Comm. Pure Appl. Math. 28 (1975), 141–188. MR 369963, DOI 10.1002/cpa.3160280105
  • M. Lee, Conic dispersion surfaces for point scatterers on a honeycomb lattice, 2014, \verb+arXiv:+ \verb+1402.5179+.
  • S. Z. LevendorskiÄ­, Magnetic Floquet theory and spectral asymptotics for Schrödinger operators, Funktsional. Anal. i Prilozhen. 30 (1996), no. 4, 77–80 (Russian); English transl., Funct. Anal. Appl. 30 (1996), no. 4, 282–285 (1997). MR 1444468, DOI 10.1007/BF02509625
  • S. Z. LevendorskiÄ­, Floquet’s theory for the Schrödinger operator with perturbed periodic potential, and exact spectral asymptotics, Dokl. Akad. Nauk 355 (1997), no. 1, 21–24 (Russian). MR 1482093
  • Peter Li, Curvature and function theory on Riemannian manifolds, Surveys in differential geometry, Surv. Differ. Geom., vol. 7, Int. Press, Somerville, MA, 2000, pp. 375–432. MR 1919432, DOI 10.4310/SDG.2002.v7.n1.a13
  • Peter Li, Geometric analysis, Cambridge Studies in Advanced Mathematics, vol. 134, Cambridge University Press, Cambridge, 2012. MR 2962229, DOI 10.1017/CBO9781139105798
  • V. B. Lidskii, Eigenfunction expansions for equations with periodic coefficients, Appendix VIII to the Russian (1961) edition of Titchmarsh’ book.
  • Vladimir Ya. Lin and Yehuda Pinchover, Manifolds with group actions and elliptic operators, Mem. Amer. Math. Soc. 112 (1994), no. 540, vi+78. MR 1230774, DOI 10.1090/memo/0540
  • Fernando LledĂł and Olaf Post, Existence of spectral gaps, covering manifolds and residually finite groups, Rev. Math. Phys. 20 (2008), no. 2, 199–231. MR 2400010, DOI 10.1142/S0129055X08003286
  • S. Lojasiewicz, Stratification des ensembles analytiques avec les propriĂ©tĂ©s (A) et (B) de Whitney, Fonctions analytiques de plusieurs variables et analyse complexe (Colloq. Internat. C.N.R.S. No. 208, Paris, 1972) “Agora Mathematica”, No. 1, Gauthier-Villars, Paris, 1974, pp. 116–130 (French). MR 0457772
  • StanisƂaw Ɓojasiewicz, Introduction to complex analytic geometry, BirkhĂ€user Verlag, Basel, 1991. Translated from the Polish by Maciej Klimek. MR 1131081, DOI 10.1007/978-3-0348-7617-9
  • A. M. Lyapunov, Sur une serié relative a la theorie des equations differentielles lineaires a coefficients periodiques, Compt. Rend. 123 (1896), no. 26, 1248–1252.
  • A. M. Lyapunov, Sur une equation transcendante et les equations differentielles lineaires du second ordre a coefficients periodiques, Compt. Rend. 128 (1899), no. 18, 1085–1088.
  • Wilhelm Magnus and Stanley Winkler, Hill’s equation, Interscience Tracts in Pure and Applied Mathematics, No. 20, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR 0197830
  • V. A. Marčenko and I. V. Ostrovsâ€ČkiÄ­, A characterization of the spectrum of the Hill operator, Mat. Sb. (N.S.) 97(139) (1975), no. 4(8), 540–606, 633–634 (Russian). MR 0409965
  • V. A. Marchenko and ÄŹ. V. Ostrovsâ€ČkiÄ­, Approximation of periodic potentials by finite zone potentials, Vestnik Kharâ€Čkov. Gos. Univ. 205 (1980), 4–40, 139 (Russian). MR 643352
  • V. A. Marchenko and I. V. Ostrovsky, Corrections to the article: “Approximation of periodic by finite-zone potentials” [Selecta Math. Soviet. 6 (1987), no. 2, 101–136; see MR0910538 (88f:00011)], Selecta Math. Soviet. 7 (1988), no. 1, 99–100. Selected translations. MR 967083
  • N. Marzari, I Souza, I., and D. Vanderbilt, An introduction to maximally-localized wannier functions, Highlight of the Month, Psi-K Newsletter 57 (2003), no. 4, 129–168.
  • N. Marzari and D. Vanderbilt, Maximally localized generalized wannier functions for composite energy bands, Phys. Rev. B 56 (1997, NUMBER = 20, PAGES = 12847–12865,).
