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GENERALIZATIONS OF FOURIER ANALYSIS,

AND HOW TO APPLY THEM

W. T. GOWERS

Abstract. This is a survey of the use of Fourier analysis in additive combi-
natorics, with a particular focus on situations where it cannot be straightfor-
wardly applied but needs to be generalized first. Sometimes very satisfactory
generalizations exist, while sometimes we have to make do with theories that
have some of the desirable properties of Fourier analysis but not all of them. In
the latter case, there are intriguing hints that there may be more satisfactory
theories yet to be discovered. This article grew out of the Colloquium Lectures
at the Joint Meeting of the AMS and the MAA, given in Seattle in January

2016.

1. Introduction: What is additive combinatorics?

Additive combinatorics is a newish and very active branch of mathematics that
grew out of combinatorial number theory, with input from many other areas such
as harmonic analysis, ergodic theory, analytic number theory, group theory, and
extremal combinatorics. It has since fed back into those areas and led to the
solutions of several long-standing open problems. Because of all these connections
and influences, the subject is not very easy to characterize, but a good way to
understand the flavor of the area is to look at one of its central theorems, the
following famous result of Szemerédi from 1974 [53], which solved a conjecture
made by Erdős and Turán in 1936.

Theorem 1.1. For every positive integer k and every δ > 0 there exists a positive
integer n such that every subset A ⊂ {1, 2, . . . , n} of size at least δn contains an
arithmetic progression of length k.

This is a combinatorial theorem in the sense that we make no structural assump-
tions about A—it is just a subset of {1, 2, . . . , n} of density at least δ. However, the
set {1, 2, . . . , n} has a rich additive structure, and that structure is highly relevant
to the problem, since an arithmetic progression can be thought of as a sequence
(x1, x2, . . . , xk) such that

x2 − x1 = x3 − x2 = · · · = xk − xk−1.

(Of course, we also need to add the non-degeneracy condition that x1 �= x2.)
However, there is more to additive combinatorics than a set of combinatorial the-

orems that involve addition in one way or another. To appreciate this, it is helpful
to look at the following statement, which turns out to be an equivalent reformu-
lation of Szemerédi’s theorem. The equivalence is a reasonably straightforward
exercise to prove.
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Theorem 1.2. For every positive integer k and every δ > 0 there exists a constant
c > 0 such that for every positive integer n and every function f : Zn → [0, 1] that
averages at least δ we have the inequality

Ex,df(x)f(x+ d) · · · f(x+ (k − 1)d) ≥ c.

Here Zn is the cyclic group of order n and the notation Ex,d means the average
over all x and d—that is, it is another way of writing n−2

∑
x,d.

As n gets large, Zn is a better and better discrete approximation to the circle
T, which we can think of as the Abelian group consisting of all complex numbers
of modulus 1. It is not hard to prove that the discrete statement is equivalent to
the following continuous version.

Theorem 1.3. For every positive integer k and every δ > 0 there exists a constant
c > 0 such that for every measurable function f : T → [0, 1] that averages at least δ
we have the inequality

Ex,df(x)f(x+ d) · · · f(x+ (k − 1)d) ≥ c.

This time Ex,d stands for the integral with respect to the Haar measure on T2.
This last reformulation illustrates an important point about many of the theo-

rems of additive combinatorics (and extremal combinatorics more generally), which
is that although they are combinatorial, they are also analytic. In fact, the more
one thinks about them, the less important the distinction between discrete and
continuous seems to be. And it is not just the statements that are (or can be made
to be) analytic: a characteristic feature of much of additive combinatorics is that
the proofs of its theorems use methods from areas of analysis such as functional
analysis, Fourier analysis, and ergodic theory.

Here we shall focus on the second of these. Fourier analysis is an extremely
useful tool for additive problems, and one of the aims of this survey will be to
explain why. Another aim, which is in some ways even more interesting, will be to
demonstrate the limitations of Fourier analysis—that is, to look at problems that do
not immediately yield to a Fourier-analytic approach. Sometimes that just means
that one needs to look for a completely different kind of argument. However, with
some problems the best way to make progress is not to abandon Fourier analysis
altogether, but to generalize it in a suitable, and not always obvious, way. Thus, it
sometimes happens that the limitations of one type of Fourier analysis lead to the
development of another.

2. Discrete Fourier analysis

Let f : Zn → C. We define its discrete Fourier transform f̂ : Zn → C by the
formula

f̂(r) = Exf(x)ω
−rx,

where ω = exp(2πix/n) is a primitive nth root of unity. Note that there is a close
resemblance between this formula, which we could equally well write as

f̂(r) = Exf(x) exp(−2πirx/n),

and the familiar formulae for Fourier coefficients and Fourier transforms in the
continuous setting. Of course, this is to be expected. Note also that the number
ω−rx is well defined, since if r and n are integers, then adding a multiple of n to
either of them makes no difference to it.
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Although f̂ can be thought of as a function defined on Zn, it is more correct
to regard it as being defined on the dual group Ẑn, which happens to be (non-
naturally) isomorphic to Zn. The distinction has some importance in additive

combinatorics, because the natural measures we put on Zn and Ẑn are different:
for Zn we use the uniform probability measure, whereas for Ẑn we use the counting
measure. This difference feeds into the definitions of some key concepts such as
inner products, p norms, and convolutions. Given functions f, g : Zn → C and
1 ≤ p ≤ ∞, we have the following definitions.

• 〈f, g〉 = Exf(x)g(x).
• ‖f‖p = (Ex|f(x)|p)1/p.
• f ∗ g(x) = Ey+z=xf(y)g(z).

The corresponding definitions for functions f̂ , ĝ : Ẑn → C are the same, but with
sums replacing averages. That is, they are as follows.

• 〈f̂ , ĝ〉 =
∑

x f̂(x)ĝ(x).

• ‖f̂‖p = (
∑

x |f̂(x)|p)1/p.
• f̂ ∗ ĝ(x) =

∑
y+z=x f̂(y)ĝ(z).

With these measures in place, the familiar properties of the Fourier transform hold
for the discrete Fourier transform as well, and have easier proofs. In particular,
constant use is made of the following five rules, of which the first two are equivalent.
All five are easy exercises.

• 〈f, g〉 = 〈f̂ , ĝ〉 (Parseval’s identity).
• ‖f‖2 = ‖f̂‖2 (also Parseval’s identity).

• f(x) =
∑

r f̂(r)ω
rx (the inversion formula).

• f̂ ∗ g(r) = f̂(r)ĝ(r) (the convolution identity).
• If a is invertible mod n and g(x) = f(ax) for every x ∈ Zn, then ĝ(r) =

f̂(a−1r) for every r (the dilation rule).

In additive combinatorics, one often deals with characteristic functions of subsets A
of Zn, and some authors like to use the letter A for its own characteristic function:
that is, A(x) = 1 if x ∈ A and 0 otherwise. Given a subset A ⊂ Zn, define its
density to be α = |A|/n. The following three observations are often used.

• Â(0) = α.

•
∑

r |Â(r)|2 = α.

• Â(−r) = Â(r).

The first observation is immediate from the definition, the second follows from
Parseval’s identity and the fact that

∑
r |Â(r)|2 = ‖Â‖22, and the third follows from

the fact that A is real valued and that ωrx = ω−rx for every r and x (and so is true
of all real-valued functions).

3. Roth’s theorem

To give an idea of how useful these simple facts are, we shall now sketch a proof
of Roth’s theorem, which is the case k = 3 of Szemerédi’s theorem (Theorem 1.1
of these notes). Thus, we would like to prove the following theorem. It was proved
by Roth in 1953 [45].

Theorem 3.1. For every δ>0 there exists n such that every subset A⊂{1, 2, . . . , n}
of density at least δ contains an arithmetic progression of length 3.
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In order to apply Fourier analysis, it is convenient to think of A as a subset of
Zn rather than of {1, 2, . . . , n}. (This is not essential, however: Roth originally
treated A as a subset of Z.) We shall also assume that n is odd. Let us write A2

for the function defined by A2(z) = A(z/2), which is the characteristic function of
the set of z such that z/2 ∈ A. Because n is odd, the map z 
→ z/2 is a well-defined
bijection.

The key observation that shows why Fourier analysis is useful is that the number
of arithmetic progressions in A can be expressed in terms of convolutions, inner
products, and dilations, and therefore has a neat expression in terms of the Fourier
coefficients of A. Indeed, using the rules given earlier, we have that

Ex+y=2zA(x)A(y)A(z) = Ex+y=zA(x)A(y)A(z/2)

= EzA ∗A(z)A2(z)

= 〈A ∗A,A2〉
= 〈Â ∗A, Â2〉
= 〈Â2, Â2〉
=

∑
r

Â(r)2Â2(r)

=
∑
r

Â(r)2Â(2r)

=
∑
r

Â(r)2Â(−2r).

Why should this be useful? To answer that question, we need to bring in an-
other simple but surprisingly powerful tool: the Cauchy–Schwarz inequality. First,
recalling that Â(0) is equal to the density of A, which we shall again denote by α,
we split the last expression up as

α3 +
∑
r �=0

Â(r)2Â(−2r).

Thus, we have shown that

Ex+y=2zA(x)A(y)A(z) = α3 +
∑
r �=0

Â(r)2Â(−2r).

The left-hand side of this expression is the probability that x, y, z all belong to
A if you choose them randomly to satisfy the equation x + y = 2z. Without the
constraint that x + y = 2z, this probability would be α3, since each of x, y, and z
would have a probability α of belonging to A. So the term α3 on the right-hand side
can be thought of as “what one would expect”, and the remainder of the right-hand
side is a measure of the effect of the dependence of x, y, and z on each other.

However, this effect depends significantly on A. If the elements of A are chosen
independently at random with probability α, then for each pair of distinct x, y the
events x ∈ A, y ∈ A and (x+ y)/2 ∈ A are independent, so restricting the average
to triples (x, y, z) such that x + y = 2z will typically have very little effect. By
contrast, if A is an interval of length αn, then the events become highly correlated.
So the term

∑
r �=0 Â(r)2Â(−2r) is a measure of quasirandomness of A: the smaller

it is, the less the events x ∈ A, y ∈ A, and z ∈ A are correlated if x, y, z are chosen
randomly to satisfy the constraint x+ y = 2z.
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It is to bound the remainder term that we use the Cauchy–Schwarz inequality,
and also the even more elementary inequality |〈f, g〉| ≤ ‖f‖1‖g‖∞. We find that

|
∑
r �=0

Â(r)2Â(−2r)| ≤ max
r �=0

|Â(r)|
∑
r �=0

|Â(r)||Â(−2r)|

≤ max
r �=0

|Â(r)|(
∑
r

|Â(r)|2)1/2(
∑
r

|̂|A(−2r)|2)1/2

= max
r �=0

|Â(r)|‖Â‖22

= αmax
r �=0

|Â(r)|.

It follows that

Ex+y=2zA(x)A(y)A(z) ≥ α3 − αmax
r �=0

|Â(r)|.

We see from this that if all the Fourier coefficients Â(r) are small (more precisely, if
they all have size significantly less than α2), then the number of triples (x, y, z) ∈ A3

with x + y = 2z is indeed close to α3n2, the approximate number we would get if
the elements of A were chosen independently at random, each with probability α.

Therefore, either we have the arithmetic progression we are looking for (strictly
speaking, this is incorrect because our triples satisfy the equation x+ y = 2z in Zn

and not necessarily in Z when we regard x, y, and z as ordinary integers, but this
is a technical problem that can be dealt with), or A has a large Fourier coefficient

Â(r) for some non-zero r. Here, “large” can be taken to mean “of absolute value
at least cα2” for some absolute constant c > 0.

In the second case, let us define a function f : Zn → R by setting f(x) = A(x)−α

for each x. It is easy to show that f̂(r) = Â(r) (this uses the fact that r �= 0). So
we obtain an inequality

|f̂(r)| = |Exf(x)ω
−rx| ≥ cα2.

At this point we use a lemma, which I shall state imprecisely.

Lemma 3.2. For every r �= 0 there exists a partition of Zn into arithmetic pro-
gressions P1, . . . , Pm, each of length at least c

√
n, such that the function ωrx is

approximately constant on each Pi.

The proof of the lemma is an exercise based on a well-known technique: one uses
the fact that by the pigeonhole principle it is possible to find 0 ≤ u < v such that
v is not too large and |ωru − ωrv| = |1− ωr(v−u)| is small. One can then partition
Zn into arithmetic progressions of common difference v − u.

Given the lemma, one observes that

cα2n ≤ |
∑

xf(x)ω−rx| ≤
∑
i

|
∑
x∈Pi

f(x)ω−rx| ≈
∑
i

|
∑
x∈Pi

f(x)|,

and also that

0 =
∑
x

f(x) =
∑
i

∑
x∈Pi

f(x).

Adding these equations together and using an averaging argument, we find that
there exists i such that

|
∑
x∈Pi

f(x)|+
∑
x∈Pi

f(x) ≥ c′α2|Pi|,
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where c′ is a slightly smaller absolute constant (because of the approximation in
the first equation), which implies that∑

x∈Pi

f(x) ≥ c′α2|Pi|.

Recalling that f(x) = A(x)− α for each x, we find that this is telling us that

|A ∩ Pi| ≥ (α+ c′α2)|Pi|.
Thus, what we have managed to do is find an arithmetic progression Pi of length
at least c

√
n such that the density of A inside Pi is greater than the density of A

inside Zn by c′α2.
We can iterate this argument: either A ∩ Pi contains an arithmetic progression

of length 3 or Pi contains a subprogression of length at least c
√
|Pi| inside which A

has density at least α+2c′α2, and so on. The iteration must eventually terminate,
because the density cannot exceed 1, and Roth’s theorem is proved.

If one analyzes carefully the bound that comes out of the above argument, one
finds that it shows that if A is a subset of {1, 2, . . . , n} of density at least C/ log log n,
for some absolute constant C, then A must contain an arithmetic progression of
length 3. The double logarithm comes from the fact that we have to iterate α−1

times, and each time we do so we take a square root.
This bound has been improved in interesting ways several times. The table below

gives an idea of how the bounds have progressed over the years. The publication
dates of the papers of Szemerédi and Heath-Brown are slightly misleading: those
results were actually independent. Also, the papers of Sanders obviously came out
in the opposite order to the order in which the results were proved. The problem of
improving the bounds for Roth’s theorem has been an extremely fruitful one: the
2008 paper of Bourgain and the 2012 paper of Sanders could perhaps be regarded
as clever refinements of existing techniques, but all the other papers introduced
significant new ideas, many of which have been very influential and led to the
solutions of several other problems.

