Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Probabilistic combinatorics and the recent work of Peter Keevash


Author: W. T. Gowers
Journal: Bull. Amer. Math. Soc. 54 (2017), 107-116
MSC (2010): Primary 05-02
DOI: https://doi.org/10.1090/bull/1553
Published electronically: September 14, 2016
MathSciNet review: 3584100
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Miklós Ajtai, János Komlós, and Endre Szemerédi, A dense infinite Sidon sequence, European J. Combin. 2 (1981), no. 1, 1-11. MR 611925, https://doi.org/10.1016/S0195-6698(81)80014-5
  • [2] Noga Alon and Joel H. Spencer, The probabilistic method, fourth ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons Inc., Hoboken, NJ, 2016, with an appendix on the life and work of Paul Erdős. MR 2437651 (2009j:60004)
  • [3] P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-294. MR 0019911
  • [4] P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959), 34-38. MR 0102081
  • [5] Misha Gromov, Spaces and questions, Geom. Funct. Anal. Special Volume (2000), 118-161. GAFA 2000 (Tel Aviv, 1999). MR 1826251
  • [6] Misha Gromov, Random walks in random groups, Geom. Funct. Anal. 13 (2003), 73-146.
  • [7] G. Kalai, Designs exist! [after Peter Keevash], http://www.bourbaki.ens.fr/TEXTES/
    1100.pdf, Séminaire Bourbaki 67ème année, 2014-2015, no. 1100, 2015.
  • [8] P. Keevash, The existence of designs, arxiv:1401.3665 [math.CO], 2014.
  • [9] Torsten Mütze, Proof of the middle levels conjecture, Proc. Lond. Math. Soc. (3) 112 (2016), no. 4, 677-713. MR 3483129, https://doi.org/10.1112/plms/pdw004
  • [10] Vojtěch Rödl, On a packing and covering problem, European J. Combin. 6 (1985), no. 1, 69-78. MR 793489, https://doi.org/10.1016/S0195-6698(85)80023-8
  • [11] Richard M. Wilson, An existence theory for pairwise balanced designs. I. Composition theorems and morphisms, J. Combinatorial Theory Ser. A 13 (1972), 220-245. MR 0304203
  • [12] Richard M. Wilson, An existence theory for pairwise balanced designs. II. The structure of PBD-closed sets and the existence conjectures, J. Combinatorial Theory Ser. A 13 (1972), 246-273. MR 0304204
  • [13] Richard M. Wilson, An existence theory for pairwise balanced designs. III. Proof of the existence conjectures, J. Combinatorial Theory Ser. A 18 (1975), 71-79. MR 0366695

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 05-02

Retrieve articles in all journals with MSC (2010): 05-02


Additional Information

W. T. Gowers
Affiliation: Department of Mathematics, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, United Kingdom
Email: W.T.Gowers@dpmms.cam.ac.uk

DOI: https://doi.org/10.1090/bull/1553
Received by editor(s): August 3, 2016
Published electronically: September 14, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society