Three themes of syzygies
HTML articles powered by AMS MathViewer
- by Gunnar Fløystad, Jason McCullough and Irena Peeva PDF
- Bull. Amer. Math. Soc. 53 (2016), 415-435 Request permission
Abstract:
We present three exciting themes of syzygies, where major progress has been made recently: Boij-Söderberg theory, Stillman’s question, and syzygies over complete intersections.References
- Tigran Ananyan and Melvin Hochster, Ideals generated by quadratic polynomials, Math. Res. Lett. 19 (2012), no. 1, 233–244. MR 2923188, DOI 10.4310/MRL.2012.v19.n1.a18
- David Anick, Construction d’espaces de lacets et d’anneaux locaux à séries de Poincaré-Betti non rationnelles, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 16, A729–A732 (French, with English summary). MR 577145
- David J. Anick, A counterexample to a conjecture of Serre, Ann. of Math. (2) 115 (1982), no. 1, 1–33. MR 644015, DOI 10.2307/1971338
- Paul S. Aspinwall, Some applications of commutative algebra to string theory, Commutative algebra, Springer, New York, 2013, pp. 25–56. MR 3051370, DOI 10.1007/978-1-4614-5292-8_{2}
- L. L. Avramov, Modules of finite virtual projective dimension, Invent. Math. 96 (1989), no. 1, 71–101. MR 981738, DOI 10.1007/BF01393971
- Luchezar L. Avramov, Vesselin N. Gasharov, and Irena V. Peeva, Complete intersection dimension, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 67–114 (1998). MR 1608565
- Luchezar L. Avramov and Ragnar-Olaf Buchweitz, Homological algebra modulo a regular sequence with special attention to codimension two, J. Algebra 230 (2000), no. 1, 24–67. MR 1774757, DOI 10.1006/jabr.1999.7953
- Dave Bayer and David Mumford, What can be computed in algebraic geometry?, Computational algebraic geometry and commutative algebra (Cortona, 1991) Sympos. Math., XXXIV, Cambridge Univ. Press, Cambridge, 1993, pp. 1–48. MR 1253986
- Jesse Beder, Jason McCullough, Luis Núñez-Betancourt, Alexandra Seceleanu, Bart Snapp, and Branden Stone, Ideals with larger projective dimension and regularity, J. Symbolic Comput. 46 (2011), no. 10, 1105–1113. MR 2831475, DOI 10.1016/j.jsc.2011.05.011
- Christine Berkesch, Jesse Burke, Daniel Erman, and Courtney Gibbons, The cone of Betti diagrams over a hypersurface ring of low embedding dimension, J. Pure Appl. Algebra 216 (2012), no. 10, 2256–2268. MR 2925819, DOI 10.1016/j.jpaa.2012.03.007
- Christine Berkesch, Daniel Erman, and Manoj Kummini, Three flavors of extremal Betti tables, Commutative algebra, Springer, New York, 2013, pp. 99–121. MR 3051372, DOI 10.1007/978-1-4614-5292-8_{4}
- Christine Berkesch Zamaere, Daniel Erman, Manoj Kummini, and Steven V. Sam, Tensor complexes: multilinear free resolutions constructed from higher tensors, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 6, 2257–2295. MR 3120743, DOI 10.4171/JEMS/421
- Mats Boij and Jonas Söderberg, Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture, J. Lond. Math. Soc. (2) 78 (2008), no. 1, 85–106. MR 2427053, DOI 10.1112/jlms/jdn013
- Mats Boij and Jonas Söderberg, Betti numbers of graded modules and the multiplicity conjecture in the non-Cohen-Macaulay case, Algebra Number Theory 6 (2012), no. 3, 437–454. MR 2966705, DOI 10.2140/ant.2012.6.437
- Mats Boij and Gunnar Fløystad, The cone of Betti diagrams of bigraded Artinian modules of codimension two, Combinatorial aspects of commutative algebra and algebraic geometry, Abel Symp., vol. 6, Springer, Berlin, 2011, pp. 1–16. MR 2810421, DOI 10.1007/978-3-642-19492-4_{1}
- Winfried Bruns, “Jede” endliche freie Auflösung ist freie Auflösung eines von drei Elementen erzeugten Ideals, J. Algebra 39 (1976), no. 2, 429–439. MR 399074, DOI 10.1016/0021-8693(76)90047-8
- Lindsay Burch, A note on the homology of ideals generated by three elements in local rings, Proc. Cambridge Philos. Soc. 64 (1968), 949–952. MR 230718, DOI 10.1017/s0305004100043632
- Arthur Cayley, On the theory of elimination, Cambridge and Dublin Math. J. 3 (1848) 116–120; Collected papers Vol I, Cambridge U. Press, 1889, 370–374.