To put these results in perspective, it is worth mentioning that the best known
lower bound on the density (that is, the largest density known to be possible for a
set that contains no progression of length 3) is exp(−c

√
log n), which is far lower

than Bloom’s current record upper bound. But even if that gap turns out to be
very hard to close, we are tantalizingly close to a bound of 1/ log n, which would be
enough to give a purely combinatorial proof that the primes contain infinitely many

Bounds for Roth’s theorem

Author Density bound Published Reference
Roth C/ log log n 1953 [45]

Heath-Brown C/(logn)c, some c > 0 1987 [37]

Szemerédi C/(log n)1/20 1990 [54]
Bourgain C(log log n/ log n)1/2 1999 [6]
Bourgain C(log log n)2/(log n)2/3 2008 [7]
Sanders (log n)−3/4+o(1) 2012 [49]
Sanders C(log log n)6/ log n 2011 [48]
Bloom C(log log n)4/ log n 2012 [5]



GENERALIZATIONS OF FOURIER ANALYSIS, AND HOW TO APPLY THEM 7

arithmetic progressions of length 3 (a result that was proved by number-theoretic
methods soon after Vinogradov proved his 3-primes theorem). In fact, a bound
of c log log n/ logn would suffice for this, since the fact that the primes have very
small intersection with some arithmetic progressions (such as the even numbers)
can be used to show that there are arithmetic progressions of length n inside which
the primes have at least that density.

4. A first generalization—to arbitrary finite Abelian groups

Many of the proof techniques that give us results about subsets of Zn work just as
well in an arbitrary Abelian group. This turns out to be a very useful observation,
as there are some Abelian groups, in particular the groups Fn

p for fixed p and large
n, where the proofs are much cleaner. So sometimes to work out the proof of a
result about Zn it is a good strategy to prove an analogue for a group such as Fn

3

first and then work out how to modify the argument so that it works in Zn. (For
a much fuller explanation of the benefits of this strategy, a survey by Ben Green
from 2005 [25] and a follow-up by Julia Wolf written a decade later [58] are highly
recommended.)

Recall the inversion formula for the Fourier transform on Zn, which states that

f(x) =
∑
r

f̂(r)ωrx.

If we write ωr for the function x 
→ ωrx, then we can write the formula in the
slightly more abstract form

f =
∑
r

f̂(r)ωr,

which is showing us how to write f as a linear combination of the functions ωr.
What is special about the functions ωr? The property that singles them out is

that they are the characters of Zn, that is, the homomorphisms from Zn to C. It
turns out to be straightforward to generalize Fourier analysis to all finite Abelian
groups G by decomposing functions f : G → C as linear combinations of characters.

For this to work, we would like the characters to form an orthonormal basis,
which they do, by a well-known argument. To see the orthonormality, let χ be a
non-trivial character, let y ∈ G be such that χ(y) �= 1, and observe that

Exχ(x) = Exχ(xy) = χ(y)Exχ(x),

from which it follows that Exχ(x) = 0. But then if χ1 and χ2 are distinct characters,
we have that

〈χ1, χ2〉 = Exχ1(x)χ2(x) = Exχ1(x)χ2(x)
−1,

which is zero, since χ1χ
−1
2 is a non-trivial character.

Less elementary is the fact that the characters span G. For this one needs the
structure theorem for finite Abelian groups, which gives us that G is a product of
cyclic groups. We know that each cyclic group has a complete basis of characters,
and the products of those characters form a basis of characters for the whole group,
which gives us a complete set.

Given that the characters form an orthonormal basis, we can expand a function
f as a linear combination

∑
χ〈f, χ〉χ. The coefficients 〈f, χ〉 are called the Fourier

coefficients of f and are denoted f̂(χ). That is, we have the formula

f̂(χ) = Exf(x)χ(x)
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for the Fourier transform, and the statement that f =
∑

χ〈f, χ〉χ is giving us our
inversion formula

f(x) =
∑
χ

f̂(χ)χ(x).

The fact that we are writing f̂(χ) represents a slight change of notation from the Zn

case, where we wrote f̂(r) instead of f̂(ωr). This emphasizes the fact that, properly

speaking, the Fourier transform is defined on the dual group Ĝ rather than on G. It
happens that these two groups are isomorphic, but the isomorphism is not natural
in the category-theoretic sense, and, as commented earlier, we like to put different
measures on them.

When G is the group Fn
3 , the characters take the form ωr : x 
→ ωr.x, where now

r and x are elements of Fn
3 , ω = exp(2πi/3), and r.x is shorthand for

∑n
i=1 rixi.

It was observed by Meshulam [41] that Roth’s proof of Roth’s theorem has an
analogue for subsets of Fn

3 , and that the proof is in fact considerably simpler in
that context because there is no longer any need for the lemma about partitioning
into arithmetic progressions on which a character is roughly constant. The theorem
is as follows.

Theorem 4.1. There is a constant C such that for every positive integer n, every
subset A ⊂ Fn

3 of density at least C/n contains distinct elements x, y, z such that
x+ y + z = 0.

Note that in Fn
3 the equation x+y+z = 0 is equivalent to the equation x+y = 2z,

so the analogy with Roth’s theorem is very close. As for the proof, one gets in
exactly the same way that either A looks random enough that it must contain an
arithmetic progression or there is a non-zero r such that Â(r) (or Â(ωr) if you
prefer) has magnitude at least cα2, where α is the density of A. In the second case,
it is easy to show that A has density at least α + c′α2 in at least one of the three
sets {x : r.x = i} (where i = 0, 1, or 2). Since these sets are just subspaces of Fn

3 of
codimension 1, we are then already in a position to iterate.

This argument illustrates very well why it can be fruitful to look at more general
Abelian groups. Because the group Fn

3 has a rich set of cosets of subgroups—
namely all the affine subspaces—it is very convenient for iterative arguments. This
somehow allows one to focus on the “real issues”. In more general Abelian groups,
and in particular with the cyclic groups Zn, one has to make do with subsets that
are “subgroup-like”. Doing so is possible, but it creates technical problems that
can make arguments hard work to write down and even harder to read.

Until fairly recently, the best known upper bound was given by the simple ar-
gument outlined above. But in 2011 Bateman and Katz improved the bound to
one of the form C/n1+ε for fixed constants C and ε > 0. This was a remarkable
achievement, given how long the bound had stood still, but the gap that remained
was still huge.

In the other direction, the best known method for producing lower bounds was
to look for an example B ⊂ Fk

3 for some small k and then to use it to create a class
of examples A = Br ⊂ Fkr

3 . If B has density ck and n = kr, then Br has density
ckr = cn. But the following question was left wide open by the result of Bateman
and Katz.
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Question 4.2. Let cn be the greatest possible density of a subset A ⊂ Fn
3 that

contains no three distinct elements x, y, z such that x+ y+ z = 0. Does there exist
θ < 1 such that cn ≤ θn for every n?

Very recently—in May 2016—this problem was solved using a completely different
method, in a development that astonished additive combinatorialists. First, Croot,
Lev, and Pach obtained an upper bound of this exponential type for subsets of
Zn
4 with no 3-term arithmetic progression [12]. Then, barely a week later, Jordan

Ellenberg and Dion Gijswijt independently saw how to modify the argument of
Croot, Lev, and Pach to give a similar bound for the cap-set problem itself, thereby
giving a positive answer to the question above [13].

The paper of Ellenberg and Gijswijt is short and self-contained, but here is a
very brief outline of how the proof goes. Suppose that A ⊂ Fn

3 is a set that contains
no solution to the equation x + y = 2z. For each d, let Qd be the vector space of
polynomials over F3 in n variables that have degree at most 2 in each variable and
that have total degree at most d. The polynomials of degree at most 2 in each
variable are distinct not just as polynomials but also as functions on Fn

3 , so Q2n is
the space of all functions from Fn

3 to F3.
A random polynomial of degree at most 2 in each variable has expected degree

n, and the probability that its degree deviates significantly from n is tiny. In
particular, the probability that a polynomial belongs to Q2n/3 or fails to belong to
Q4n/3 is exponentially small.

Write 2.A for the set {2x : x ∈ A}. Then our hypothesis about A can be
expressed as the statement that (A + A) ∩ 2.A = ∅. If A, and therefore 2.A, has
density significantly larger than the probability that a polynomial fails to belong
to Q4n/3, then a simple dimension argument shows that there exists a polynomial
of degree at most 4n/3 that vanishes outside 2.A and does not vanish inside 2.A.
With a little care, one can show that if A is a bit bigger than this, then there exists
a polynomial of degree at most 4n/3 that is zero outside 2.A and non-zero on at
least two thirds of the points in 2.A.

In particular, there is a polynomial P of degree at most 4n/3 that vanishes on
A+A and is non-zero at at least two thirds of the points in 2.A. This implies that
if we define a function f : A × A → F3 by f(x, y) = P (x + y), then this function,
considered as a matrix, has rank at least 2|A|/3, since it is zero off the diagonal
and non-zero in at least 2|A|/3 places on the diagonal.

However, one can also show that f has smaller rank than this, using the fact that
it is of the special form P (x+ y), where P is a polynomial of degree at most 4n/3.
The idea is to expand out P (x+ y) as a linear combination of monomials in the xi

and yi and divide up the sum according to whether the contribution from the xi

has degree at most 2n/3 or the contribution from the yi does. It is straightforward
to show then that the rank of f is at most twice the dimension of Q2n/3, which, as
we have commented, is exponentially small compared with 3n.

This proof, though simple, still needs to be fully digested. Is it going to lead to
solutions to many other problems, such as the problem of finding the right bounds
for Roth’s theorem? (It has not been used for that, but it has been used for some
other problems already [15,26].) Is Fourier analysis about to be dethroned from its
position as the tool of choice for this kind of problem? How are the two approaches
related, if at all? It is too early to say, but it seems highly likely that there will be
further developments in the not too distant future.
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5. The U2
norm

In the proof of Roth’s theorem, we had a useful measure of the quasirandomness
of a function, namely the size of its largest Fourier coefficient—the smaller that size,
the more quasirandom the function. However, this measure has the disadvantage

that there is not an obvious physical-space interpretation of ‖f̂‖∞—that is, an
expression in terms of the values of f that does not mention the Fourier transform.

Instead, one often prefers to use the measure ‖f̂‖4, which does turn out to have a
physical-space interpretation. In the contexts we care about, these two quantities
are roughly equivalent, since we have the trivial inequalities

‖f̂‖4∞ ≤ ‖f̂‖44 ≤ ‖f̂‖2∞‖f̂‖22,

and we usually deal with functions f such that ‖f̂‖2 = ‖f‖2 ≤ 1. This tells us that

‖f̂‖∞ is small if and only if ‖f̂‖4 is small (though if we pass from one equivalent
statement to the other and back again, we obtain a worse constant of smallness
than the one we started with).

The reason that ‖f̂‖4 is nice is that

‖f̂‖44 =
∑
r

|f̂(r)|4 = 〈f̂2, f̂2〉 = 〈f ∗ f, f ∗ f〉 = Ex+y=z+wf(x)f(y)f(z)f(w),

where in the above argument we used the definition of the 	4 norm, the definition of
the inner product on Ẑn, Parseval’s identity and the convolution identity, and the
definition of convolutions and inner products in Zn. (It is also possible to prove the
identity above using a direct calculation, but it is nicer to use the basic properties
of the Fourier transform.)

Quadruples (x, y, z, w) with x + y = z + w are the same as quadruples of the
form (x, x+ a+ b, x+ a, x+ b), so the final expression above can be written in the
form

Ex,a,bf(x)f(x+ a)f(x+ b)f(x+ a+ b).

Since this equals ‖f̂‖44, we find that it is possible to define a norm ‖f‖U2 by the
formula

‖f‖U2 = (Ex,a,bf(x)f(x+ a)f(x+ b)f(x+ a+ b))1/4.

This may seem pointless, since it is just renaming the norm f 
→ ‖f̂‖4, but we
use a different name to emphasize that we are using a purely physical-space defini-
tion. The great advantage of doing this is that it gives us an alternative definition
that has, as we shall see later, a very natural and useful generalization that does
not correspond to any direct generalization of the definition in terms of Fourier
coefficients.

A useful fact about the U2 norm is that it satisfies a kind of Cauchy–Schwarz
inequality. Let us define a generalized inner product by the formula

[f1, f2, f3, f4] = Ex,a,bf1(x)f2(x+ a)f3(x+ b)f4(x+ a+ b).

Then ‖f‖4U2 = [f, f, f, f ]. The inequality states that

[f1, f2, f3, f4] ≤ ‖f1‖U2‖f2‖U2‖f3‖U2‖f4‖U2 .
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We quickly sketch a proof. We have that

[f1, f2, f3, f4] = Ex,y,af1(x)f2(x+ a)f3(y)f4(y + a)

= Ea(Exf1(x)f2(x+ a))(Eyf3(y)f4(y + a))

≤ (Ea|Exf1(x)f2(x+ a)|2)1/2(Ea|Eyf3(y)f4(y + a)|2)1/2

by the usual Cauchy–Schwarz inequality. But this last expression is easily seen to
be

[f1, f2, f1, f2]
1/2[f3, f4, f3, f4]

1/2.

Furthermore, we have the symmetry [f1, f2, f3, f4] = [f1, f3, f2, f4], so we can
rewrite the last expression as

[f1, f1, f2, f2]
1/2[f3, f3, f4, f4]

1/2.

Applying the argument again, we find that

[f1, f1, f2, f2] ≤ [f1, f1, f1, f1]
1/2[f2, f2, f2, f2]

1/2,

and similarly for f3 and f4, and from this the result follows.
This inequality gives us a generalized Minkowski inequality in just the way that

the normal Cauchy–Schwarz inequality gives the normal Minkowski inequality. In-
deed,

‖f0 + f1‖4U2 = [f0 + f1, f0 + f1, f0 + f1, f0 + f1]

=
∑

ε∈{0,1}4

[fε1 , fε2 , fε3 , fε4 ]

≤
∑

ε∈{0,1}4

‖fε1‖U2‖fε2‖U2‖fε3‖U2‖fε4‖U2

= (‖f0‖U2 + ‖f1‖U2)4.

We thus have a proof, entirely in physical space, that the U2 norm is a norm.
If A ⊂ Zn, then we can measure the quasirandomness of A as follows. Let α

be the density of A, and write A(x) = α + f(x). Then by the loose equivalence of
the 	∞ and 	4 norms of the Fourier coefficients, we have that A is quasirandom in
a useful sense if ‖f‖U2 is small. One can check easily that ‖A‖4U2 = α4 + ‖f‖4U2 ,
so this is saying that ‖A‖U2 is approximately equal to α4. But ‖A‖4U2 has a nice
interpretation. Recall that it equals

Ex+y=z+wA(x)A(y)A(z)A(w),

which is the probability, if you choose a random quadruple (x, y, z, w) such that
x+ y = z+w, that all of x, y, z and w lie in A. This we call the additive quadruple
density of A. Thus, a set of density α has additive quadruple density at least α4,
with near equality if it is quasirandom in a useful sense.