  • V. Mathai and M. Shubin, Semiclassical asymptotics and gaps in the spectra of magnetic Schrödinger operators, Proceedings of the Euroconference on Partial Differential Equations and their Applications to Geometry and Physics (Castelvecchio Pascoli, 2000), 2002, pp. 155–173. MR 1919898, DOI 10.1023/A:1016245930716
  • H. P. McKean and E. Trubowitz, Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math. 29 (1976), no. 2, 143–226. MR 427731, DOI 10.1002/cpa.3160290203
  • H. P. McKean and P. van Moerbeke, The spectrum of Hill’s equation, Invent. Math. 30 (1975), no. 3, 217–274. MR 397076, DOI 10.1007/BF01425567
  • V. Z. Meshkov, On the possible rate of decrease at infinity of the solutions of second-order partial differential equations, Mat. Sb. 182 (1991), no. 3, 364–383 (Russian); English transl., Math. USSR-Sb. 72 (1992), no. 2, 343–361. MR 1110071, DOI 10.1070/SM1992v072n02ABEH001414
  • A. I. MiloslavskiÄ­, Floquet solutions, and the reducibility of a certain class of differential equations in a Banach space, Izv. Severo-Kavkaz. Naučn. Centra VysĆĄ. Ć koly Ser. Estestv. Nauk. 4 (1975), 82–87, 118 (Russian). MR 0470395
  • A. I. MiloslavskiÄ­, The decay of the solutions of an abstract parabolic equation with a periodic operator coefficient, Izv. Severo-Kavkaz. Naučn. Centra VysĆĄ. Ć koly Ser. Estestv. Nauk. 2 (1976), 12–15, 116 (Russian). MR 0435541
  • A. I. MiloslavskiÄ­, Floquet theory for abstract parabolic equations with periodic coefficients, Ph.D. thesis, Rostov State University. Russia, 1976.
  • A. I. MiloslavskiÄ­, On the Floquet theory for parabolic equations, Funkcional. Anal. i PriloĆŸen. 10 (1976), no. 2, 80–81 (Russian). MR 0473390
  • A. I. MiloslavskiÄ­, On the Floquet theory for parabolic equations, Teor. FunktsiÄ­ Funktsional. Anal. i Prilozhen. 31 (1979), 98–102, 168 (Russian). MR 548296
  • A. I. MiloslavskiÄ­, Asymptotic behavior of the solutions of abstract integro-differential equations with periodic coefficients, Funktsional. Anal. i Prilozhen. 22 (1988), no. 3, 77–78 (Russian); English transl., Funct. Anal. Appl. 22 (1988), no. 3, 234–235 (1989). MR 961767, DOI 10.1007/BF01077633
  • A. I. MiloslavskiÄ­, An abstract integro-differential equation with a periodic coefficient. I, Teor. FunktsiÄ­ Funktsional. Anal. i Prilozhen. 53 (1990), 100–108 (Russian); English transl., J. Soviet Math. 58 (1992), no. 6, 563–568. MR 1077229, DOI 10.1007/BF01109699
  • A. I. MiloslavskiÄ­, An abstract integro-differential equation with a periodic coefficient. II, Teor. FunktsiÄ­ Funktsional. Anal. i Prilozhen. 54 (1990), 57–68 (Russian); English transl., J. Soviet Math. 58 (1992), no. 4, 333–342. MR 1080726, DOI 10.1007/BF01097285
  • B. Mityagin, The zero set of a real analytic function, arXiv:1512.07276 (2015).
