Book Review
The AMS does not provide abstracts of book reviews.
You may download the entire review from the links below.
Full text of review:
PDF
This review is available free of charge.
Book Information:
Author:
Giovanni Bellettini
Title:
Lecture notes on mean curvature flow: barriers and singular perturbations
Additional book information:
Appunti.\ Scuola Normale Superiore di Pisa (Nuova Serie), Vol. 12,
Edizioni della Normale,
Pisa,
2013,
xviii+325 pp.,
ISBN 978-88-7642-428-1,
US$29.99; electronic US$19.99
Kenneth A. Brakke, The motion of a surface by its mean curvature, Mathematical Notes, vol. 20, Princeton University Press, Princeton, N.J., 1978. MR 0485012
Gerhard Huisken, Local and global behaviour of hypersurfaces moving by mean curvature, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 175–191. MR 1216584, DOI 10.1090/pspum/054.1/1216584
Tobias Holck Colding, William P. Minicozzi II, and Erik Kjær Pedersen, Mean curvature flow, Bull. Amer. Math. Soc. (N.S.) 52 (2015), no. 2, 297–333. MR 3312634, DOI 10.1090/S0273-0979-2015-01468-0
Yoshikazu Giga, Surface evolution equations, Monographs in Mathematics, vol. 99, Birkhäuser Verlag, Basel, 2006. A level set approach. MR 2238463
W. W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys. 27 (1956), 900–904. MR 78836
Stanley Osher and James A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), no. 1, 12–49. MR 965860, DOI 10.1016/0021-9991(88)90002-2
Brian White, Evolution of curves and surfaces by mean curvature, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 525–538. MR 1989203
References
- Kenneth A. Brakke, The motion of a surface by its mean curvature, Mathematical Notes, vol. 20, Princeton University Press, Princeton, N.J., 1978. MR 485012
- Gerhard Huisken, Local and global behaviour of hypersurfaces moving by mean curvature, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 175–191. MR 1216584, DOI 10.1090/pspum/054.1/1216584
- Tobias Holck Colding, William P. Minicozzi II, and Erik Kjær Pedersen, Mean curvature flow, Bull. Amer. Math. Soc. (N.S.) 52 (2015), no. 2, 297–333. MR 3312634, DOI 10.1090/S0273-0979-2015-01468-0
- Yoshikazu Giga, Surface evolution equations: a level set approach, Monographs in Mathematics, vol. 99, Birkhäuser Verlag, Basel, 2006. MR 2238463
- W. W. Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys. 27 (1956), 900–904. MR 0078836
- Stanley Osher and James A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988), no. 1, 12–49. MR 965860, DOI 10.1016/0021-9991(88)90002-2
- Brian White, Evolution of curves and surfaces by mean curvature, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 525–538. MR 1989203
Review Information:
Reviewer:
William P. Minicozzi II
Affiliation:
Mathematics Department, Massachusetts Institute of Technology
Email:
minicozz@math.mit.edu
Journal:
Bull. Amer. Math. Soc.
54 (2017), 529-532
DOI:
https://doi.org/10.1090/bull/1562
Published electronically:
November 22, 2016
Review copyright:
© Copyright 2016
American Mathematical Society