An important final remark is that one can also prove entirely in physical space
that if A is quasirandom in this sense, then its arithmetic-progression density is
roughly α3. Indeed, writing A(x) = α + f(x) again, and noting that if we pick
a random triple (x, y, z) with x + y = 2z, then any two of x, y, and z will be
independent and uniformly distributed (always assuming that n is odd), we have
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that

Ex+y=2zA(x)A(y)A(z) = Ex+y=2z(α+ f(x))(α+ f(y))(α+ f(z))

= α3 + Ex+y=2zf(x)f(y)f(z)

= 〈f ∗ f, f2〉,

where f2(z) = f(z/2) for each z. But by Cauchy–Schwarz and the fact that f takes
values of modulus at most 1,

|〈f ∗ f, f2〉|2 ≤ ‖f ∗ f‖22‖f2‖22
≤ Ex+y=z+wf(x)f(y)f(z)f(w)

= ‖f‖4U2 .

Therefore, if ‖f‖U2 is small, then Ex+y=2zA(x)A(y)A(z) ≈ α3.
In due course, we shall see how the arguments given above are more amenable

to generalization than the Fourier-analytic proof we gave earlier.
We close this section by remarking that the definition of the U2 norm and the

basic observations we have made about it work just as well in an arbitrary finite
Abelian group, and several of its properties hold even for non-Abelian groups.

6. Generalization to matrices

Given a function f we can define a linear map Tf that takes a function g to the
convolution f ∗ g. That is, we have

Tf (g)(x) = Euf(x− u)g(u).

If we define a matrix Mf by Mf (x, u) = f(x− u), then this formula becomes

Tf (g)(x) = EuMf (x, u)g(u),

which is just the usual formula for multiplying a matrix by a vector, except that
instead of summing over u we have taken the expectation. It will be convenient,
for the purposes of this section, to adopt a non-standard definition of matrix mul-
tiplication by using this normalization. That is, we will say that if A and B are
two matrices, then

(AB)(x, z) = EyA(x, y)B(y, z).

Since

TfTgh = Tf (g ∗ h) = f ∗ (g ∗ h) = (f ∗ g) ∗ h,
we get that MfMg = Mf∗g with this normalization.

Notice that

Tf (ωr)(x) = f ∗ ωr(x) = Euf(u)ω
r(x−u) = f̂(r)ωr(x).

Thus, ωr is an eigenvector of Tf with eigenvalue f̂(r).
A more conceptual way of seeing this is to note that by the convolution identity,

the convolution of f with the function g =
∑

r ĝ(r)ωr is the function
∑

r f̂(r)ĝ(r)ωr,
so with respect to the basis ω0, . . . , ωn−1 all convolution maps Tf are multipliers
(that is, given by diagonal matrices).

These observations allow us to translate some of the concepts we have defined
so far into matrix language. The Fourier coefficients of a function f become the
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eigenvalues of the matrix Mf . However, that is just the beginning. Let us write
a⊗ b for the rank-1 matrix with

(a⊗ b)(u, v) = a(u)b(v).

Note that if a, b, f : Zn → C, then

(a⊗ b)(f)(x) = a(x)Eyf(y)b(y) = a(x)〈f, b〉.
Thus, the diagonalization of f is telling us that

Mf =
∑
r

f̂(r)ωr ⊗ ωr,

since if we apply either side to the function ωs, we obtain f̂(s)ωs.
We are now in a position to write down Parseval’s identity in matrix terms.

First, note that

Ex,y|Mf (x, y)|2 = Ex,y|f(x− y)|2 = Ex|f(x)|2 = ‖f‖22.
Therefore, by Parseval’s identity, we find that

Ex,y|Mf (x, y)|2 =
∑
r

|f̂(r)|2.

The left-hand side is the L2 norm of the matrix entries of Mf , which is often known
as the (normalized) Hilbert–Schmidt norm. And the right-hand side, though it
appears to be expressed in terms of f , can be thought of as the sum of squares of
the eigenvalues of Mf .

This connection can be generalized to all matrices that have an orthonormal
basis u1, . . . , un of eigenvectors. In that case we can write M =

∑
i λiui ⊗ ui, and

we find that

Ex,y|M(x, y)|2 = Ex,y

∑
i,j

λiλjui(x)ui(y)uj(x)uj(y)

=
∑
i,j

λiλjEx,yui(x)ui(y)uj(x)uj(y)

=
∑
i,j

λiλj |〈ui, uj〉|2

=
∑
i

|λi|2.

More generally still, if M does not have an orthonormal basis of eigenvectors, it
will still have a singular value decomposition, that is, a decomposition of the form∑

i λiui ⊗ vi where (ui)
n
1 and (vi)

n
1 are both orthonormal bases and the λi are

non-negative real numbers. (The non-negativity can be obtained by multiplying
the vi by suitable scalars of modulus 1.) The above argument carries over with
very little change, and we find that ‖M‖22 (that is, the square of the normalized
Hilbert–Schmidt norm) is equal to the sum of the squares of the singular values.

As we have already made clear, this fact specializes to Parseval’s identity when
the matrix is the matrix Mf of a convolution operator Tf .

More importantly, singular values of matrices play a rather similar role in graph
theory to the role played by Fourier coefficients in additive combinatorics. To
see this, let us first find an analogue for matrices of the U2 norm. Given the
correspondence so far, it should be equal to the 	4 norm of the singular values, and



14 W. T. GOWERS

its fourth power should have a nice interpretation in terms of the matrix values.
This does indeed turn out to be the case. An argument similar to the one just given
for the Hilbert–Schmidt norm, but slightly more complicated, shows that∑

i

|λi|4 = Ex,y,a,bM(x, y)M(x+ a, y)M(x, y + b)M(x+ a, y + b).

Now the fourth root of the left-hand side is a well-known matrix norm—the fourth-
power trace class norm. From this one can deduce that the fourth root of the right-
hand side is a norm, which we write as ‖M‖� and call the box norm (because we
are summing over aligned rectangles). But as with the U2 norm, one can prove this
fact directly by first defining a generalized inner product for two-variable functions

[f1, f2, f3, f4] = Ex,y,a,bf1(x, y)f2(x+ a, y)f3(x, y + b)f4(x+ a, y + b),

using the Cauchy–Schwarz inequality to prove that

[f1, f2, f3, f4] ≤ ‖f1‖�‖f2‖�‖f3‖�‖f4‖�,

and finally deducing that ‖f + g‖4� ≤ (‖f‖� + ‖g‖�)4 in more or less the same way
as we did for the U2 norm.

After this it will come as no surprise to learn that the box norm specializes to the
U2 norm when the matrix is a Toeplitz matrix (that is, the matrix of a convolution
operator). Indeed, we have that

‖Mf‖4� = Ex,y,a,bf(x− y)f(x+ a− y)f(x− y − b)f(x+ a− y − b)

= Ex,a,bf(x)f(x+ a)f(x− b)f(x+ a− b)

= Ex,a,bf(x)f(x+ a)f(x+ b)f(x+ a+ b)

= ‖f‖4U2 .

Of course, we could also have deduced this less directly by using the relationship
between eigenvalues, Fourier coefficients, and the two norms.

Now let us take a graphG and letM be its adjacency matrix. (That is, M(x, y) =
1 if there is an edge from x to y and 0 otherwise.) Then the analogy between subsets
of Zn (or more general finite Abelian groups) and matrices strongly suggests that
the box norm ‖.‖� should be a useful measure of quasirandomness. That is indeed
the case. If G has density δ, meaning that Ex,yM(x, y) = δ, then a straightforward
argument using the Cauchy–Schwarz inequality shows that ‖M‖� ≥ δ. If equality
almost holds, then G turns out to enjoy a number of properties that typical random
graphs have.

To see this, we begin by noting that the box norm relates to the largest singular
value in much the way that the U2 norm relates to the largest Fourier coefficient.
If the singular values are λ1, . . . , λn and if λ = (λ1, . . . , λn), then

‖λ‖4∞ ≤ ‖λ‖44 ≤ ‖λ‖22‖λ‖2∞,

and if the matrix entries have modulus at most 1, then we know in addition that
‖λ‖22 = ‖M‖22 ≤ 1. Therefore, the largest singular value (which is equal to the
operator norm of the matrix) is small if and only if the box norm is small.

For convenience let us now assume that G is regular, so every vertex has degree
δn. (This is not a major assumption, but the statements become slightly less clean
and the proofs slightly more complicated if we do not make it.) Then the constant
function u(x) = 1 is an eigenvector of M with eigenvalue δ. (Recall that we are
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using expectations in our matrix multiplication, which is why we get δ here rather
than δn.)

Now consider the matrix A = M − δu⊗u. That is, A(x, y) = M(x, y)− δ. Since
G is regular, we find that ExA(x, y) = 0 for every y and EyA(x, y) = 0 for every x.
From this it is not hard to prove that ‖M‖4� = δ4+‖A‖4�: we expand ‖A+δu⊗u‖4�
as a sum of 16 terms and the only ones that are not zero are the term with all A’s
and the term with all δ’s.

Therefore, if ‖M‖� is close to δ, it follows that ‖A‖� is close to zero, which
implies that the largest singular value of A is small, and therefore that A has a
small operator norm. Let θ be this operator norm.

Now let f and g be two functions defined on the vertex set of G that take values
in the interval [−1, 1]. Then

|〈Af, g〉| ≤ ‖Af‖2‖g‖2 ≤ θ‖f‖2‖g‖2 ≤ θ.

We also have that

〈(δu⊗ u)(f), g〉 = 〈(δExf(x))u, g〉 = δExf(x)Eyg(y).

It follows that

|〈Mf, g〉 − δExf(x)Eyg(y)| ≤ θ.

But 〈Mf, g〉 = Ex,yM(x, y)f(x)g(y), so if θ is small, then this is telling us that

Ex,yM(x, y)f(x)g(y) ≈ δEx,yf(x)g(y).

Suppose now that f and g are the characteristic functions of sets U and V of density
α and β. Now we have that

Ex,yM(x, y)U(x)V (y) ≈ δEx,yU(x)V (y) = δαβ.

This tells us that the number of edges from U to V in the graph is approximately
δ|U ||V |, which is exactly the number one would expect if G was a random graph
with density δ.

Now the fourth power of the box norm of M can be seen to equal the 4-cycle
density of the graph G, that is, the probability, if vertices x1, x2, x3, x4 are chosen
independently at random, that x1x2, x2x3, x3x4 and x4x1 are all edges of G. Thus,
we have started with a “local” assumption—that the number of 4-cycles in the
graph is almost as small as it can possibly be given the density of the graph—and
we ended up with a global conclusion—that the number of edges between any two
large sets is approximately what one would expect in a random graph of the same
density. This fact has many applications in graph theory.

The converse can also be shown without too much difficulty. In fact, there turn
out to be several properties that are all loosely equivalent and all say that in one
way or another a graph G behaves like a random graph. A particularly interesting
one from the point of view of comparison with Roth’s theorem is the statement
that if a graph G of density δ is quasirandom (in, for example, the sense of having
box norm approximately δ), then for any graph H with k edges (here k is fixed
and the size of G is tending to infinity) the H density in G is approximately δk,
as it would be in a random graph. Conversely, if G contains the “wrong” number
of copies of H, then we can find a subgraph that is substantially denser than the
original graph.

The theory of quasirandom graphs goes back to papers of Thomason [56] and
Chung, Graham, and Wilson [11]. It has subsequently been generalized in many
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directions and to many other mathematical structures, and quasirandomness has
become a major theme in mathematics. (Of course, in other guises, this theme has
existed for much longer: one has only to think of the distribution of prime numbers,
for instance.)

It is important to point out that not all the basic properties of the Fourier
transform carry over in a nice way to matrices. For example, the inner product
corresponding to the normalized Hilbert–Schmidt norm is

〈A,B〉 = ExyA(x, y)B(x, y) = tr(AB∗)

(where the trace here is also defined in a normalized way—that is, tr(A) = ExAxx).
If the singular-value decompositions of A and B are

∑
i λiui⊗vi and

∑
j μjwj⊗zj ,

then 〈A,B〉 works out to be ∑
i,j

λiμj〈ui, wj〉〈vi, zj〉.

If it happens that ui = wi and vi = zi for every i, as it does when A = B, then this
simplifies to

∑
i λiμi, the formula we would like if we wanted a direct analogue of

Parseval’s identity. But if not, then we have to make do with the more complicated
formula above (which nevertheless can be useful sometimes).

Similarly, there is no tidy analogue of the convolution identity except under very
special circumstances. In general,

(
∑
i

λiui ⊗ vi)(
∑
j

μjwj ⊗ zj) =
∑
i,j

λiμj〈wj , vi〉ui ⊗ zj .

If vi = wi for every i, then this simplifies to
∑

i λiμiui ⊗ zi, so we find that the
singular values of the matrix product are products of the singular values of the
original matrices. But this is an unusual situation (that happens to occur when
the two matrices are convolution matrices and all the bases are the same basis of
trigonometric functions).

7. Quadratic Fourier analysis

In this section I shall discuss a generalization of Fourier analysis that lacks a
satisfactory inversion formula. The inversion formula might seem to be such a fun-
damental property of the Fourier transform that the generalization does not deserve
to be called a generalization of Fourier analysis. However, for several applications
of Fourier analysis, a weaker property suffices, and that weaker property can be
generalized. Nevertheless, it is a very interesting open problem to develop the the-
ory further so as to make the analogy with conventional discrete Fourier analysis
closer.

Let us begin by looking at a problem that demonstrates the need for a general-
ization at all, namely Szemerédi’s theorem for progressions of length 4. It is natural
to try to model a proof on the proof for progressions of length 3. At the heart of
that proof is the identity

Ex+y=2zf(x)g(y)h(z) =
∑
r

f̂(r)ĝ(r)ĥ(−2r).

We have essentially proved this already, but a variant of the argument is to observe
that both sides are equal to Ex,y,zf(x)g(y)h(z)

∑
r ω

−r(x+y−2z). So it is natural
to look for a similar identity for progressions of length 4. Such a progression can
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be thought of as a quadruple (x, y, z, w) such that x + z = 2y and y + w = 2z.
However,

Ex+z=2y,y+w=2zf1(x)f2(y)f3(z)f4(w)

= Ex,y,z,wf1(x)f2(y)f3(z)f4(w)
∑
r,s

ω−r(x−2y+z)−s(y−2z+w)

=
∑
r,s

f̂1(r)f̂2(−2r + s)f̂3(r − 2s)f̂4(s).