  • Abderemane Mohamed, Asymptotic of the density of states for the Schrödinger operator with periodic electromagnetic potential, J. Math. Phys. 38 (1997), no. 8, 4023–4051. MR 1459642, DOI 10.1063/1.532105
  • Abderemane Morame, The absolute continuity of the spectrum of Maxwell operator in a periodic media, J. Math. Phys. 41 (2000), no. 10, 7099–7108. MR 1781426, DOI 10.1063/1.1288794
  • Sergey Morozov, Leonid Parnovski, and Irina Pchelintseva, Lower bound on the density of states for periodic Schrödinger operators, Operator theory and its applications, Amer. Math. Soc. Transl. Ser. 2, vol. 231, Amer. Math. Soc., Providence, RI, 2010, pp. 161–171. MR 2757529, DOI 10.1090/trans2/231/13
  • Sergey Morozov, Leonid Parnovski, and Irina Pchelintseva, Lower bound on the density of states for periodic Schrödinger operators, Operator theory and its applications, Amer. Math. Soc. Transl. Ser. 2, vol. 231, Amer. Math. Soc., Providence, RI, 2010, pp. 161–171. MR 2757529, DOI 10.1090/trans2/231/13
  • Sergey Morozov, Leonid Parnovski, and Roman Shterenberg, Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic pseudo-differential operators, Ann. Henri PoincarĂ© 15 (2014), no. 2, 263–312. MR 3159982, DOI 10.1007/s00023-013-0246-8
  • JĂŒrgen Moser and Michael Struwe, On a Liouville-type theorem for linear and nonlinear elliptic differential equations on a torus, Bol. Soc. Brasil. Mat. (N.S.) 23 (1992), no. 1-2, 1–20. MR 1203171, DOI 10.1007/BF02584809
  • Minoru Murata and Tetsuo Tsuchida, Asymptotics of Green functions and Martin boundaries for elliptic operators with periodic coefficients, J. Differential Equations 195 (2003), no. 1, 82–118. MR 2019244, DOI 10.1016/S0022-0396(03)00192-X
  • Minoru Murata and Tetsuo Tsuchida, Asymptotics of Green functions and the limiting absorption principle for elliptic operators with periodic coefficients, J. Math. Kyoto Univ. 46 (2006), no. 4, 713–754. MR 2320348, DOI 10.1215/kjm/1250281601
  • G. Nenciu, Existence of the exponentially localised Wannier functions, Comm. Math. Phys. 91 (1983), no. 1, 81–85. MR 719812
  • Ole A. Nielsen, Direct integral theory, Lecture Notes in Pure and Applied Mathematics, vol. 61, Marcel Dekker, Inc., New York, 1980. MR 591683
  • S. P. Novikov, Bloch functions in the magnetic field and vector bundles. Typical dispersion relations and their quantum numbers, Dokl. Akad. Nauk SSSR 257 (1981), no. 3, 538–543 (Russian). MR 610347
  • S. P. Novikov, Two-dimensional Schrödinger operators in periodic fields, Current problems in mathematics, Vol. 23, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 3–32 (Russian). MR 734312
  • S. P. Novikov, Solitons and geometry, Lezioni Fermiane. [Fermi Lectures], Published for the Scuola Normale Superiore, Pisa; by Cambridge University Press, Cambridge, 1994. MR 1272686
  • S. Novikov, S. V. Manakov, L. P. PitaevskiÄ­, and V. E. Zakharov, Theory of solitons, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. The inverse scattering method; Translated from the Russian. MR 779467
  • Farouk Odeh and Joseph B. Keller, Partial differential equations with periodic coefficients and Bloch waves in crystals, J. Mathematical Phys. 5 (1964), 1499–1504. MR 168924, DOI 10.1063/1.1931182
  • Beng Seong Ong, Spectral problems of optical waveguides and quantum graphs, ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–Texas A&M University. MR 2709215
  • V. P. Palamodov, LineÄ­nye differentsialâ€Čnye operatory s postoyaannymi koĂšffitsientami, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0243193
  • V. P. Palamodov, Linear differential operators with constant coefficients, Die Grundlehren der mathematischen Wissenschaften, Band 168, Springer-Verlag, New York-Berlin, 1970. Translated from the Russian by A. A. Brown. MR 0264197
  • Victor P. Palamodov, Harmonic synthesis of solutions of elliptic equation with periodic coefficients, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 3, 751–768 (English, with English and French summaries). MR 1242614
  • Gianluca Panati, Triviality of Bloch and Bloch-Dirac bundles, Ann. Henri PoincarĂ© 8 (2007), no. 5, 995–1011. MR 2342883, DOI 10.1007/s00023-007-0326-8
  • Gianluca Panati and Adriano Pisante, Bloch bundles, Marzari-Vanderbilt functional and maximally localized Wannier functions, Comm. Math. Phys. 322 (2013), no. 3, 835–875. MR 3079333, DOI 10.1007/s00220-013-1741-y
  • V. Papanicolaou, Private communication.
  • V. Papanicolaou, Some results on ordinary differential operators with periodic coefficients, Complex Analysis and Operator Theory 9 (2015), no. 7.