- Alessandro De Stefani and Luis Núñez-Betancourt: F-Thresholds of graded rings, preprint, arXiv:1507.05459.
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- David Eisenbud, Gunnar Fløystad, and Jerzy Weyman, The existence of equivariant pure free resolutions, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 3, 905–926 (English, with English and French summaries). MR 2918721, DOI 10.5802/aif.2632
- David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89–133. MR 741934, DOI 10.1016/0021-8693(84)90092-9
- David Eisenbud and Irena Peeva, Minimal Free Resolutions over Complete Intersections, Lecture Notes in Mathematics 2152, Springer, 2016.
- David Eisenbud and Daniel Erman, Categorified duality in Boij-Söderberg Theory and invariants of free complexes, arXiv:1205.0449.
- David Eisenbud, Daniel Erman, and Frank-Olaf Schreyer, Filtering free resolutions, Compos. Math. 149 (2013), no. 5, 754–772. MR 3069361, DOI 10.1112/S0010437X12000760
- David Eisenbud and Frank-Olaf Schreyer, Betti numbers of graded modules and cohomology of vector bundles, J. Amer. Math. Soc. 22 (2009), no. 3, 859–888. MR 2505303, DOI 10.1090/S0894-0347-08-00620-6
- David Eisenbud and Frank-Olaf Schreyer, Resultants and Chow forms via exterior syzygies, J. Amer. Math. Soc. 16 (2003), no. 3, 537–579. With an appendix by Jerzy Weyman. MR 1969204, DOI 10.1090/S0894-0347-03-00423-5
- David Eisenbud and Frank-Olaf Schreyer, Cohomology of coherent sheaves and series of supernatural bundles, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 703–722. MR 2639316, DOI 10.4171/JEMS/212
- David Eisenbud and Frank-Olaf Schreyer, Boij-Söderberg theory, Combinatorial aspects of commutative algebra and algebraic geometry, Abel Symp., vol. 6, Springer, Berlin, 2011, pp. 35–48. MR 2810424, DOI 10.1007/978-3-642-19492-4_{3}
- David Eisenbud and Frank-Olaf Schreyer: Ulrich Complexity, in preparation.
- Bahman Engheta, On the projective dimension and the unmixed part of three cubics, J. Algebra 316 (2007), no. 2, 715–734. MR 2358611, DOI 10.1016/j.jalgebra.2006.11.018
- Bahman Engheta, A bound on the projective dimension of three cubics, J. Symbolic Comput. 45 (2010), no. 1, 60–73. MR 2568899, DOI 10.1016/j.jsc.2009.06.005
- Alexander Engström and Matthew T. Stamps, Betti diagrams from graphs, Algebra Number Theory 7 (2013), no. 7, 1725–1742. MR 3117505, DOI 10.2140/ant.2013.7.1725
- Daniel Erman and Steven V. Sam, Supernatural analogues of Beilinson monads, arXiv preprint arXiv:1506.07558, 2015.
- Gunnar Fløystad, Boij-Söderberg theory: introduction and survey, Progress in commutative algebra 1, de Gruyter, Berlin, 2012, pp. 1–54. MR 2932580
- Gunnar Fløystad, Zipping Tate resolutions and exterior coalgebras, J. Algebra 437 (2015), 249–307. MR 3351965, DOI 10.1016/j.jalgebra.2015.04.007
- L. Gruson, R. Lazarsfeld, and C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), no. 3, 491–506. MR 704401, DOI 10.1007/BF01398398
- Tor H. Gulliksen, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167–183. MR 364232, DOI 10.7146/math.scand.a-11518
- Jürgen Herzog and Craig Huneke, Ordinary and symbolic powers are Golod, Adv. Math. 246 (2013), 89–99. MR 3091800, DOI 10.1016/j.aim.2013.07.002
- David Hilbert, Ueber die Theorie der algebraischen Formen, Math. Ann. 36 (1890), no. 4, 473–534 (German). MR 1510634, DOI 10.1007/BF01208503
- Craig Huneke, Paolo Mantero, Jason McCullough, and Alexandra Seceleanu, The projective dimension of codimension two algebras presented by quadrics, J. Algebra 393 (2013), 170–186. MR 3090065, DOI 10.1016/j.jalgebra.2013.06.038
- Craig Huneke, Paolo Mantero, Jason McCullough, and Alexandra Seceleanu: A Tight Upper Bound on the Projective Dimension of Four Quadrics, preprint arXiv:1403.6334.