A quadruple (a, b, c, d) can be written in the form (r,−2r+ s, r− 2s, s) if and only
if 3a+2b+ c = b+2c+3d = 0. So we have ended up with a sum over four variables
that satisfy two linear equations, which is what we had before we took the Fourier
transform. So we have not gained anything.

An even more compelling argument that the Fourier transform is too blunt a
tool for our purposes is to note that it is possible for all the Fourier coefficients of
f1, f2, f3, and f4 to be tiny, but for the expectation

Ex,df1(x)f2(x+ d)f3(x+ 2d)f4(x+ 3d)

to be large. (This is another way of writing the left-hand side of the equality above.)

Let f1(x) = ωx2

, f2(x) = ω−3x2

, f3(x) = ω3x2

, and f4(x) = ω−x2

. Then

Ex,df1(x)f2(x+ d)f3(x+ 2d)f4(x+ 3d) = Ex,dω
x2−3(x+d)2+3(x+2d)2−(x+3d)2 .

But the exponent on the right-hand side is identically zero, so both sides are equal
to 1, which is as large as the expectation can possibly be given that all four functions

take values of modulus 1. On the other hand, functions like ωx2

have tiny Fourier
coefficients. To see this (assuming for convenience that n is odd), note that if

f(x) = ωx2

, then

f̂(r) = Exω
x2−rx = Exω

(x−r/2)2−r2/4 = ω−r2/4Exω
x2

.

This shows that |f̂(r)| = |Exω
x2 | is the same for all r, and therefore by Parseval it

equals n−1/2 for all r. In other words, the largest Fourier coefficient is as small as
Parseval’s identity will allow.

It is almost impossible at this stage not to have the following thought. For Roth’s
theorem, the functions that caused trouble by not being sufficiently random-like
were the trigonometric functions x 
→ ωrx. These are linear phase functions—that
is, compositions of linear functions with the function x 
→ ωx. We have just seen
that when it comes to discussing arithmetic progressions of length 4, quadratic
phase functions—that is, functions of the form ωq(x) where q is a quadratic—cause
problems. Could it be that these are somehow the only functions that cause prob-
lems? Does there exist some kind of “quadratic Fourier analysis” that allows one to
expand a function as a linear combination of quadratic phase functions and thereby
to generalize the proof of Roth’s theorem to progressions of length 4?

The answer to this question turns out to be a partial yes. More precisely, one can
generalize “linear” Fourier analysis by just enough to obtain a proof of Szemerédi’s
theorem for progressions of length 4, but the generalized Fourier analysis lacks
some of the nice properties of the usual Fourier transform, as a result of which the
proof becomes substantially harder. In particular, it turns out that the quadratic
phase functions are not the only ones that cause trouble—there are also some
more general functions that exhibit sufficiently quadratic-like behaviour to cause
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problems similar to the ones caused by the “pure” quadratic phase functions. But
before we get on to that, it will be useful to look at another concept that comes
into the picture.

8. The U3
norm

Discrete Fourier analysis decomposes a function into characters. It is far from
obvious how to define a “quadratic” analogue of this decomposition, since one’s
natural first guesses turn out not to have the properties one wants, as we shall see
later. But right from the start it is clear that there are problems, because there

are n2 functions of the form x 
→ ωax2+bx, so we cannot hope to define a quadratic
Fourier transform by simply writing down a suitable basis of Cn and expanding
functions in terms of that basis.

It is for this reason that the reformulation of the norm f 
→ ‖f̂‖4 in purely
physical-space terms is so important. It gives us a concept that is easy to generalize.
As one might expect, there are Uk norms for all k ≥ 2 (and also a seminorm when
k = 1), but since it is clear what they are once one has seen the U3 norm, we shall
present just that. It is defined by the formula

‖f‖8U3 = Ex,a,b,cf(x)f(x+ a)f(x+ b)f(x+ a+ b)f(x+ c)

× f(x+ a+ c)f(x+ b+ c)f(x+ a+ b+ c).

That is, where the U2 norm involves an average over “squares”, the U3 norm
involves a similar average over “cubes”. (The Uk norm involves a similar average
over k-dimensional cubes.) The letter U stands for “uniformity”, because when a
function has a small uniformity norm, its values are “uniformly distributed” in a
useful sense.

There are a few remarks to make about the U3 norm to give an idea of its basic
properties and to indicate why it is likely to be important to us.

• First, it really is a norm. This is proved in much the same way as it is for the
U2 norm: one defines an appropriate generalized inner product (by using
eight different functions in the formula above instead of just one), deduces
a generalized Cauchy–Schwarz inequality from the conventional Cauchy–
Schwarz inequality, and finally deduces a generalized Minkowski inequality
from the generalized Cauchy–Schwarz inequality.

• Second, if f is a quadratic phase function f(x)=ωrx2+sx, then ‖f‖U3 takes
the largest possible value (given that all the values of f have modulus 1),
namely 1. This is simple to check, and boils down to the fact that

x2 − (x+ a)2 − (x+ b)2 + (x+ a+ b)2 − (x+ c)2

+ (x+ a+ c)2 + (x+ b+ c)2 − (x+ a+ b+ c)2 = 0

for every x, a, b, and c.
• Third, the Uk norms increase as k increases. In particular, the U3 norm is
larger than the U2 norm. This means that the statement that ‖f‖U3 is small
is stronger than the statement that ‖f‖U2 is small. That fact, combined
with the observation that ‖f‖U3 is large for quadratic phase functions,
gives some reason to hope that the U3 norm could be a useful measure of
quasirandomness for Szemerédi’s theorem for progressions of length 4.
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• Fourth, if A is a set of density α, then an easy Cauchy–Schwarz argument
shows that ‖A‖U3 ≥ α. Also, ‖A‖8U3 counts the number of “cubes” in A.
So when we talk about sets, we will want to regard a set as “quadratically
uniform” if it has almost the minimum number of cubes. This will be a
stronger property than the “linear uniformity” that we used in the proof of
Roth’s theorem, which is based on the number of squares.

Presenting those remarks is slightly misleading, however, as it suggests that the
definition of the U3 norm is a purely speculative generalization of the definition of
the U2 norm that just happens to be useful. In fact, the definition arises naturally
(or at least can arise naturally) when one tries to generalize the physical-space
argument we saw earlier that shows that a set with small U2 norm has roughly the
expected number of arithmetic progressions of length 3. One ends up being able to
show that if f1, f2, f3, and f4 are functions that take values of modulus at most 1,
then

|Ex,df1(x)f2(x+ d)f3(x+ 2d)f4(x+ 3d)| ≤ min
i

‖fi‖U3 .

In other words, if one of the four functions has a small U3 norm, then the arithmetic
progression count must be small.

The point I am making here is that if one sets out to prove a bound for the
left-hand side in terms of some suitable function of f4, say, knowing that one’s
main tool is the Cauchy–Schwarz inequality, then the function that one obtains is
precisely the U3 norm.

The inequality above can be used to show that if A is a set of density α and
‖A‖U3 ≤ α + c(α), then A is sufficiently quasirandom to contain an arithmetic
progression of length 4, and in fact to have 4-AP density approximately α4. To
prove this, one writes A = α+ f with ‖f‖U3 small, one expands out the expression

Ex,dA(x)A(x+ d)A(x+ 2d)A(x+ 3d)

as a sum of 16 terms, and one uses the inequality above to show that all these terms
are small apart from the main term α4.

9. Generalized quadratic phase functions

In the previous section we noted that if q is a quadratic function defined on
Zn, and f is the function f(x) = ωq(x), then ‖f‖U3 = 1, which is as large as it
can possibly be. The key to this fact, as we have already noted, is that quadratic
functions have the property that

q(x)− q(x+ a)− q(x+ b) + q(x+ a+ b)− q(x+ c)

+ q(x+ a+ c) + q(x+ b+ c)− q(x+ a+ b+ c) = 0

for every x, a, b, c. Moreover, this property characterizes quadratic functions.
However, if we do not insist on maximizing ‖f‖U3 but merely getting close to

the maximum, then we suddenly let in a whole lot more functions. In this section
I shall describe one or two of them.

There is a general recipe for producing them, which is to take a set A ⊂ Zn and
construct a quadratic homomorphism on A—that is, a map ψ : A → C that takes
values of modulus 1 and satisfies the equation

ψ(x)ψ(x+ a)ψ(x+ b)ψ(x+a+b)ψ(x+ c)ψ(x+a+c)ψ(x+b+c)ψ(x+ a+ b+ c) = 1
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whenever all of x, x+a, x+b, x+c, x+a+b, x+a+c, x+b+c, and x+a+b+c belong
to A. (As we have already noted, if A has density α, there will be at least α8n4

“cubes” of this kind.) We then define f(x) to be ψ(x) for x ∈ A and 0 otherwise.
For this to produce interesting examples, we need to choose our set A carefully, but
that can be done.

As a first example, take A to be the set {1, . . . , �n/2�}. If we now let β be any

real number, we can define f(x) to be e2πiβx
2

on A and zero outside. If β is a

multiple of 1/n, then this will give us a function ωrx2

restricted to A. However, if
we choose β not to be close to a multiple of 1/n, we can obtain functions that do

not even correlate with functions of the form ωrx2+sx. Suppose, for example, that
we take β = 1/2n. Then our best chance of a correlation will be with either the

constant function 1 or the function ωx2

= e4πiβx
2

. In both cases, the inner product

has modulus n−1|
∑

x∈A eπix
2/n|, which can be shown to be small by a simple trick

known as Weyl differencing: we observe that

|
∑
x∈A

eπix
2/n|2 =

∑
x,y

eπi(x
2−y2)/n =

∑
x,y

eπi(x+y)(x−y).

The last sum can be split into a sum of geometric progressions, each of which can
be evaluated explicitly, and almost all of which turn out to be small. Essentially
the same technique proves that, in fact our function, f has a very small correlation
with any function of the form ωq(x) for a quadratic function q defined on Zn.

It is worth stopping to think about why a similar argument does not show that
we have to consider more functions even in the linear case. What if we take a
function on the set A above of the form e2πiβx with β far from a multiple of 1/n?
In fact, what if we take β = 1/2n as before?

In this case the correlation with a constant function has magnitude
n−1|

∑
x∈A eπix/n|, and x/n lies between 0 and 1/2. It follows that all the numbers

eπx/n are on one side of the unit circle, and the result is that we do not get the can-
cellation that occurred with the quadratic example above. The difference between

the two situations is that the function eπix
2/n jumps round the circle many times,

whereas the function eπix/n does not—which is due to the fact that the function
x2 grows much more rapidly than the function x.

Another way of choosing a set A is to make it look like a portion of Zd for some
small d. To give an example with d = 2, let m = �√n/2� and let A consist of all
numbers of the form x+2my such that x, y ∈ {0, 1, . . . ,m− 1}. This we can think
of as a two-dimensional set with basis 1 and 2m: the pair (x, y) then represents the
point x+ 2my in coordinate form.

An obvious class of functions to take on a multidimensional set is the class of
quadratic forms, and we can do that here. We pick coefficients a, b, c ∈ Zn and

define f(x + 2my) to be ωax2+bxy+cy2

for all x, y ∈ {0, 1, . . . ,m − 1} and take all
other values of f to be zero. It is easy to check that f is a quadratic homomorphism
in the sense just defined, and it can also be shown that f does not correlate with
any pure quadratic phase function.

We can of course combine these ideas by taking more general coefficients. We
can also define a wide variety of two-dimensional sets by taking different “basis
vectors”, and we can increase the dimension. Thus, the set of functions we are
forced to consider is much richer than the corresponding set for the U2 norm.



GENERALIZATIONS OF FOURIER ANALYSIS, AND HOW TO APPLY THEM 21

10. Szemerédi’s theorem for progressions of length 4

We remarked at the end of Section 8 that if a set A is quasirandom in the sense
of having an almost minimal U3 norm, then it contains an arithmetic progression
of length 4. Furthermore, the proof of this fact is closely analogous to the proof of
the corresponding fact relating the U2 norm to arithmetic progressions of length 3.
So it is natural to try to continue the analogy and complete a proof of Szemerédi’s
theorem for progressions of length 4. That is, we would like to argue that if the U3

norm of A is not approximately minimal, then we can obtain a density increase on
an appropriate subspace.

At this point we find that we are a little stuck. In the U2 case we used the fact

that if f is a function taking values of modulus at most 1, and ‖f‖U2 = ‖f̂‖4 is

bounded below by a positive constant c, then ‖f̂‖∞ is bounded below by c2, which
we can use to argue that a set with no arithmetic progression of length 3 must
be sufficiently “unrandom” to correlate well with a trigonometric function. So to
continue the analogy, it looks as though we need to find norms ‖.‖ and |||.||| (here
‖f‖ and |||f ||| are the hoped-for analogues of ‖f̂‖4 and ‖f̂‖∞, respectively) with
the following properties.

(1) The norm ‖.‖ is defined in a different way from the U3 norm, but happens
to be equal to it.

(2) If ‖f‖∞ ≤ 1 and ‖f‖ ≥ c, then one can prove very straightforwardly that
|||f ||| ≥ γ(c) (where γ(c) > 0 if c > 0, and ideally the dependence will be a
good one).

(3) The fact that |||f ||| ≥ γ is telling us that there is some function ψ ∈ Ψ
for which |〈f, ψ〉| ≥ θ(γ), where Ψ is a class of “nice” functions (which will
probably exhibit behaviour similar to that of quadratic phase functions).

(4) If A is a set of density α, f = A − α, and |〈f, ψ〉| ≥ θ for some ψ ∈ Ψ,
then there is a long subprogression P inside which A has density at least
α+ η(θ).

Implicit in the third of these conditions is that |||.||| and Ψ are related by the
formula max{|〈f, ψ〉| : ψ ∈ Ψ}.

The big problem we face is that there is no obvious reformulation of the U3 norm

analogous to the reformulation ‖f‖U2 = ‖f̂‖4 of the U2 norm. So we do not know
of a candidate for ‖.‖. However, that does not mean that there is nothing we can
do, since there is still the possibility of passing directly from the statement that
‖f‖U3 ≥ c to the statement that |〈f, ψ〉| ≥ θ(c) for some suitably nice function ψ,
or even bypassing this statement and heading straight for the conclusion that A is
denser in some long subprogression. Both approaches turn out to be possible.

It is not possible here to do more than give a very brief sketch of how the proof
works. We start with a function f with ‖f‖∞ ≤ 1 and ‖f‖8U3 ≥ γ. That inequality
expands to the inequality

Ex,a,b,cf(x)f(x− a)f(x− b)f(x− a− b)f(x− c)

× f(x− a− c)f(x− b− c)f(x− a− b− c) ≥ γ,

where we have switched from plus signs to minus signs for unimportant aesthetic
reasons. We now define, for each a, a function ∂af by the formula ∂af(x) =
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f(x)f(x− a), which allows us to rewrite the inequality above as

EaEx,b,c∂af(x)∂af(x− b)∂af(x− c)∂af(x− b− c) ≥ γ.