  • Leonid Parnovski, Bethe-Sommerfeld conjecture, Ann. Henri PoincarĂ© 9 (2008), no. 3, 457–508. MR 2419769, DOI 10.1007/s00023-008-0364-x
  • Leonid Parnovski and Roman Shterenberg, Asymptotic expansion of the integrated density of states of a two-dimensional periodic Schrödinger operator, Invent. Math. 176 (2009), no. 2, 275–323. MR 2495765, DOI 10.1007/s00222-008-0164-4
  • Leonid Parnovski and Roman Shterenberg, Asymptotic expansion of the integrated density of states of a two-dimensional periodic Schrödinger operator, Invent. Math. 176 (2009), no. 2, 275–323. MR 2495765, DOI 10.1007/s00222-008-0164-4
  • Leonid Parnovski and Roman Shterenberg, Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic Schrödinger operators, Ann. of Math. (2) 176 (2012), no. 2, 1039–1096. MR 2950770, DOI 10.4007/annals.2012.176.2.8
  • L. Parnovski and N. Sidorova, Critical dimensions for counting lattice points in Euclidean annuli, Math. Model. Nat. Phenom. 5 (2010), no. 4, 293–316. MR 2662460, DOI 10.1051/mmnp/20105413
  • Leonid Parnovski and Alexander V. Sobolev, On the Bethe-Sommerfeld conjecture, JournĂ©es “Équations aux DĂ©rivĂ©es Partielles” (La Chapelle sur Erdre, 2000) Univ. Nantes, Nantes, 2000, pp. Exp. No. XVII, 13. MR 1775693
  • Leonid Parnovski and Alexander V. Sobolev, Bethe-Sommerfeld conjecture for periodic operators with strong perturbations, Invent. Math. 181 (2010), no. 3, 467–540. MR 2660451, DOI 10.1007/s00222-010-0251-1
  • L. Parnovskii and R. Shterenberg, Personal communication, Unpublished (2015).
  • B. S. Pavlov, The theory of extensions, and explicitly solvable models, Uspekhi Mat. Nauk 42 (1987), no. 6(258), 99–131, 247 (Russian). MR 933997
  • Y. Pinchover, On positive solutions of elliptic equations with periodic coefficients in unbounded domains, Maximum principles and eigenvalue problems in partial differential equations (Knoxville, TN, 1987) Pitman Res. Notes Math. Ser., vol. 175, Longman Sci. Tech., Harlow, 1988, pp. 218–230. MR 963470
  • Yehuda Pinchover, On positive solutions of second-order elliptic equations, stability results, and classification, Duke Math. J. 57 (1988), no. 3, 955–980. MR 975130, DOI 10.1215/S0012-7094-88-05743-2
  • Ross G. Pinsky, Second order elliptic operators with periodic coefficients: criticality theory, perturbations, and positive harmonic functions, J. Funct. Anal. 129 (1995), no. 1, 80–107. MR 1322643, DOI 10.1006/jfan.1995.1043
  • A. Pliƛ, Non-uniqueness in Cauchy’s problem for differential equations of elliptic type, J. Math. Mech. 9 (1960), 557–562. MR 0121568, DOI 10.1512/iumj.1960.9.59031
  • V. N. Popov and M. M. Skriganov, Remark on the structure of the spectrum of a two-dimensional Schrödinger operator with periodic potential, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 109 (1981), 131–133, 181, 183–184 (Russian, with English summary). Differential geometry, Lie groups and mechanics, IV. MR 629118
  • Olaf Post, Periodic manifolds with spectral gaps, J. Differential Equations 187 (2003), no. 1, 23–45. MR 1946544, DOI 10.1016/S0022-0396(02)00006-2
  • Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
  • Omer Reingold, Salil Vadhan, and Avi Wigderson, Entropy waves, the zig-zag graph product, and new constant-degree expanders, Ann. of Math. (2) 155 (2002), no. 1, 157–187. MR 1888797, DOI 10.2307/3062153
  • F. S. Rofe-Beketov, On the spectrum of non-selfadjoint differential operators with periodic coefficients, Dokl. Akad. Nauk SSSR 152 (1963), 1312–1315 (Russian). MR 0157033
  • F. S. Rofe-Beketov, A finiteness test for the number of discrete levels which can be introduced into the gaps of the continuous spectrum by perturbations of a periodic potential, Dokl. Akad. Nauk SSSR 156 (1964), 515–518 (Russian). MR 0160967
  • F. S. Rofe-Beketov, A perturbation of a Hill’s operator, that has a first moment and a non-zero integral, introduces a single discrete level into each of the distant spectral lacunae, Mathematical physics and functional analysis, No. 4 (Russian), Fiz.-Tehn. Inst. Nizkih Temperatur, Akad. Nauk Ukrain. SSR, Kharkov, 1973, pp. 158–159, 163 (Russian). MR 0477257
  • F. S. Rofe-Beketov, Spectrum perturbations, the knezer-type constants and the effective mass of zones-type potentials, Constructive Theory of Functions 1984 (Sofia), 1984, Proceedings of the International Conference on Constructive Function Theory, Varna 1984, pp. 757–766.
