The Work of John Tate

J.S. Milne

Tate helped shape the great reformulation of arithmetic and geometry which has taken place since the 1950s.

Andrew Wiles.1

This is an exposition of Tate’s work, written on the occasion of the award to him of the Abel prize. True to the epigraph, I have attempted to explain it in the context of the “great reformulation”.

Contents

1 Hecke L-series and the cohomology of number fields 3
 1.1 Background 3
 1.2 Tate’s thesis and the local constants 6
 1.3 The cohomology of number fields 8
 1.4 The cohomology of profinite groups 12
 1.5 Duality theorems 13
 1.6 Expositions .. 15

2 Abelian varieties and curves 15
 2.1 The Riemann hypothesis for curves 15
 2.2 Heights on abelian varieties 16
 2.3 The cohomology of abelian varieties 18
 2.4 Serre-Tate liftings of abelian varieties 21
 2.5 Mumford-Tate groups and the Mumford-Tate conjecture 22
 2.6 Abelian varieties over finite fields (Weil, Tate, Honda theory) 23
 2.7 Good reduction of Abelian Varieties 24
 2.8 CM abelian varieties and Hilbert’s twelfth problem 25

3 Rigid analytic spaces 26
 3.1 The Tate curve .. 27
 3.2 Rigid analytic spaces 28

4 The Tate conjecture 31
 4.1 Beginnings ... 31
 4.2 Statement of the Tate conjecture 32
 4.3 Homomorphisms of abelian varieties 33
 4.4 Relation to the conjectures of Birch and Swinnerton-Dyer 34

1 Introduction to Tate’s talk at the conference on the Millenium Prizes, 2000.
4.5 Poles of zeta functions .. 35
4.6 Relation to the Hodge conjecture 37

5 Lubin-Tate theory and Barsotti-Tate group schemes 38
 5.1 Formal group laws and applications 38
 5.2 Finite flat group schemes .. 41
 5.3 Barsotti-Tate groups (p-divisible groups) 42
 5.4 Hodge-Tate decompositions 43

6 Elliptic curves 44
 6.1 Ranks of elliptic curves over global fields 44
 6.2 Torsion points on elliptic curves over Q 44
 6.3 Explicit formulas and algorithms 45
 6.4 Analogues at p of the conjecture of Birch and Swinnerton-Dyer 45
 6.5 Jacobians of curves of genus one 47
 6.6 Expositions .. 48

7 The K-theory of number fields 48
 7.1 K-groups and symbols .. 48
 7.2 The group $K_2 F$ for F a global field 49
 7.3 The Milnor K-groups .. 51
 7.4 Other results on $K_2 F$.. 52

8 The Stark conjectures 52

9 Noncommutative ring theory 56
 9.1 Regular algebras ... 56
 9.2 Quantum groups .. 57
 9.3 Sklyanin algebras ... 58

10 Miscellaneous articles 58

Bibliography 66

Index 72

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use