Now this is just telling us that Ea‖∂af‖4U2 ≥ θ, from which it follows that there
must be several a for which ‖∂af‖U2 is large. By the rough equivalence of the U2

norm with the magnitude of the largest Fourier coefficient, we can deduce from
this that several of the functions ∂af have at least one large Fourier coefficient. It

follows that there is a large set B and a function φ : B → Zn such that ∂̂af(φ(a))
is large for every a ∈ B. More formally, we can obtain an inequality

EaB(a)|∂̂af(φ(a))|2 ≥ θ

for some θ that depends (polynomially) on γ.
It turns out that one can perform some algebraic manipulations with this state-

ment and eventually prove that the function φ has an interesting “partial additivity”
property, which states that there are at least ηn3 quadruples (x, y, z, w) ∈ B4 (for
some η that depends on γ only) such that

x+ y = z + w

and
φ(x) + φ(y) = φ(z) + φ(w).

This property appears at first to be somewhat weak, since it tells us that φ is
additive on only a small percentage of the quadruples x+ y = z +w. Remarkably,
however, this is another instance where a local assumption can be used to prove a
global conclusion: the only way that φ can be this additive is if it has a form that
can be described very precisely.

Recall the two-dimensional set we defined in the previous section. It is an exam-
ple of a two-dimensional arithmetic progression. More generally, a k-dimensional
arithmetic progression is a set of the form

{x+ a1d1 + a2d2 + · · ·+ akdk : 0 ≤ ai < mi}.
The numbers d1, . . . , dk are the common differences and the numbers m1, . . . ,mk

are the lengths. The arithmetic progression is called proper if it has cardinality
m1 · · ·mk—that is, no two of the a1d1 + · · ·+ akdk coincide.

Given such a progression and coefficients μ0, μ1, . . . , μk ∈ Zn, one can define
something like a linear form by the obvious formula

x+ a1d1 + a2d2 + · · ·+ akdk 
→ μ0 +
∑
i

μiai.

Let us call such a map quasilinear.
The result that tells us about the structure of φ is the following.

Theorem 10.1. For every η > 0 there is an integer d = d(η) and a constant
ζ = ζ(η) > 0 with the following properties. Let B ⊂ Zn and suppose that there are
ηn3 quadruples (x, y, z, w) ∈ B4 with x+ y = z+w and φ(x)+φ(y) = φ(z)+φ(w).
Then there is a proper arithmetic progression P of dimension at most d and a
quasilinear map ψ : P → Zn such that for at least ζn values of x ∈ Zn we have that
x ∈ B ∩ P and φ(x) = ψ(x).

Loosely speaking, this tells us that there must be a quasilinear map that agrees a lot
of the time with φ. To prove this, one must use some important results in additive
combinatorics, such as a famous theorem of Freiman [16] (and more particularly a
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proof of the theorem due to Ruzsa [46]) as well as a quantitative version [18] of a
theorem of Balog and Szemerédi [3].

Now let us see why it is plausible that linear behavior of the function φ should
lead to quadratic behavior in the function f from which it was derived. Consider
an example where f is defined by a formula of the form f(x) = ων(x). Then

∂af(x) = ων(x)−ν(x−a). So the statement that ∂̂af(φ(a)) is large is telling us
that the functions ων(x)−ν(x−a) and ωaφ(x) correlate well. Since φ exhibits linear
behavior, the function (a, x) 
→ aφ(x) exhibits bilinear behavior.

But that is exactly what happens when ν is a quadratic function: if ν(x) =
rx2 + sx, then ν(x) − ν(x − a) = 2rxa − ra2 + sa, which implies that ∂af has a
large Fourier coefficient at 2ra.

At this point one can use the information we have in a reasonably straightfor-
ward way to prove a weakish statement that is sufficient for Szemerédi’s theorem,
or we can work harder to prove a stronger statement that can be thought of as
giving us some kind of quadratic Fourier analysis. The weakish statement (stated
qualitatively) is the following.

Lemma 10.2. Let f : Zn → C be a function with ‖f‖∞ ≤ 1 and suppose that there
exists a quasilinear function ψ defined on a low-dimensional arithmetic progression

P such that ∂̂af(ψ(a)) is large for many a ∈ P . Then there are long arithmetic
progressions P1, . . . , Pm that partition Zn and quadratic polynomials q1, . . . , qm :
Zn → Zn such that

n−1
∑
i

|
∑
x∈Pi

f(x)ω−qi(x)|

is bounded away from zero.

This tells us that on average f correlates with quadratic phase functions on the
arithmetic progressions Pi. From this result it turns out to be possible to deduce
that there is a refined partition into smaller arithmetic progressions such that f
correlates on average with linear phase functions, and then we are in essentially the
situation we were in with Roth’s theorem and can complete the proof of Szemerédi’s
theorem for progressions of length 4.

This generalization to progressions of length 4 of the Fourier-analytic method of
Roth was obtained by the author [17] and extended to progressions of all lengths
in [18] (which includes a separate treatment of the length-4 case).

11. The inverse theorem for the Uk
norms

From the point of view of generalizing Fourier analysis, however, Lemma 10.2 is
unsatisfactory. Our previous deductions tell us that the hypothesis of the lemma
holds when f is a function with ‖f‖∞ ≤ 1 and ‖f‖U3 ≥ c, so the conclusion
holds too. That gives us a lot of information about f , but it says nothing about
how the quadratic polynomials qi might be related. It therefore gives us only
local information about f , from which it is not possible to deduce a converse: just
because f correlates with quadratic phase functions on the progressions Pi, it does
not follow that ‖f‖U3 is large. (In fact, even constant functions do not do the job:
if we were to choose for each i a random εi ∈ {−1, 1} and set f(x) to equal εi
everywhere on Pi, we would not have a function with large U3 norm.)
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By contrast, if ‖f‖U2 is large, then we obtain very simply that ‖f̂‖∞ is large,
which tells us that f correlates with a function of the form ωrx, and that, equally
simply, implies that ‖f‖U2 is large.

What we would really like is to get from the hypothesis of Lemma 10.2 to a more
global conclusion, which would say that f correlates with a generalized quadratic
phase function of the kind described in the previous section. It is plausible that
such a result should exist: from linear behaviour of the function φ one can deduce
straightforwardly that f correlates with a pure quadratic phase function, so if we
have generalized linear behaviour (of a rather precise kind) then it seems reasonable
to speculate that f should correlate with a correspondingly generalized quadratic
phase function.

The main obstacle to proving this is that the function (a, x) 
→ aφ(x) is not
symmetric. If it were, then the proof would be fairly straightforward. However,
Green and Tao found an ingenious “symmetrization argument” that allowed them
to deduce from the hypotheses of Lemma 10.2 a more symmetric set of hypotheses
that yielded the desired result [27]. I shall state it somewhat imprecisely here. It
is known as the inverse theorem for the U3 norm.

Theorem 11.1. For every c > 0 there exists c′ > 0 with the following property.
Let f : Zn → C be a function with ‖f‖∞ ≤ 1 and ‖f‖U3 ≥ c. Then there exists
a generalized quadratic phase function g such that 〈f, g〉 ≥ c′. Conversely, every
function that correlates well with a generalized quadratic phase function has a large
U3 norm.

The main imprecision is of course that I have not said exactly what a general-
ized quadratic phase function is. There are in fact several non-identical ways of
defining them, and the theorem is true for each one. The way I presented them in
the previous section (where the exponent is something like a quadratic form on a
multidimensional arithmetic progression) is perhaps the easiest to understand for
a non-expert, but it is not the most convenient to use in proofs.

A natural question to ask at this point is what happens for the Uk norm when
k ≥ 4. If one is aiming for a generalization of Lemma 10.2, and thereby for a proof of
Szemerédi’s theorem, the case k = 4 (which corresponds to arithmetic progressions
of length 5) is significantly harder than the case k = 3, and after that the difficulty
does not increase further. As for the inverse theorem, one would like to show that
a function with large Uk norm correlates well with a generalized polynomial phase
function of degree k− 1, but it is far from easy even to come up with a satisfactory
definition of what such a function should be.

To give an idea of the difficulty, here are a few examples. Recall that the proof we
have just discussed involved, in an essential way, “quasilinear” functions. A typical
example of such a function is defined as follows. First choose x1, . . . , xk ∈ Zn and
positive integers r1, . . . , rk such that r1r2 · · · rk is comparable to n and the xi are
independent, in the sense that all the sums

∑
i aixi with 0 ≤ ai < ri are distinct.

Now, given coefficients c1, . . . , ck ∈ Zn, we can define a partial function φ on Zn by
setting

φ(a1x1 + · · ·+ akxk) = c1a1 + · · ·+ ckak.

This resembles a linear functional on a k-dimensional vector space.
Given a set-up like this, there are various ways that we might try to define

“quasiquadratic” functions. One, which we have already discussed in a special
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case, is to use a formula such as

q(a1x1 + · · ·+ akxk) =
∑
i,j

cijaiaj .

But there are other ways of doing it. For example, if φ is a quasilinear function,
then we can look at a function such as x 
→ xφ(x) or x 
→ φ(x2). Thus, there
are many ways of mixing “quasiness” with addition and multiplication to create
“quasipolynomials”.

Given a partially defined function ψ defined on Zn, we can then create a corre-
sponding phase function f by taking f(x) to be ωψ(x) when ψ(x) is defined, and 0
otherwise. When ψ is a quasipolynomial of degree k, these phase functions often
have large Uk+1 norm.

A more convenient language for discussing such functions is that of bracket poly-
nomials. These are real-valued functions defined on Z (but one can restrict them
to intervals) built out of the arithmetic operations on R and the integer-part func-
tion. (Of course, once we have the integer-part function x 
→ �x�, we also have the
fractional-part function x 
→ {x} = x − �x�.) A typical “quadratic” example is a
function of the form x 
→ ax�bx�. More formally, a polynomial of degree k over
R is a bracket polynomial, if φ is a bracket polynomial of degree k, then so are
−φ and {φ}, and the sum and product of two bracket polynomials of at most a
given degree is a bracket polynomial of at most the degree that you would get with
ordinary polynomials.

Unfortunately, bracket polynomials are not very easy to work with. For example,
if φ is a bracket polynomial of degree k and we define f : Zn → C by treating each
x ∈ Zn as an element of the set {0, 1, . . . , n− 1} and setting f(x) = e(φ(x)) (where
e(t) is shorthand for exp(2πit)), then it is reasonable to conjecture that f always
has a large Uk+1 norm. However, this seems not to be known: the best that we
have is a result of Tointon [57], who proves it when the starting polynomials have
no constant term, and his result is not easy. It is also not a direct proof in the
language of bracket polynomials.

However, bracket polynomials are closely connected with a class of functions
called nilsequences, first introduced in [4], that are easier to handle. These are
defined as follows. (There are some choices about the details here—for the sake of
exposition I have opted for choices that make the definition as simple as possible,
but slightly different choices are made in the work described below.)

Given any group G, it is Abelian if and only if it is equal to its commutator
subgroup: the subgroup generated by the commutators [x, y] = xyx−1y−1. It is
2-step nilpotent if its commutators belong to the center: that is, if x commutes
with [y, z] for every y and z. If that is not the case, then we obtain non-trivial
elements of the form x[y, z]x−1[y, z]−1. If these all belong to the center, then G is
3-step nilpotent, and so on. Nilpotent groups, which can be thought of as groups
that are close to being Abelian, play a central role in additive combinatorics.

A key example of an s-step nilpotent group is the Heisenberg group (over R,
say), which consists of all real (s+1)× (s+1) that are zero below the diagonal and
1 on the diagonal. It is easy to check that if A is such a matrix, and B is another
one but with the property that Bij = 0 whenever 1 ≤ j − i ≤ k, then [A,B]ij = 0
whenever 1 ≤ j − i ≤ k + 1. This proves that the group is indeed s-step nilpotent.
In particular, when s = 2, we have 3× 3 matrices that are zero below the diagonal
and 1 on it: the commutator of two such matrices is equal to the identity except
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that there may be a non-zero entry in the top right-hand corner, and those matrices
belong to the center of the group.

Now let G be a connected and simply connected Lie group, and suppose that
it is s-step nilpotent. A good example to bear in mind is the Heisenberg example
above—in fact, even the Heisenberg example with s = 2. Let Γ be a discrete
subgroup such that the quotient G/Γ (consisting of left cosets of Γ) is compact.
Such a quotient is called an s-step nilmanifold. In the Heisenberg example, an
obvious choice for Γ is the set of matrices with integer entries.

The group G acts on G/Γ by left multiplication, so given x ∈ G/Γ and g ∈ G, we
can form a sequence of iterates x, gx, g2x, . . . . If F is a continuous function from
G/Γ to R, then the sequence F (x), F (gx), F (g2x), . . . is an s-step nilsequence.

To see how this relates to bracket polynomials, let us look at the Heisenberg
example and perform a couple of calculations. First, it is easy to prove by induction
that ⎛

⎝1 u 0
0 1 v
0 0 1

⎞
⎠

n

=

⎛
⎝1 nu 1

2n(n− 1)uv
0 1 nv
0 0 1

⎞
⎠ .

In general, the nth power of an element of the Heisenberg group will have a degree-
d dependence on n for entries that are d steps away from (and above) the main
diagonal. So polynomials arise naturally.

Another calculation shows that brackets also arise naturally. Every element of G
can be written uniquely as a product gh where h ∈ Γ and g belongs to a fundamental
domain. An obvious example of a fundamental domain in the Heisenberg case
consists of all matrices for which the entry above the diagonal belongs to the interval

[0, 1). Suppose now that we have a matrix

⎛
⎝1 x z
0 1 y
0 0 1

⎞
⎠ and we want to decompose

it in this way. It is not hard to pick the integer matrix that does the job: one
chooses the entries just above the diagonal first, and then the top right-hand entry.
The result of this exercise is to observe that⎛

⎝1 x z
0 1 y
0 0 1

⎞
⎠

⎛
⎝1 −�x� −�z − x�y��
0 1 −�y�
0 0 1

⎞
⎠ =

⎛
⎝1 {x} {z − x�y�}
0 1 {y}
0 0 1

⎞
⎠ .

Note that the second matrix has integer entries and the entries above the diagonal
in the third matrix are in the interval [0, 1).

Combining these two observations, we find that the representative of the coset

of the matrix

⎛
⎝1 u 0
0 1 v
0 0 1

⎞
⎠

n

in the fundamental domain has top right-hand entry

equal to

{1
2
n(n− 1)uv − nu�nv�}.