  • Bruno Scarpellini, Stability, instability, and direct integrals, Chapman & Hall/CRC Research Notes in Mathematics, vol. 402, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR 1682260
  • Jeffrey H. Schenker and Michael Aizenman, The creation of spectral gaps by graph decoration, Lett. Math. Phys. 53 (2000), no. 3, 253–262. MR 1808253, DOI 10.1023/A:1011032212489
  • Zhongwei Shen, Absolute continuity of generalized periodic Schrödinger operators, Harmonic analysis and boundary value problems (Fayetteville, AR, 2000) Contemp. Math., vol. 277, Amer. Math. Soc., Providence, RI, 2001, pp. 113–126. MR 1840430, DOI 10.1090/conm/277/04541
  • Zhongwei Shen, On absolute continuity of the periodic Schrödinger operators, Internat. Math. Res. Notices 1 (2001), 1–31. MR 1809495, DOI 10.1155/S1073792801000010
  • Zhongwei Shen, On the Bethe-Sommerfeld conjecture for higher-order elliptic operators, Math. Ann. 326 (2003), no. 1, 19–41. MR 1981610, DOI 10.1007/s00208-003-0395-z
  • Zhongwei Shen and Peihao Zhao, Uniform Sobolev inequalities and absolute continuity of periodic operators, Trans. Amer. Math. Soc. 360 (2008), no. 4, 1741–1758. MR 2366961, DOI 10.1090/S0002-9947-07-04545-X
  • D. Shenk and M. A. Shubin, Asymptotic expansion of state density and the spectral function of the Hill operator, Mat. Sb. (N.S.) 128(170) (1985), no. 4, 474–491, 575 (Russian). MR 820398
  • Stephen P. Shipman, Eigenfunctions of unbounded support for embedded eigenvalues of locally perturbed periodic graph operators, Comm. Math. Phys. 332 (2014), no. 2, 605–626. MR 3257657, DOI 10.1007/s00220-014-2113-y
  • È. È. Ć nolâ€Č, On the behavior of the eigenfunctions of Schrödinger’s equation, Mat. Sb. (N.S.) 42 (84) (1957), 273-286; erratum 46 (88) (1957), 259 (Russian). MR 0125315
  • R. G. Shterenberg, Absolute continuity of a two-dimensional magnetic periodic Schrödinger operator with electric potential of measure derivative type, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 271 (2000), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 31, 276–312, 318 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 115 (2003), no. 6, 2862–2882. MR 1810620, DOI 10.1023/A:1023334206109
  • R. G. Shterenberg, The Schrödinger operator in a periodic waveguide on a plane and quasiconformal mappings, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 295 (2003), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 33, 204–243, 247 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 127 (2005), no. 2, 1936–1956. MR 1983118, DOI 10.1007/s10958-005-0152-9
  • R. G. Shterenberg, An example of a periodic magnetic Schrödinger operator with a degenerate lower edge of the spectrum, Algebra i Analiz 16 (2004), no. 2, 177–185 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 16 (2005), no. 2, 417–422. MR 2068347, DOI 10.1090/S1061-0022-05-00858-7
  • R. G. Shterenberg, On the structure of the lower edge of the spectrum of a periodic magnetic Schrödinger operator with small magnetic potential, Algebra i Analiz 17 (2005), no. 5, 232–243 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 5, 865–873. MR 2241429, DOI 10.1090/S1061-0022-06-00933-2
  • T. A. Suslina and R. G. Shterenberg, Absolute continuity of the spectrum of the Schrödinger operator with the potential concentrated on a periodic system of hypersurfaces, Algebra i Analiz 13 (2001), no. 5, 197–240 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 13 (2002), no. 5, 859–891. MR 1882869
  • M. A. Ć ubin, Spectral theory and the index of elliptic operators with almost-periodic coefficients, Uspekhi Mat. Nauk 34 (1979), no. 2(206), 95–135 (Russian). MR 535710
  • M. A. Shubin, Weak Bloch property and weight estimates for elliptic operators, SĂ©minaire sur les Équations aux DĂ©rivĂ©es Partielles, 1989–1990, École Polytech., Palaiseau, 1990, pp. Exp. No. V, 36. With an appendix by Shubin and J. Sjöstrand. MR 1073180
  • Barry Simon, On the genericity of nonvanishing instability intervals in Hill’s equation, Ann. Inst. H. PoincarĂ© Sect. A (N.S.) 24 (1976), no. 1, 91–93. MR 473321
  • Barry Simon, Trace ideals and their applications, 2nd ed., Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005. MR 2154153, DOI 10.1090/surv/120
  • B. Simon, Szego’s theorem and its descendants, spectral theory for $l^2$ perturbations of orthogonal polynomials, Princeton University Press, Princeton, NJ, 2011.