- Peter Kohn, Ideals generated by three elements, Proc. Amer. Math. Soc. 35 (1972), 55–58. MR 296064, DOI 10.1090/S0002-9939-1972-0296064-1
- Manoj Kummini and Steven Sam: The cone of Betti tables over a rational normal curve, Commutative Algebra and Noncommutative Algebraic Geometry, 251-264, Math. Sci. Res. Inst. Publ. 68, Cambridge Univ. Press, Cambridge, 2015.
- Sijong Kwak, Castelnuovo regularity for smooth subvarieties of dimensions $3$ and $4$, J. Algebraic Geom. 7 (1998), no. 1, 195–206. MR 1620706
- Robert Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55 (1987), no. 2, 423–429. MR 894589, DOI 10.1215/S0012-7094-87-05523-2
- Ernst W. Mayr and Albert R. Meyer, The complexity of the word problems for commutative semigroups and polynomial ideals, Adv. in Math. 46 (1982), no. 3, 305–329. MR 683204, DOI 10.1016/0001-8708(82)90048-2
- Jason McCullough, A family of ideals with few generators in low degree and large projective dimension, Proc. Amer. Math. Soc. 139 (2011), no. 6, 2017–2023. MR 2775379, DOI 10.1090/S0002-9939-2010-10792-X
- Jason McCullough and Irena Peeva, Infinite Graded Free Resolutions, Commutative Algebra and Noncommutative Algebraic Geometry, (editors: Eisenbud, Iyengar, Singh, Stafford, and Van den Bergh), Cambridge University Press, to appear.
- Jason McCullough and Alexandra Seceleanu, Bounding projective dimension, Commutative algebra, Springer, New York, 2013, pp. 551–576. MR 3051385, DOI 10.1007/978-1-4614-5292-8_{1}7
- Uwe Nagel and Stephen Sturgeon, Combinatorial interpretations of some Boij-Söderberg decompositions, J. Algebra 381 (2013), 54–72. MR 3030509, DOI 10.1016/j.jalgebra.2013.01.027
- Irena Peeva, Graded syzygies, Algebra and Applications, vol. 14, Springer-Verlag London, Ltd., London, 2011. MR 2560561, DOI 10.1007/978-0-85729-177-6
- Irena Peeva and Mike Stillman, Open problems on syzygies and Hilbert functions, J. Commut. Algebra 1 (2009), no. 1, 159–195. MR 2462384, DOI 10.1216/JCA-2009-1-1-159
- Henry C. Pinkham, A Castelnuovo bound for smooth surfaces, Invent. Math. 83 (1986), no. 2, 321–332. MR 818356, DOI 10.1007/BF01388966
- Jack Shamash, The Poincaré series of a local ring, J. Algebra 12 (1969), 453–470. MR 241411, DOI 10.1016/0021-8693(69)90023-4
- John Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14–27. MR 86072
Additional Information
- Gunnar Fløystad
- Affiliation: Matematisk Institutt, University of Bergen, 5008 Bergen, Norway
- Jason McCullough
- Affiliation: Mathematics Department, Rider University, Lawrenceville, New Jersey 08648
- MR Author ID: 790865
- Irena Peeva
- Affiliation: Mathematics Department, Cornell University, Ithaca, New York 14853
- MR Author ID: 263618
- Received by editor(s): October 21, 2015
- Published electronically: March 29, 2016
- Additional Notes: The third author was partially supported by NSF grant DMS-1406062, and McCullough is partially supported by an AMS-Simons Travel Grant.
- © Copyright 2016 American Mathematical Society
- Journal: Bull. Amer. Math. Soc. 53 (2016), 415-435
- MSC (2010): Primary 13D02
- DOI: https://doi.org/10.1090/bull/1533
- MathSciNet review: 3501795