Here u and v are fixed real numbers, so we have obtained a bracket polynomial in
n.

One way of converting this bracket polynomial into a 2-step nilsequence would
be to take a Lipschitz function defined on [0, 1) but supported on [0, 1/2] and to
take the sequence (an), where an = F ({ 1

2n(n− 1)uv − nu�nv�}).



GENERALIZATIONS OF FOURIER ANALYSIS, AND HOW TO APPLY THEM 27

We are now ready for a statement of the inverse theorem. It was formulated
by Green and Tao in [29]: their formulation was strongly influenced by important
work of Host and Kra [38], as was the paper of Bergelson, Host, and Kra [4],
which was where a link between nilsequences and Uk norms (or rather an ergodic-
theoretic analogue of Uk norms) was first established. The proof of the inverse
theorem, which is a milestone in the subject, is due to Green, Tao, and Ziegler [31].
It completed a program of Green and Tao, set out in [29], that generalized their
famous result about arithmetic progressions in the primes [28] to a very wide class
of linear configurations, and it gave the correct asymptotics for each one (which did
not follow, even for arithmetic progressions, from their earlier work).

Theorem 11.2. For every positive integer s and every δ > 0 there exists a finite
collection M of s-step manifolds, each with a Riemannian metric, and positive
constants C and c with the following property. For every N ≥ 1 and every function
f : {1, 2, . . . , N} → C such that ‖f‖∞ ≤ 1 and ‖f‖Us+1 ≥ δ there is a nilmanifold
G/Γ in M, an element g ∈ Γ, and a function F : G/Γ → C such that ‖F‖∞ ≤ 1,
the Lipschitz constant of F is at most C (with respect to the given Riemannian
metric), and

|En≤Nf(n)F (gnx)| ≥ c.

To put this less formally, if f has a large Us+1 norm, then it must correlate well
with an s-step nilsequence, where the nilmanifold comes from some finite collection
of nilmanifolds and the Lipschitz constant of the function F is not too large with
respect to some sensible metric. To put it even less formally, functions with a large
Us+1 norm correlate with s-step nilsequences.

An important remark is that the converse holds as well: if a function takes
bounded values and correlates with an s-step nilsequence satisfying the above con-
dition, then it has a large Us+1 norm. This is a much easier result, though it is
more than just a simple exercise: it was proved by Green and Tao in [27]. Thus,
the inverse theorem really does characterize functions with large Us+1 norm.

Right back at the beginning of Section 7, I said that although quadratic Fourier
analysis lacked an inversion formula, it had a weaker property that was adequate
for several applications. That property is Theorem 11.2, the inverse theorem, so in
fact the remark applies to degree-s Fourier analysis for all s.

One way to see that an inverse theorem is sometimes enough is to look back at
the proof of Roth’s theorem. Although we used the inversion formula—that is, the
statement that a function can be uniquely decomposed as a linear combination of
trigonometric functions—all that we actually needed for the proof was to be able
to show somehow that a bounded function with large U2 norm correlated well with
at least one trigonometric function. The structure of trigonometric functions was
then enough to allow us to find increased density on a subprogression. The inverse
theorem for the Us+1 norm can be used in a similar (but more complicated) way
to yield another proof of Szemerédi’s theorem for progressions of length s+ 2: this
was shown by Green and Tao in [30].

Another reason that inverse theorems can be regarded as a substitute for Fourier
analysis in this context is that they often lead to useful decomposition theorems.
Roughly speaking, if an inverse theorem for a norm ‖.‖ shows that every bounded
function with a large norm must correlate with a function from a set F , then one
can deduce from it that every function can be decomposed into three other functions
with the following properties: the first function is a linear combination of elements
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of F with the sum of the absolute values of the coefficients not being too large,
the second is a function with small norm, and the third is an “error” function that
typically has a small Lp norm for some p such as 1 or 2. One way of proving
this, due to Green and Tao [27], is modelled on arguments from ergodic theory: if
‖f‖ is large one uses the inverse theorem to find a function F ∈ F that correlates
well with f , defines a “sigma-algebra” with respect to which F is “approximately
measurable”, and then repeats the process with f−Pf , continuing until the desired
decomposition is achieved. Another approach uses the Hahn–Banach theorem to
obtain a contradiction of the inverse theorem if the desired decomposition does not
exist: see [23,24] for some applications of this idea, and [21] for a general discussion
of the method.

11.1. What more could one ask for? The inverse theorem of Green, Tao, and
Ziegler is a major highlight of additive combinatorics, with a major application to
analytic number theory. It might seem a little greedy to ask for more, but there
is nevertheless a feeling that the story of the inverse theorem is not yet finished.
There are two main reasons for this. The first is that the proof yields no bound at
all. It is likely that one could rewrite the proof to make it finitary, but the resulting
bound would be very weak and would not justify the significant amount of work
that would be needed to do this. (It may seem paradoxical that a non-quantitative
result can be used to obtain asymptotics for configurations in the primes: the point
is that these asymptotics are accurate to within a 1 + o(1) factor and we know
nothing about the rate of convergence of the o(1) part.)

A second reason is that there is something rather non-canonical about the state-
ment of the inverse theorem. As we have already remarked, conventional Fourier
analysis gives a unique decomposition of a function as a linear combination of
trigonometric functions, while for higher-degree Fourier analysis we do not have
any notion of a “Fourier transform”. But even the statement of the inverse theo-
rem, with a Lipschitz function that is often chosen rather arbitrarily, and a nilpotent
Lie group that sometimes feels a little cooked up to yield something like a bracket
polynomial, which itself is not a very natural object, does not give one the feeling
that it is “from the book”.

A program of Szegedy aims to remedy the second of these “defects” but not the
first. In a series of papers [8, 51, 52], one joint with Omar Camarena, he works
with abstract structures that he calls nilspaces, which are variants of abstract par-
allelepiped structures introduced by Host and Kra [39] (abstracting out certain
arguments from [38]). Such structures can be thought of as the most general struc-
tures for which one can make sense of uniformity norms, and are therefore a natural
setting for thinking about inverse theorems. (This point of view is one way of ex-
plaining why nilpotent groups enter the theory when the original questions are
about Abelian groups. It turns out that a group does not have to be Abelian to be
a suitable host for abstract parallelepiped structures.)

Szegedy’s approach is decidedly infinitary—indeed, the thinking behind it is that
when one passes to suitable limiting objects, much of the “mess” that makes the
theory difficult disappears. Unfortunately, it has proved to be extremely hard to
check the correctness of the arguments in the three papers, which, if all the details
can be completed and checked, would give a different and in some ways more natural
proof of the inverse theorem. At the time of writing, various people are working
to produce clearer and more complete versions of the argument [9, 10, 34–36]: it
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seems likely that Szegedy’s ideas are fundamentally correct and that this is indeed
an interesting alternative approach.

The hope, however, would be that out there is a much simpler proof (and state-
ment) of the inverse theorem that yields good bounds. Perhaps a Grothendieck-like
figure will one day find the right abstract framework that will make the difficulties
melt away. One can at least dream.

12. Hypergraphs

A graph is a collection of pairs of elements of a set. What happens if we generalize
from pairs to triples and beyond? A k-uniform hypergraph is a set X and a subset of
X(k), where X(k) denotes the set of all subsets of X of size k. In this section I shall
concentrate on the case k = 3, though it should be fairly clear how to generalize
what I say to higher values.

Just as it is natural, when one thinks about graphs in an analytic way, to think
of them as special kinds of matrices, or functions of two variables, so hypergraphs
can be thought of as functions of three variables. Furthermore, there is a natural
three-variable analogue of the box norm that we saw earlier. It is given by the
following formula.

‖f‖8�3 = Ex,x′,y,y′,z,z′f(x, y, z)f(x, y, z′)f(x, y′, z)f(x, y′, z′)

× f(x′, y, z)f(x′, y, z′)f(x′, y′, z)f(x′, y′, z′).

As usual, one can define a corresponding box inner product by using eight different
functions instead of just one, the inner product satisfies a Cauchy–Schwarz-type
inequality, and that inequality can be used to prove that the norm really is a norm.
Now let us look at some further useful facts about the box norm.

There is enough similarity between the formula for the box norm and the formula
for the U3 norm for it to be highly plausible that there should be a close relationship
between them. And indeed there is. Let G be a finite Abelian group, let f : G → C

be some function, and define a three-variable function F : G3 → C by F (x, y, z) =
f(x + y + z). It is easy to check directly from the formula that ‖|F‖�3 = ‖f‖U3 .
(A similar relationship can also be shown between the two-dimensional box norm
and the U2 norm.)

It is a little surprising, therefore, that one can prove rather easily an inverse
theorem for the box norm. As we shall see, however, the information it gives us
is not strong enough to allow us to deduce from it the inverse theorem for the U3

norm.
Let X be a finite set and let f : X3 → C be a function with ‖f‖∞ ≤ 1 and

‖f‖�3 ≥ c. The second inequality tells us that

Ex,x′,y,y′,z,z′f(x, y, z)f(x, y, z′)f(x, y′, z)f(x, y′, z′)

× f(x′, y, z)f(x′, y, z′)f(x′, y′, z)f(x′, y′, z′) ≥ c8.

By averaging, there must exist x′, y′, z′ such that

|Ex,y,zf(x, y, z)f(x, y, z′)f(x, y′, z)f(x, y
′, z′)

× f(x′, y, z)f(x′, y, z′)f(x′, y′, z)f(x′, y′, z′)| ≥ c8.

We can think of the left-hand side as the modulus of the inner product of f with
the function g, given by the formula

g(x, y, z) = f(x, y, z′)f(x, y′, z)f(x, y′, z′)f(x′, y, z)f(x′, y, z′)f(x′, y′, z)f(x′, y′, z′).
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The interesting thing about g is that it is a product of functions each of which
depends on at most two of the variables x, y, z. Thus, we find that if ‖f‖�3 is large,
then it correlates with a function of “lower complexity”. The analogue of these
low-complexity functions for matrices is the matrices of the form u ⊗ v—that is,
the matrices of rank 1.

However, in the two-variable case we have more. For Hermitian matrices we
have a decomposition of the form

∑
i λiui⊗ui, where (ui) is an orthonormal basis,

and in general we have a singular-value decomposition
∑

i λiui ⊗ vi, where (ui)
and (vi) are both orthonormal. If u, v, and w are functions of two variables, let
us write [[u, v, w]] for the function whose value at (x, y, z) is u(x, y)v(y, z)w(z, x).
Then the very simple inverse theorem just proved tells us that a function with large
box norm correlates with a function of the form [[u, v, w]], but what we do not seem
to have is a canonical way of decomposing an arbitrary function as a sum of the
form

∑
i λi[[ui, vi, wi]].

What happens if we try to deduce the inverse theorem for the U3 norm from
the inverse theorem for the box norm in three variables? If ‖f‖U3 ≥ c, then the
argument gives us functions f1, . . . , f6, all of 	∞ norm at most 1, such that

|Ex,y,zf(x+ y + z)f1(x+ y)f2(y + z)f3(z + x)f4(x)f5(y)f6(z)| ≥ c8.

However, it does not tell us anything much about the structure of the functions
f1, . . . , f6. It is possible to deduce from the inequality above that they have qua-
dratic structure, and that the inverse theorem therefore holds, but the proof is no
easier than the proof of the inverse theorem was already—it just uses the same
general approach in an unnecessarily complicated way.

Despite this, the theory of hypergraphs has been important and useful in additive
combinatorics. I will not explain why here, except to mention a theorem about
hypergraphs that turns out to imply a multidimensional version of Szemerédi’s
theorem. It is known as the simplex removal lemma. (The implication, observed by
Solymosi [50], is fairly straightforward, but slightly too long to give here.) Define
a simplex in a k-uniform hypergraph H to be a set of k + 1 vertices such that any
k of them form an edge H. (The word “edge” here means one of the sets of size k
that belongs to H. When k = 2, a simplex is a triangle.) The following result is
due to Nagle, Rödl, Schacht, and Skokan [43,44], and independently to the author
[19]. (See also [55].)

Theorem 12.1. For every c > 0 and positive integer k there exists a > 0 with the
following property. If H is a k-uniform hypergraph with n vertices that contains at
most ank+1 simplices, then it is possible to remove at most cnk edges from H to
create a k-uniform hypergraph that contains no simplices at all.

The case k = 2, which pioneered this combinatorial approach to Szemerédi’s
theorem, was proved by Ruzsa and Szemerédi much earlier [47]. In this case the
result says that a graph with few triangles is close to a graph with no triangles.
Rather surprisingly, even this case is not straightforward. In particular, the best
known dependence of a on c is extremely weak: its reciprocal is a tower of 2s of
height proportional to log(1/c) [14]. Even a bound of the form exp(−(1/c)A) for
some fixed A > 0 would be a major improvement.
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13. Fourier analysis on non-Abelian groups

The following result is easy to prove. We say that a subset of an Abelian group
is sum free if it contains no three elements x, y, z with x+ y = z.

Theorem 13.1. There exists a constant c > 0 such that every finite Abelian group
G has a subset A of cardinality at least c|G| that is sum free.

To see this, let Zm be one of the cyclic groups of which G is a product, and take
all elements whose coordinate in this copy of Zm lies between m/3 and 2m/3 (and
strictly between on one of the two sides).

Babai and Sós asked whether a similar result held for general finite groups [2].
They expected the answer to be no, but it turns out not to be completely obvious
how to disprove it.

Given that the result holds for Abelian groups, it is natural to look at groups
that are “highly non-Abelian”. This can be measured in various ways. One is to
look at the sizes of conjugacy classes. If a group G is Abelian, then all its conjugacy
classes are singletons, so if a group has large conjugacy classes, then that is saying
that in some sense it is far from Abelian: not only are the conjugates gxg−1 not all
equal to x, they are not even concentrated in a small subset of the group.

Another property that characterizes Abelian groups is that all their irreducible
representations are one dimensional. So another potential way of measuring non-
Abelian-ness is to look at the lowest dimension of an irreducible representation.

Since we have already made use of characters of finite Abelian groups—that is,
their irreducible representations—and since we are trying to count solutions to a
simple equation in a dense subset of a group, the second measure looks promis-
ing. And it does indeed turn out to be possible to solve this problem by using a
more general Fourier analysis, in which characters are replaced by more general
irreducible representations.

The definition of the Fourier transform of a function f : G → C is more or
less the first thing one writes down. If ρ : G → U(k) is an irreducible unitary
representation of G, then

f̂(ρ) = Exf(x)ρ(x).

(Another candidate for the definition would be as above but with the conjugate ρ(x)
replaced by the adjoint ρ(x)∗, but the conjugate turns out to be more convenient.)