  • Johannes Sjöstrand, Microlocal analysis for the periodic magnetic Schrödinger equation and related questions, Microlocal analysis and applications (Montecatini Terme, 1989) Lecture Notes in Math., vol. 1495, Springer, Berlin, 1991, pp. 237–332. MR 1178559, DOI 10.1007/BFb0085125
  • M. M. Skriganov, Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Trudy Mat. Inst. Steklov. 171 (1985), 122 (Russian). MR 798454
  • M. M. Skriganov, The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Invent. Math. 80 (1985), no. 1, 107–121. MR 784531, DOI 10.1007/BF01388550
  • M. M. Skriganov and A. V. Sobolev, Asymptotic estimates for spectral bands of periodic Schrödinger operators, Algebra i Analiz 17 (2005), no. 1, 276–288 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 1, 207–216. MR 2140682, DOI 10.1090/S1061-0022-06-00900-9
  • V. P. Smyshlyaev and P. Kuchment, Slowing down and transmission of waves in high contrast periodic media via “non-classical” homogenization, unpublished (2007).
  • Alexander V. Sobolev, Absolute continuity of the periodic magnetic Schrödinger operator, Invent. Math. 137 (1999), no. 1, 85–112. MR 1703339, DOI 10.1007/s002220050324
  • Alexander V. Sobolev, High energy asymptotics of the density of states for certain periodic pseudo-differential operators in dimension one, Waves in periodic and random media (South Hadley, MA, 2002) Contemp. Math., vol. 339, Amer. Math. Soc., Providence, RI, 2003, pp. 171–184. MR 2042537, DOI 10.1090/conm/339/06105
  • Alexander V. Sobolev, Integrated density of states for the periodic Schrödinger operator in dimension two, Ann. Henri PoincarĂ© 6 (2005), no. 1, 31–84. MR 2119355, DOI 10.1007/s00023-005-0198-8
  • Alexander V. Sobolev, Asymptotics of the integrated density of states for periodic elliptic pseudo-differential operators in dimension one, Rev. Mat. Iberoam. 22 (2006), no. 1, 55–92. MR 2267313, DOI 10.4171/RMI/449
  • Alexander V. Sobolev, Recent results on the Bethe-Sommerfeld conjecture, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Proc. Sympos. Pure Math., vol. 76, Amer. Math. Soc., Providence, RI, 2007, pp. 383–398. MR 2310211, DOI 10.1090/pspum/076.1/2310211
  • A. V. Sobolev, The gauge transform method in the theory of periodic operators, Lectures at the Isaac Newton Institute, Cambridge (January 2015).
  • Alexander V. Sobolev and Jonathan Walthoe, Absolute continuity in periodic waveguides, Proc. London Math. Soc. (3) 85 (2002), no. 3, 717–741. MR 1936818, DOI 10.1112/S0024611502013631
  • S. Stigler, Stigler’s law of eponymy, Trans. NY Acad. Sci. 39 (1980), no. 1, 147–157.
