Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2024 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

About the cover: Zeta-functions associated with quadratic forms in Adolf Hurwitz’s estate
HTML articles powered by AMS MathViewer

by Nicola M. R. Oswald and Jörn Steuding PDF
Bull. Amer. Math. Soc. 53 (2016), 477-481 Request permission
References
  • G. Lejeune Dirichlet, Recherches sur diverses applications de l’Analyse infinitésimale à la Théorie des Nombres, J. Reine Angew. Math. 21 (1840), 1–12 (French). MR 1578250, DOI 10.1515/crll.1840.21.1
  • Paul Epstein, Zur Theorie allgemeiner Zetafunctionen, Math. Ann. 56 (1903), no. 4, 615–644 (German). MR 1511190, DOI 10.1007/BF01444309
  • A. Hurwitz, Einige Eigenschaften der Dirichletschen Funktionen $F(s)=\sum \left ({D\over n}\right ){1\over n^s}$, die bei der Bestimmung der Klassenzahlen binärer quadratischer Formen auftreten, Zeitschrift f. Math. u. Physik 27 (1882), 86–101
  • A. Hurwitz, Die Mathematischen Tagebücher und der übrige handschriftliche Nachlass von Adolf Hurwitz, Handschriften und Autographen der ETH-Bibliothek Zürich, Hs 582:5,6; doi.org/10.7891/e-manuscripta-12821, 12823
  • A. Krazer, F. Prym, Neue Grundlagen einer Theorie der allgemeinen Thetafunctionen. Kurz zusammengefasst und herausgegeben von A. Krazer. Teubner, Leipzig 1892
  • L. Kronecker, Zur Theorie der elliptischen Functionen, Berl. Sitzungsber. XX (1890), 99–120, 123-130, 219-241, 307-318, 1025-1029
  • M. Lerch, Note sur la fonction ${\mathfrak {K}} \left ( {w,x,s} \right ) = \sum \limits _{k = 0}^\infty {\frac {{e^{2k\pi ix} }}{{\left ( {w + k} \right )^s }}}$, Acta Math. 11 (1887), no. 1-4, 19–24 (French). MR 1554747, DOI 10.1007/BF02418041
  • R. Lipschitz, Untersuchung einer aus vier Elementen gebildeten Reihe, J. Reine Angew. Math. 54 (1857), 313–328 (German). MR 1579049, DOI 10.1515/crll.1857.54.313
  • R. Lipschitz, Untersuchung der Eigenschaften einer Gattung von unendlichen Reihen, J. Reine Angew. Math. 105 (1889), 127–156 (German). MR 1580195, DOI 10.1515/crll.1889.105.127
  • H. Minkowski, Briefe an David Hilbert, L. Rüdenberg, H. Zassenhaus (eds.), Springer 1973
  • N.M.R. Oswald, J. Steuding, Aspects of Zeta-Function Theory in the Mathematical Works of Adolf Hurwitz, in: From Arithmetic to Zeta-Functions. Number Theory in Memory of Wolfgang Schwarz, J. Sander et al. (eds.), Birkhäuser 2016 (to appear).
  • B. Riemann, Theorie der Abel’schen Functionen, J. Reine Angew. Math. 54 (1857), 115–155 (German). MR 1579035, DOI 10.1515/crll.1857.54.115
  • B. Riemann, Über die Anzahl der Primzahlen unterhalb einer gegebenen Grösse, Monatsber. Preuss. Akad. Wiss. Berlin (1859), 671–680
  • Winfried Scharlau, The mathematical correspondence of Rudolf Lipschitz, Historia Math. 13 (1986), no. 2, 165–167. MR 851875, DOI 10.1016/0315-0860(86)90029-7
  • E. C. Titchmarsh, On Epstein’s Zeta-Function, Proc. London Math. Soc. (2) 36 (1934), 485–500. MR 1575971, DOI 10.1112/plms/s2-36.1.485
Additional Information
  • Nicola M. R. Oswald
  • Affiliation: Department of Mathematics and Informatics, University of Wuppertal, Gaußstr. 20, 42 119 Wuppertal, Germany; and Department of Mathematics, Würzburg University, Emil-Fischer-Str. 40, 97 074 Würzburg, Germany
  • Email: oswald@uni-wuppertal.de; nicola.oswald@mathematik.uni-wuerzburg.de
  • Jörn Steuding
  • Affiliation: Department of Mathematics, Würzburg University, Emil-Fischer-Str. 40, 97 074 Würzburg, Germany
  • MR Author ID: 633150
  • Email: steuding@mathematik.uni-wuerzburg.de
  • Published electronically: March 16, 2016
  • © Copyright 2016 American Mathematical Society
  • Journal: Bull. Amer. Math. Soc. 53 (2016), 477-481
  • DOI: https://doi.org/10.1090/bull/1534
  • MathSciNet review: 3501797