Probabilistic combinatorics and the recent work of Peter Keevash
Author:
W. T. Gowers
Journal:
Bull. Amer. Math. Soc. 54 (2017), 107-116
MSC (2010):
Primary 05-02
DOI:
https://doi.org/10.1090/bull/1553
Published electronically:
September 14, 2016
MathSciNet review:
3584100
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Miklós Ajtai, János Komlós, and Endre Szemerédi, A dense infinite Sidon sequence, European J. Combin. 2 (1981), no. 1, 1–11. MR 611925, DOI https://doi.org/10.1016/S0195-6698%2881%2980014-5
- Noga Alon and Joel H. Spencer, The probabilistic method, 3rd ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2008. With an appendix on the life and work of Paul Erdős. MR 2437651
- P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294. MR 19911, DOI https://doi.org/10.1090/S0002-9904-1947-08785-1
- P. Erdős, Graph theory and probability, Canadian J. Math. 11 (1959), 34–38. MR 102081, DOI https://doi.org/10.4153/CJM-1959-003-9
- Misha Gromov, Spaces and questions, Geom. Funct. Anal. Special Volume (2000), 118–161. GAFA 2000 (Tel Aviv, 1999). MR 1826251
- Misha Gromov, Random walks in random groups, Geom. Funct. Anal. 13 (2003), 73–146.
- G. Kalai, Designs exist! [after Peter Keevash], http://www.bourbaki.ens.fr/TEXTES/ 1100.pdf, Séminaire Bourbaki 67ème année, 2014-2015, no. 1100, 2015.
- P. Keevash, The existence of designs, arxiv:1401.3665 [math.CO], 2014.
- Torsten Mütze, Proof of the middle levels conjecture, Proc. Lond. Math. Soc. (3) 112 (2016), no. 4, 677–713. MR 3483129, DOI https://doi.org/10.1112/plms/pdw004
- Vojtěch Rödl, On a packing and covering problem, European J. Combin. 6 (1985), no. 1, 69–78. MR 793489, DOI https://doi.org/10.1016/S0195-6698%2885%2980023-8
- Richard M. Wilson, An existence theory for pairwise balanced designs. I. Composition theorems and morphisms, J. Combinatorial Theory Ser. A 13 (1972), 220–245. MR 304203, DOI https://doi.org/10.1016/0097-3165%2872%2990028-3
- Richard M. Wilson, An existence theory for pairwise balanced designs. II. The structure of PBD-closed sets and the existence conjectures, J. Combinatorial Theory Ser. A 13 (1972), 246–273. MR 304204, DOI https://doi.org/10.1016/0097-3165%2872%2990029-5
- Richard M. Wilson, An existence theory for pairwise balanced designs. III. Proof of the existence conjectures, J. Combinatorial Theory Ser. A 18 (1975), 71–79. MR 366695, DOI https://doi.org/10.1016/0097-3165%2875%2990067-9
Retrieve articles in Bulletin of the American Mathematical Society with MSC (2010): 05-02
Retrieve articles in all journals with MSC (2010): 05-02
Additional Information
W. T. Gowers
Affiliation:
Department of Mathematics, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, United Kingdom
MR Author ID:
264475
ORCID:
0000-0002-5168-0785
Email:
W.T.Gowers@dpmms.cam.ac.uk
Received by editor(s):
August 3, 2016
Published electronically:
September 14, 2016
Article copyright:
© Copyright 2016
American Mathematical Society