  • Toshikazu Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. (2) 121 (1985), no. 1, 169–186. MR 782558, DOI 10.2307/1971195
  • Toshikazu Sunada, Fundamental groups and Laplacians, Geometry and analysis on manifolds (Katata/Kyoto, 1987) Lecture Notes in Math., vol. 1339, Springer, Berlin, 1988, pp. 248–277. MR 961485, DOI 10.1007/BFb0083059
  • Toshikazu Sunada, A periodic Schrödinger operator on an abelian cover, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37 (1990), no. 3, 575–583. MR 1080871
  • Toshikazu Sunada, Group $C^*$-algebras and the spectrum of a periodic Schrödinger operator on a manifold, Canad. J. Math. 44 (1992), no. 1, 180–193. MR 1152674, DOI 10.4153/CJM-1992-011-3
  • Toshikazu Sunada, Discrete geometric analysis, Analysis on graphs and its applications, Proc. Sympos. Pure Math., vol. 77, Amer. Math. Soc., Providence, RI, 2008, pp. 51–83. MR 2459864, DOI 10.1090/pspum/077/2459864
  • T. A. Suslina, On the absence of eigenvalues of a periodic matrix Schrödinger operator in a layer, Russ. J. Math. Phys. 8 (2001), no. 4, 463–486. MR 1932011
  • T. A. Suslina, Absolute continuity of the spectrum of the periodic Maxwell operator in a layer, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 288 (2002), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 32, 232–255, 274 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 123 (2004), no. 6, 4654–4667. MR 1923552, DOI 10.1023/B:JOTH.0000041481.09722.86
  • T. A. Suslina and A. A. Kharin, Homogenization with corrector for a periodic elliptic operator near an edge of inner gap, J. Math. Sci. (N.Y.) 159 (2009), no. 2, 264–280. Problems in mathematical analysis. No. 41. MR 2544039, DOI 10.1007/s10958-009-9437-8
  • T. A. Suslina and A. A. Kharin, Homogenization with corrector for a multidimensional periodic elliptic operator near an edge of an inner gap, J. Math. Sci. (N.Y.) 177 (2011), no. 1, 208–227. Problems in mathematical analysis. No. 59. MR 2838992, DOI 10.1007/s10958-011-0453-0
  • T. A. Suslina and R. G. Shterenberg, Absolute continuity of the spectrum of the magnetic Schrödinger operator with a metric in a two-dimensional periodic waveguide, Algebra i Analiz 14 (2002), no. 2, 159–206 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 14 (2003), no. 2, 305–343. MR 1925885
  • V. V. Sviridov, On the completeness of quasienergetic states, Dokl. Akad. Nauk SSSR 274 (1984), no. 6, 1366–1367 (Russian). MR 740452
  • V. V. Sviridov, Some problems of the theory of differential equations with periodic coefficients, Ph.D. thesis, 1986.
  • Lawrence E. Thomas, Time dependent approach to scattering from impurities in a crystal, Comm. Math. Phys. 33 (1973), 335–343. MR 334766
  • D. J. Thouless, Wannier functions for magnetic sub-bands, J. Phys. C: Solid State Phys. 17 (1984), L325–7.
  • M. Tikhomirov and N. Filonov, Absolute continuity of an “even” periodic Schrödinger operator with nonsmooth coefficients, Algebra i Analiz 16 (2004), no. 3, 201–210 (Russian); English transl., St. Petersburg Math. J. 16 (2005), no. 3, 583–589. MR 2083570, DOI 10.1090/S1061-0022-05-00866-6
  • E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Part I, 2nd ed., Clarendon Press, Oxford, 1962. MR 0176151
  • Pierre van Moerbeke, About isospectral deformations of discrete Laplacians, Global analysis (Proc. Biennial Sem. Canad. Math. Congr., Univ. Calgary, Calgary, Alta., 1978) Lecture Notes in Math., vol. 755, Springer, Berlin, 1979, pp. 313–370. MR 564908
  • O. A. Veliev, The spectrum of multidimensional periodic operators, Teor. FunktsiÄ­ Funktsional. Anal. i Prilozhen. 49 (1988), 17–34, 123 (Russian); English transl., J. Soviet Math. 49 (1990), no. 4, 1045–1058. MR 963619, DOI 10.1007/BF02216095
  • O. A. Veliev, Perturbation theory for the periodic multidimensional Schrödinger operator and the Bethe-Sommerfeld conjecture, Int. J. Contemp. Math. Sci. 2 (2007), no. 1-4, 19–87. MR 2292470, DOI 10.12988/ijcms.2007.07003
  • Oktay Veliev, Multidimensional periodic Schrödinger operator, Springer Tracts in Modern Physics, vol. 263, Springer, Cham, 2015. Perturbation theory and applications. MR 3328527, DOI 10.1007/978-3-319-16643-8
  • J. Von Neumann and E. P. Wigner, Über merkwĂŒrdige diskrete eigenwerte, Z. Phys. 30 (1929), 465–467.
  • Mariya Vorobets, On the Bethe-Sommerfeld conjecture for certain periodic Maxwell operators, J. Math. Anal. Appl. 377 (2011), no. 1, 370–383. MR 2754836, DOI 10.1016/j.jmaa.2010.10.067
  • P. R. Wallace, The band theory of graphite, Phys. Rev. 71 (1947), 622.