For this to be a useful definition, we would like it to satisfy natural analogues
of the basic properties of the Abelian Fourier transform. And indeed it does.
Parseval’s identity, for example, takes the following form. If f and g are functions
from G to C, then

Exf(x)g(x) =
∑
ρ

nρtr(f̂(ρ)ĝ(ρ)
∗),

where the sum is over all irreducible representations and for each such representa-
tion ρ its dimension is nρ. Let us briefly see how this is proved. We have∑

ρ

nρtr(f̂(ρ)ĝ(ρ)
∗) =

∑
ρ

nρEx,yf(x)g(y)tr(ρ(x)ρ(y)∗)

= Ex,yf(x)g(y)
∑
ρ

nρtr(ρ(x)ρ(y)∗).
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We now use a fundamental orthogonality result from basic representation theory,
which states that

∑
ρ nρtr(ρ(x)ρ(y)

∗) = n if x = y and 0 otherwise. It follows that

Ex,yf(x)g(y)
∑
ρ

nρtr(ρ(x)ρ(y)∗) = Exf(x)g(x),

and the proof is complete.
How about the convolution identity? It states, as we would hope, that

f̂ ∗ g(ρ) = f̂(ρ)ĝ(ρ)

for any two functions f, g : G → C and any irreducible representation ρ. Again it
is instructive to see the proof. We have

f̂ ∗ g(ρ) = Ex(f ∗ g)(x)ρ(x)
= ExEuv=xf(u)g(v)ρ(x)

= Eu,vf(u)g(v)ρ(u)ρ(v)

= (Euf(u)ρ(u))(Evg(v)g(v))

= f̂(ρ)ĝ(ρ).

Note that we used the fact that ρ(uv) = ρ(u)ρ(v) in the proof above. Had we defined
the Fourier transform using adjoints, we would have had to use instead the fact that

ρ(uv)∗ = ρ(v)∗ρ(u)∗, so we would have obtained the identity f̂ ∗ g(ρ) = ĝ(ρ)f̂(ρ).
The last property I want to discuss is the inversion formula. Here we have

what looks at first like a puzzle: in the Abelian case we decomposed functions as
linear combinations of characters, but irreducible representations are matrix-valued
functions of different dimensions, so we cannot express scalar-valued functions as
linear combinations of them.

There is of course a natural way of converting a matrix-valued function into a
scalar-valued function, and that is to take the trace. Moreover, traces of represen-
tations are well known to be important functions—they are characters in the sense
of representation theory.

So can we decompose a function as a linear combination of functions of the form
χ(x) = tr(ρ(x))? No we cannot, since such functions are constant on conjugacy
classes. (We can, however, decompose functions if they are constant on conjugacy
classes—such functions are called class functions.) In fact, since there are not n
inequivalent irreducible representations (except when the group is Abelian), there
is no hope of writing down some scalar-valued functions uρ and expanding every f
as a linear combination of the uρ.

However, we should not necessarily expect to be able to do so. We would like the

coefficients in our inversion formula to be the matrices f̂(ρ) in some suitable sense.
And once we make that our aim, it is a short step to writing down the following
slightly subtler formula.

f(x) =
∑
ρ

nρtr(f̂(ρ)ρ(x)∗).

This can be verified easily using the orthogonality property we used earlier.
It is not hard to check that this formula specializes to the formula given earlier

when the group is Abelian. One way of making it look more like that formula is
to define Ĝ to be the set of all irreducible representations of G (up to equivalence),



GENERALIZATIONS OF FOURIER ANALYSIS, AND HOW TO APPLY THEM 33

to define M(Ĝ) to be the set of all matrix-valued functions f̂ on Ĝ such that f̂(ρ)

is an nρ × nρ matrix for every ρ, and to define an inner product on M(Ĝ) by the
formula

〈f̂ , ĝ〉 =
∑
ρ

nρ〈f̂(ρ), ĝ(ρ)〉,

where the inner product on the right-hand side is the matrix inner product 〈A,B〉 =
tr(AB∗) =

∑
i,j AijBij . Note that Parseval’s identity now becomes the usual for-

mula 〈f, g〉 = 〈f̂ , ĝ〉. As for the inversion formula, it can be written as follows.

f(x) = 〈f̂ , δ∗x〉,

where δ∗x is the evaluation function ρ 
→ ρ(x)∗. The right-hand side can be expanded

to
∑

ρ nρ〈f̂(ρ), ρ(x)〉, which is equal to
∑

χ f̂(χ)χ(x) when G is Abelian.
Now let us prove an inequality, Lemma 13.4 below, that allows us to solve the

problem with which we started. It appears in equivalent form as Lemma 3.2 in
[20] (strictly speaking, that lemma is very slightly less general, but it is sufficient
for applications to characteristic functions of sets and the proof carries through
with hardly any changes for general functions). The formulation below is due to
Babai, Nikolov, and Pyber [1], who gave a different argument. Here we give a
short Fourier-analytic argument that is different again. After the appearance of
the paper [20], the existence of such an approach seems to have been realized by
various people and to have become a piece of modern folklore: I heard that it
could be done by Ben Green, and Terence Tao gives it as an exercise in a blog
post on non-Abelian Fourier analysis (https://terrytao.wordpress.com/2011/
12/16/254b-notes-3-quasirandom-groups-expansion-and-selbergs-316-

theorem/).
Before we give the lemma and explain how the problem of Babai and Sós can

be solved, we need a couple of simple results about matrices. Note that because
we are on the Fourier side, we are dealing with sums rather than expectations. In
particular, we are using the standard notion of matrix multiplication, and the box
norm will be defined using sums.

Lemma 13.2. Let A and B be square matrices. Then ‖AB‖HS ≤ ‖A‖�‖B‖�.

Proof. Observe that

‖AB‖2HS =
∑
x,x′

|
∑
y

A(x, y)B(y, x′)|2

=
∑
x,x′

∑
y,y′

A(x, y)A(x, y′)B∗(x′, y)B∗(x′, y′).

This last expression is the “box inner product” [A,A,B∗, B∗], and, as we saw earlier
(in the section on matrices), it satisfies a Cauchy–Schwarz-type inequality

[A,B,C,D] ≤ ‖A‖�‖B‖�‖C‖�‖D‖�.

Applying this, together with the fact that ‖B∗‖� = ‖B‖�, we obtain the result. �

Lemma 13.3. For every matrix A we have ‖A‖� ≤ ‖A‖HS.

Proof. This can be shown with a direct argument, but it also follows from the fact
that ‖A‖� is the 	4 norm of the singular values of A and ‖A‖HS is the 	2 norm. �

https://terrytao.wordpress.com/2011/12/16/254b-notes-3-quasirandom-groups-expansion-and-selbergs-316-
https://terrytao.wordpress.com/2011/12/16/254b-notes-3-quasirandom-groups-expansion-and-selbergs-316-
theorem/
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Lemma 13.4. Let G be a finite group, and let f, g : G → C be functions with
average zero. Let m be the smallest dimension of a non-trivial representation of G.
Then

‖f ∗ g‖2 ≤ m−1/2‖f‖2‖g‖2.

Proof. By the convolution identity, Parseval’s identity, and the lemmas above, we
have that

‖f ∗ g‖22 =
∑
ρ

nρ‖f̂ ĝ‖2HS

≤
∑
ρ

nρ‖f̂‖2�‖ĝ‖2�

≤
∑
ρ

nρ‖f̂‖2HS‖ĝ‖2HS .

Since f averages zero, f̂(ρ) = 0 when ρ is the trivial representation. Also, by Par-

seval’s identity we have that
∑

ρ nρ‖f̂(ρ)‖2HS = ‖f‖22. It follows that the maximum

possible value of ‖f̂(ρ)‖2HS is m−1‖f‖22. Therefore, using Parseval’s identity again,
we find that∑

ρ

nρ‖f̂‖2HS‖ĝ‖2HS ≤ m−1‖f‖22
∑
ρ

nρ‖ĝ(ρ)‖2HS = m−1‖f‖22‖g‖22,

which completes the proof. �

Now let us quickly deduce that if a group G has no non-trivial low-dimensional
representations, then it does not contain a large product-free set.

Theorem 13.5. Let G be a finite group, and let m be the smallest dimension of a
non-trivial representation of G. Then G contains no product-free subset of density
greater than m−1/3.

Proof. Let α be the density of A, and as usual let f be the function f(x) = A(x)−α.
We shall now try to show that

Exy=zA(x)A(y)A(z) �= 0,

which obviously implies that A is not product free.
We have that

Exy=zA(x)A(y)A(z) = Exy=z(α+ f(x))(α+ f(y))(α+ f(z)),

and since f averages zero, if we expand the right-hand side into eight separate sums,
we find that all terms are zero apart from two, and we obtain the expression

α3 + Exy=zf(x)f(y)f(z) = α3 + 〈f ∗ f, f〉.
By the Cauchy–Schwarz inequality and Lemma 13.4 we have that

|〈f ∗ f, f〉| ≤ ‖f ∗ f‖2‖f‖2 ≤ m−1/2‖f‖32.
We also have that ‖f‖22 = α(1 − α)2 + (1 − α)α2 = α(1 − α). Therefore, if A is
product free, we must have the inequality

α3/2(1− α)3/2m−1/2 ≥ α3,

which implies that α ≤ m−1/3. �
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It remains to remark that there do exist groups with no low-dimensional rep-
resentations. Indeed, any family of finite simple groups has this property, though
some have it much more strongly than others. The “most” non-Abelian family of
groups is the family PSL(2, q). If a group in this family has order n, then its non-
trivial representations have dimension at least cn1/3, where c > 0 is an absolute
constant. Therefore, these groups have no product-free subsets of density greater
than c′n−1/9.

The same argument shows that if A, B, and C are sets of density greater than
m−1/3, then ABC = {abc : a ∈ A, b ∈ B, c ∈ C} = G.

There turns out to be a close connection between groups with no low-dimensional
representations and quasirandom graphs. If G is a finite group with no low-
dimensional non-trivial representations, then for any dense set A ⊂ G, we can
define a bipartite graph with two copies of G as its vertex sets and x joined to y if
and only if y = ax for some a ∈ A. The remark above about sets A,B, and C tells
us that this graph is quasirandom.

As a final remark, we note that the U2 norm can be generalized easily to a
non-Abelian context. A good definition turns out to be as follows.

‖f‖4U2 = Exy−1zw−1=ef(x)f(y)f(z)f(w).

The properties of this norm are just what one would hope. For example, one can
define a generalized inner product in the obvious way, and we do indeed have the
inequality

[f1, f2, f3, f4] ≤ ‖f1‖U2‖f2‖U2‖f3‖U2‖f4‖U2 ,

which can then be used in the usual way to prove that this U2 norm is a norm. We
also have the Fourier interpretation that one would guess, namely

‖f‖4U2 =
∑
ρ

nρ‖f̂(ρ)‖4�.

This is the natural guess because it involves fourth powers on the right-hand side,
both in the obvious sense that there is a fourth power visible in the expression,
and also in the less obvious sense that the box norm of a matrix is equal to the
	4 norm of the singular values. (Thus, in a certain sense we have fourth powers of
generalized Fourier coefficients in two different ways.) Indeed, there is a natural

way of defining an 	p norm on Ĝ for every p. For an m×m matrix A, one defines
the trace-class norm ‖A‖p to be the 	p norm of the singular values of A, and then

for a matrix-valued function f̂ one defines ‖f‖p by the formula

‖f̂‖pp =
∑
ρ

nρ‖f̂(ρ)‖pp.

That is, we take the 	p norm in Ĝ of the function x 
→ ‖f̂(x)‖p. Once we have done
this, we have the familiar identity

‖f‖U2 = ‖f̂‖4.
Functions with small U2 norms (given their averages) behave like random func-

tions, and when a group has no non-trivial low-dimensional representations, Lemma
13.4 tells us that all reasonably spread out functions behave like random functions.
To see this, note that ‖f‖4U2 = ‖f ∗ f∗‖22, where f∗(x) is defined to be f(x−1), so
if f averages zero, then we have the inequality ‖f‖4U2 ≤ m−1‖f‖22.
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14. Fourier analysis for matrix-valued functions

Let G be a finite group and let f : G →Mn(C) be a matrix-valued function. (We
are not assuming that n is the order of G.) We can define a Fourier transform for f
by simply applying the definition of the previous section to each matrix coefficient.
That is, for each i, j ≤ n we define fij to be the function x 
→ f(x)ij , and then for

each irreducible representation ρ we define f̂(ρ) to be the n×n block matrix whose

ijth entry is the nρ × nρ matrix f̂ij(ρ). Thus, f̂(ρ) is an nnρ × nnρ matrix.
We can write this definition more concisely, and in a basis-free way, as follows.

f̂(ρ) = Exf(x)⊗ ρ(x).

Thus, whereas with Abelian groups we had scalar-valued functions and scalar-
valued representations, and in the previous section we had scalar-valued func-
tions and matrix-valued representations, now we have matrix-valued functions and
matrix-valued representations. In each case we take tensor products, but in the
first two cases they are trivial.

In order to state the basic properties of the Fourier transform, we need to be
clear about our notation. For a matrix-valued function f on the physical side, we
shall write ‖f‖2 for the norm defined by the formula

‖f‖22 = Ex‖f(x)‖22.

Here it turns out to be convenient to take ‖f(x)‖2 to be the non-normalized Hilbert–
Schmidt norm. Thus, the norm scales with the dimension of f , but not with the
size of the group.

On the Fourier side we have similar definitions but using sums all the way
through, so these are the same as the definitions of the norms and inner prod-
uct in the scalar case.

With these normalizations, the first few basic properties of the Fourier transform
now read as follows.

• ‖f‖22 = ‖f̂‖2 (Parseval’s identity).

• 〈f, g〉 = 〈f̂ , ĝ〉 (Parseval’s identity).
• f̂ ∗ g(ρ) = f̂(ρ)ĝ(ρ) (convolution formula).

The proofs are more or less the same as in the scalar case, but to clarify the point
about normalizations, we give a proof of the second version of Parseval’s identity,
which goes like this. (It is important to realize that the meaning of the inner
product varies from expression to expression—sometimes we are talking about the
inner product of two matrices, and sometimes about the inner product of two
matrix-valued functions.)

〈f̂ , ĝ〉 =
∑
ρ

nρ〈f̂(ρ), ĝ(ρ)〉

=
∑
ρ

nρ〈Exf(x)⊗ ρ(x),Eyg(y)⊗ ρ(y)〉

= Ex,y〈f(x), g(y)〉
∑
ρ

nρ〈ρ(x), ρ(y)〉.

In the last expression, both inner products use sums.
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By the basic orthogonality property from representation theory, the sum over
ρ is equal to |G|δxy, so we end up with Ex〈f(x), g(x)〉, which is the definition of
〈f, g〉.