  • Alden Waters, Isospectral periodic torii in dimension 2, Ann. Inst. H. PoincarĂ© C Anal. Non LinĂ©aire 32 (2015), no. 6, 1173–1188 (English, with English and French summaries). MR 3425258, DOI 10.1016/j.anihpc.2014.06.001
  • Calvin H. Wilcox, Theory of Bloch waves, J. Analyse Math. 33 (1978), 146–167. MR 516045, DOI 10.1007/BF02790171
  • Wolfgang Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press, Cambridge, 2000. MR 1743100, DOI 10.1017/CBO9780511470967
  • Kenji Yajima, Scattering theory for Schrödinger equations with potentials periodic in time, J. Math. Soc. Japan 29 (1977), no. 4, 729–743. MR 470525, DOI 10.2969/jmsj/02940729
  • Kenji Yajima, Large time behaviors of time-periodic quantum systems, Differential equations (Birmingham, Ala., 1983) North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 589–597. MR 799400, DOI 10.1016/S0304-0208(08)73745-9
  • Kenji Yajima, Quantum dynamics of time periodic systems, Phys. A 124 (1984), no. 1-3, 613–619. Mathematical physics, VII (Boulder, Colo., 1983). MR 759208, DOI 10.1016/0378-4371(84)90277-2
  • V. A. Yakubovich and V. M. Starzhinskii, Linear differential equations with periodic coefficients. 1, 2, Halsted Press [John Wiley & Sons], New York-Toronto; Israel Program for Scientific Translations, Jerusalem-London, 1975. Translated from Russian by D. Louvish. MR 0364740
  • A. Yariv, Yong Xu, R. Lee, and A. Scherer, Coupled-resonator optical waveguide: a proposal and analysis, Opt. Lett. 24 (1999), 711–713.
  • Shing Tung Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. MR 431040, DOI 10.1002/cpa.3160280203
  • V. I. Yudovich, The linearization method in the stability problem for periodic flows of low viscosity fluids, Proceedings of the VI- th winter school on mathematical programming and related problems, Drogobych 1973: Functional analysis and its applications. (In Russian) (1975), 44–113.
  • V. I. Yudovich, The linearization method in hydrodynamical stability theory, Translations of Mathematical Monographs, vol. 74, American Mathematical Society, Providence, RI, 1989. Translated from the Russian by J. R. Schulenberger. MR 1003607, DOI 10.1090/mmono/074
  • M. G. ZaÄ­denberg, S. G. KreÄ­n, P. A. Kučment, and A. A. Pankov, Banach bundles and linear operators, Uspehi Mat. Nauk 30 (1975), no. 5(185), 101–157 (Russian). MR 0415661
  • J. Zak, Magnetic translaion group, Phys. Rev. (2) 134 (1964), A1602–A1606. MR 177769
  • Ya. B. Zeldovich, Scattering and emission of a quantum system in a strong electromagnetic wave, Soviet Physics Uspekhi 16 (1973), 427–433.
  • V. V. Zhikov, Gaps in the spectrum of some elliptic operators in divergent form with periodic coefficients, Algebra i Analiz 16 (2004), no. 5, 34–58 (Russian); English transl., St. Petersburg Math. J. 16 (2005), no. 5, 773–790. MR 2106666, DOI 10.1090/S1061-0022-05-00878-2
  • J. M. Ziman, Electrons in metals. A short guide to the Fermi surface, Taylor & Francis, London, 1962.
  • J. M. Ziman, Principles of the theory of solids, Cambridge University Press, New York, 1964.
  • N. A. Zimbovskaya, Local geometry of the Fermi surface, and high-frequency phenomena in metals, Springer Verlag, New York, 2001.
Similar Articles
Additional Information
  • Peter Kuchment
  • Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
  • MR Author ID: 227235
  • ORCID: canUsePostMessage
  • Email: kuchment@math.tamu.edu
  • Received by editor(s): October 2, 2015
  • Published electronically: April 6, 2016
  • Additional Notes: This article contains an extended exposition of the lectures given at Isaac Newton Institute for Mathematical Sciences in January 2015. The work was also partially supported by the NSF grant DMS # 1517938. The author expresses his gratitude to the INI and NSF for the support.

  • Dedicated: Dedicated to the memory of mathematicians and dear friends M. Birman, L. Ehrenpreis, S. Krein, V. Meshkov, and M. Novitskii
  • © Copyright 2016 American Mathematical Society
  • Journal: Bull. Amer. Math. Soc. 53 (2016), 343-414
  • MSC (2010): Primary 35B27, 35J10, 35J15, 35Q40, 35Q60, 47F05, 58J05, 81Q10; Secondary 32C99, 35C15, 47A53, 58J50, 78M40
  • DOI: https://doi.org/10.1090/bull/1528
  • MathSciNet review: 3501794