The inversion formula is also straightforward, but it needs a little notation.
Recall that for scalar-valued functions the inversion formula was

f(x) =
∑
ρ

nρtr(f̂(ρ)ρ(x)∗).

Since the Fourier transform for matrix-valued functions is obtained by applying the
Fourier transform for scalar-valued functions to each matrix entry, we obtain the
formula

f(x)ij =
∑
ρ

nρtr(f̂ij(ρ)ρ(x)∗).

Let us write trρ for the operation that takes an n× n block matrix A with blocks
that are nρ × nρ matrices and returns the n × n matrix whose ijth value is the
(unnormalized) trace of the ijth block of A. Then we can write the inversion
formula in the form

f(x) =
∑
ρ

trρ(f̂(ρ)ρ(x)∗),

which is just like the formula when f takes scalar values except that the trace
function tr has been replaced by the matrix-of-traces function trρ.

This matrix-valued Fourier transform was introduced, with slightly different con-
ventions, by Moore and Russell [42] (not the famous philosophers, but a pair of
contemporary mathematicians). It is useful when one wishes to measure the extent
to which a matrix-valued function behaves like a representation. To illustrate this,
let us look at a very nice result that shows in a simple way how the matrix-valued
transform can be used.

In the previous section, we remarked that if G is a finite group with no low-
dimensional non-trivial representations, then for every function f : G → C such
that ‖f‖∞ ≤ 1 and Exf(x) = 0, the U2 norm of f is small. That is,

Exy−1zw−1f(x)f(y)f(z)f(w)

is small. Now if we could find a non-trivial character of G, in the sense of a
homomorphism from G to C that is not the identity, then this would not be true:
whenever xy−1zw−1 = e we would have f(x)f(y)f(z)f(w) = 1 so the average would
be 1, which is the largest it can possibly be. So the observation that the U2 norm
has to be small is telling us that G not only fails to have a non-trivial character
(which we know because it has no non-trivial low-dimensional representations), but
it does not admit any functions that are even very slightly close to being a non-
trivial character: if f averages zero, then it is not possible for the average real part
of f(x)f(y)f(z)f(w) to be greater than some small constant when xy−1zw−1 = e.

Moore and Russell showed that this observation can be extended to matrix-
valued functions. (Actually, the precise result they showed was not quite this one,
but it was very similar and had a very similar proof.) That is, if the dimension
of the smallest non-trivial representation is m, if n is substantially less than m,
and if f takes values that are n× n matrices with operator norm at most 1, and if
Exf(x) = 0, then the U2 norm of f is small. This is a stronger statement, because
matrix-valued functions have more elbow room and therefore more room to create
the necessary correlations. It is also stronger in a more obvious way: it tells us
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that not only are scalar-valued functions on G as unlike non-trivial characters as
they could possibly be, low-dimensional matrix-valued functions are as far from
non-trivial representations as they could possibly be.

We begin by observing that the statement and proof of Lemma 13.4 carry over
almost word for word to the matrix-valued case. (The proof is so close that we do
not give it again.)

Lemma 14.1. Let G be a finite group and let m be the smallest dimension of a non-
trivial representation of G. Let f, g : G →Mn(C) be two matrix-valued functions
that average zero. Then

‖f ∗ g‖2 ≤ m−1/2‖f‖2‖g‖2.

There is, however, an important new factor to take into account here, which is
that the two sides of the inequality scale differently with the dimension. Suppose,
for instance, that both f and g are equal to the same n-dimensional representation
ρ. Then the 2 norms of every single f(x), g(x) and f ∗ g(x) are all equal to n, so
‖f ∗ g‖22 = n, while m−1‖f‖22‖g‖22 = m−1n2. So the inequality does not stop f and
g from being representations when n = m, which of course is as it should be, since
m is defined to be the dimension of a representation of G.

With that remark in mind, let us turn to U2 norms. The natural definition of
the U2 norm in the matrix-valued case is

‖f‖4U2 = Exy−1zw−1=etr(f(x)f(y)
∗f(z)f(w)∗),

where the trace is not normalized. This is equal to ‖f ∗ f∗‖22 and it is also equal

to ‖f̂‖44. (Recall that this is defined to be
∑

ρ nρ‖f̂‖4�.) Therefore, by Lemma 14.1
we find that

‖f‖4U2 ≤ m−1‖f‖42.
In particular, if f takes values f(x) with Hilbert–Schmidt norm at most n1/2 (which
is the case, for example, if they are all unitary, and more generally if they all
have operator norm at most 1), then ‖f‖4U2 ≤ m−1n2. For f to be a unitary
representation, we would need ‖f‖4U2 to be equal to n (since f(x)f(y)∗f(z)f(w)∗

would be the identity whenever xy−1zw−1 = e), which would equal n−1‖f‖42, which
is at most n, by hypothesis. Therefore, if n is significantly less than m, so that
m−1n2 is significantly less than n, we see that f is not even close to being a
representation, in the sense that there is almost no correlation between f(x)f(y)∗

and f(w)f(z)∗ even if we are given that xy−1 = wz−1.

15. An inverse theorem for the matrix U2
norm

Recall the very simple inequalities that we used earlier to relate the 	4 and 	∞
norms of the Fourier transform of a function f from an Abelian group to C. If we
know that ‖f‖2 ≤ 1, then we find that

‖f̂‖4∞ ≤ ‖f̂‖44 ≤ ‖f̂‖2∞‖f̂‖22 ≤ ‖f̂‖2∞.

Since ‖f̂‖4 = ‖f̂‖U2 , we deduce that if ‖f‖U2 ≥ c, then there exists a character χ

such that |〈f, χ〉| = |f̂(χ)| ≥ c2.
What happens if we try to generalize this to non-Abelian groups and to matrix-

valued functions? Let us assume that f(x) is an n× n matrix with operator norm
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at most 1 for every x. (The operator norm is the maximum of the singular values,
and thus the natural 	∞ norm of a matrix.) Then just as before, we have

‖f̂‖4∞ ≤ ‖f̂‖44 =
∑
ρ

nρ‖f̂(ρ)‖44 ≤ max
ρ

‖f̂(ρ)‖2∞
∑
ρ

nρ‖f̂(ρ)‖22 = ‖f̂‖2∞‖f‖22.

Unfortunately, if n is large, then this is no longer a rough equivalence, since the
best we can say about ‖f‖22 is that it is at most n (since it is the sum of the squares
of n singular values, each of which lies between 0 and 1).

However, that does not mean that there is nothing we can say. The largest

possible value of ‖f̂‖44 = ‖f‖4U2 is, as we have seen, n. Let us take a function f
such that ‖f‖4U2 ≥ cn. Then we obtain from the second inequality above that there

exists an irreducible representation ρ such that ‖f̂(ρ)‖∞ ≥ c1/2.

If G is Abelian and f : G → C, then ‖f̂(χ)‖∞ is just |〈f, χ〉|, so this statement is
saying that f correlates in a significant way with a character. But in our situation
we have the more complicated statement that

‖Exf(x)⊗ ρ(x)‖∞ ≥ c1/2.

Is this telling us that f correlates in some sense with ρ?
Let us try to interpret it. We shall first use the fact that ‖A‖∞, the operator

norm of A, is the largest possible value of ‖Au‖2 over all unit vectors u, which in
turn is the largest possible value of 〈Au, v〉 over all pairs of unit vectors u and v.
Therefore, we can find unit vectors u and v such that

〈(Exf(x)⊗ ρ(x))u, v〉 ≥ c1/2.

Now let us rewrite this in coordinate form. Because of the special form of the n×nρ

matrix f(x)⊗ ρ(x), it is natural to give it four indices instead of two: we have that

(f(x)⊗ ρ(x))ijkl = f(x)ikρ(x)jl. Then indexing u and v in the corresponding way,
and writing them as U and V since they have now become matrices, we have that

〈(f(x)⊗ ρ(x))U, V 〉 =
∑
i,j,k,l

f(x)ikρ(x)jlUklVij = 〈f(x)Uρ(x)∗, V 〉,

where the product in the last expression is just normal matrix multiplication. Tak-
ing expectations, we deduce that

Ex〈f(x)Uρ(x)∗, V 〉 ≥ c1/2

for two n×nρ matrices U and V that have Hilbert–Schmidt norm 1. We can write
this more symmetrically as

Ex〈f(x)U, V ρ(x)〉 ≥ c1/2.

It is natural to rescale U and V so that they have Hilbert–Schmidt norm n
1/2
ρ .

That is, we can say that there exist an irreducible representation ρ and matrices U
and V with ‖U‖22 = ‖V ‖22 = nρ such that

Ex〈f(x)Uρ(x)∗, V 〉 = Ex〈f(x)U, V ρ(x)〉 = Ex〈f(x), V ρ(x)U∗〉 ≥ c1/2nρ.

This seems quite satisfactory, but it falls short of being a true inverse theorem
for the matrix U2 norm because the converse does not hold. That is, if we are given
ρ, U and V satisfying the above conditions, we cannot deduce that f has a large
U2 norm unless nρ is comparable to n, which it does not have to be.

Thus, we are in an interesting situation. Earlier, we thought of inverse theorems
as something one settles for when one does not have an inversion formula. But here
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we have a clean and easily proved inversion formula that does not directly yield an
inverse theorem.

However, we have not yet exhausted our options. If ‖f‖4U2 = ‖f̂‖44 ≥ cn, then
we are given that ∑

ρ

nρ‖f̂(ρ)‖44 ≥ cn,

where ‖f̂(ρ)‖44 denotes the sum of the fourth powers of the singular values of f̂(ρ).
Let these singular values be λρ,i for i = 1, 2, . . . , nρ. Then we find that

∑
ρ

nρ

nρ∑
i=1

λ4
ρ,i ≥ cn.

From Parseval’s inequality and the assumption that each f(x) has operator norm
at most 1 (and hence Hilbert–Schmidt norm at most n), we also have that

∑
ρ

nρ

nρ∑
i=1

λ2
ρ,i ≤ n.

Also, since f̂(ρ) = Exf(x)⊗ ρ(x) is an average of matrices with operator norm at
most 1, every λρ,i is at most 1.

Let λ1, . . . , λm be the singular values λρ,i arranged in some order, and for each
i let ni be the nρ that corresponds to λi. Then we can rewrite these inequalities as∑

i

niλ
4
i ≥ cn,

∑
i

niλ
2
i ≤ n,

and
λi ≤ 1.

Note that if c = 1, then the only way of achieving the above inequalities is for λ4
i to

equal λ2
i for every i (assuming that none of the ni is zero). Thus, each λi is either

0 or 1, and
∑

{ni : λi = 1} = n. It is a straightforward exercise to prove that the
more relaxed assumptions above lead to similar but more relaxed conclusion: we
can find a set A and constants c1 > 0 and C that depend on c only (with a power
dependence) such that c1n ≤

∑
i∈A ni ≤ Cn, and λi ≥ c1 for every i ∈ A. In short,

we can find a set of large singular values (coming from the various f̂(ρ)) of size
roughly comparable to n.

With each such singular value λi we can associate n × ni matrices Ui and Vi

with Hilbert–Schmidt norm ni such that Ex〈f(x)Ui, Viρi〉 ≥ λini, where ρi is the
representation corresponding to λi. Moreover, if two pairs (Ui, Vi) and (Uj , Vj) come
from the same ρ, then because of the nature of singular-value decompositions, we
have that 〈Ui, Uj〉 = 〈Vi, Vj〉 = 0.

It is plausible that we can put together these matrices and irreducible representa-
tions to create a representation-like function that correlates with f and, moreover,
that gives us an inverse theorem in the sense that the correlation in its turn implies
that f has a large U2 norm. Exactly how the putting together should work is not
obvious, but it turns out that it can be done. It yields the following theorem, due
to the author and Omid Hatami [22]. In the statement, recall that ‖f‖∞ means
the largest operator norm of any f(x). Also, we define a partial unitary matrix to
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be an n×m matrix such that the rows are orthonormal if n ≤ m and the columns
are orthonormal if n ≥ m. (In particular, if n = m, then the matrix is unitary.)

Theorem 15.1. Let G be a finite group, let c > 0, and let f : G →Mn(C) be
a function such that ‖f‖∞ ≤ 1 and ‖f‖4U2 ≥ cn. Then there exists m such that
cn/4 ≤ m ≤ 4n/c, an m-dimensional representation σ, and n ×m partial unitary
matrices U and V , such that

Ex〈f(x)U, V σ(x)〉 ≥ c2m/16.

Note that σ will not normally be irreducible. This theorem tells us that f
correlates with the function V σU∗. The extra strength of this theorem over what
we remarked earlier is that the dimension of σ is comparable to that of f . It turns
out to be simple to deduce a converse statement—i.e., that if f correlates with
a function of the above form, then ‖f‖4U2 ≥ c′n for some suitable c′. Therefore,
Theorem 15.1 is indeed an inverse theorem for the matrix U2 norm.

It is possible to give a more careful argument when c = 1 − ε for some small ε
that allows us to show that (1 − 2ε)n ≤ m ≤ (1 − 4ε)−1n, and to obtain a lower
bound of (1 − 16ε)m in the last inequality. From this result it is not too hard to
deduce a so-called stability theorem for near representations. Roughly speaking, it
states that any unitary-valued function that almost obeys the condition to be a
representation is close to a unitary representation.

Theorem 15.2. Let G be a finite group and let f : G → U(n) be a function such
that ‖f(x)f(y) − f(xy)‖HS ≤ ε

√
n for every x, y ∈ G. Then there exist m with

(1 − ε2)n ≤ m ≤ (1 − 2ε2)−1n, an n ×m partial unitary matrix U , and a unitary
representation ρ : G → U(m), such that

‖f(x)− Uρ(x)U∗‖ ≤ 31ε
√
n

for every x ∈ G.

When ε is bounded above by cn−1/2 for a suitable constant c, the inequality for
m forces m to equal n. In this regime the result was known and is due to Grove,
Karcher, and Ruh [32]. They also proved a stability result, this time with no
restriction on ε, with the operator norm replacing the normalized Hilbert–Schmidt
norm [33] (see also [40]).

16. Conclusion

Now that we have seen several different generalizations of Fourier analysis
(though not a complete list), we can draw up a checklist of the properties that
a generalization is likely to need in order to be useful. Ideally we would have all of
the following.

• A Parseval identity
• A convolution identity
• An inversion formula
• A quasirandomness-measuring norm
• An inverse theorem for the quasirandomness-measuring norm

Sometimes we can indeed get all of these, but in situations where we cannot, it turns
out that just having the last two properties is sufficient for some very interesting
applications. In several of these situations, it remains a fascinating challenge to
find new versions of the generalizations with improved properties.
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