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TAO’S RESOLUTION

OF THE ERDŐS DISCREPANCY PROBLEM

K. SOUNDARARAJAN

Abstract. This article gives a simplified account of some of the ideas behind
Tao’s resolution of the Erdős discrepancy problem.

The Erdős discrepancy problem is an easily stated question about arbitrary
functions f from the positive integers to ±1. It asks whether the signs ±1 can be
arranged evenly over all subsequences of the form kj for a given k ∈ N and as j
varies. Precisely, must it always be the case that

(1) sup
k,n∈N

∣∣∣
n∑

j=1

f(kj)
∣∣∣ = ∞?

The question appears in many of Erdős’s lists of unsolved problems [3–5], and
in [3] he dates the conjecture to the 1930s. Erdős highlights a striking special
case of the problem: Suppose f is a completely multiplicative function (that is,
f(mn) = f(m)f(n) for all natural numbers m and n) taking the values ±1. Then
is it true that

(2) sup
n∈N

∣∣∣
n∑

j=1

f(j)
∣∣∣ = ∞?

Since f(kj) = f(k)f(j) in this situation, clearly a positive solution to problem (1)
implies a resolution of problem (2) as well. So as not to keep the reader in suspense,
let us state at once that the Erdős discrepancy problem was answered affirmatively
by Tao [24]:

Theorem 1 (Tao). For any function f : N → {−1, 1}, we have

sup
k,n∈N

∣∣∣
n∑

j=1

f(kj)
∣∣∣ = ∞.

In particular, the partial sums of a completely multiplicative function taking the
values ±1 are unbounded; that is, (2) holds.

The Erdős discrepancy problem asks whether every two-coloring of the natural
numbers must exhibit some disorder when viewed along homogenous arithmetic
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progressions jk (for 1 ≤ j ≤ n). One may weaken the problem to allow all arith-
metic progressions a+ jk: Is it true that for all f : N → {−1, 1},

(3) sup
a,k,n∈N

∣∣∣
n∑

j=1

f(a+ jk)
∣∣∣ = ∞?

Roth [20] established the existence of such irregularities of distribution. Indeed,
more generally he showed that if A is a subset of the integers up toN with |A| = ρN ,
then there exists an absolute positive constant c such that

sup
k≤

√
N

a mod k

∣∣∣ ∑
n∈A

n≡a mod k

1− ρN

q

∣∣∣ ≥ c
√
ρ(1− ρ)N1/4.

In other words, the only subsets of [1, N ] that are evenly distributed in all arithmetic

progressions with moduli below
√
N are (essentially) the empty set (with ρ = 0)

or the whole set (with ρ = 1). The weak Erdős discrepancy problem (3) is only
relevant for ρ ≈ 1/2, and so Roth’s theorem establishes (3), showing even a strong
quantitative version. Matoušek and Spencer [17] have shown that the N1/4 bound
in Roth’s result is best possible.

The Erdős discrepancy problem for homogeneous progressions (with one fewer
degree of freedom) has proved much more difficult, in part because the discrepancy
can be much smaller than one might expect. A random sequence of ±1 would
exhibit disorder in its partial sums up to N , typically on the scale of

√
N (the

central limit theorem) and occasionally on the scale of
√
N log logN (the law of

the iterated logarithm). In Roth’s theorem, the discrepancy along all progressions

is still of size a power of N , even if not
√
N . However, it is not hard to construct

±1 sequences where the discrepancy along homogeneous progressions grows only
logarithmically, and this slow rate of growth indicates why the Erdős discrepancy
problem is so delicate.

Example 1. Consider the function

χ(n) =

⎧⎪⎨
⎪⎩
1 if n ≡ 1 mod 3,

−1 if n ≡ 2 mod 3,

0 if n ≡ 0 mod 3.

Then χ is a completely multiplicative function and is periodic with period 3 (that
is, it is a Dirichlet character mod 3) and its partial sums are bounded (since every
three consecutive terms sum to zero). Therefore, the left-hand sides of (1) and
(2) are both finite. More generally, one can take any quadratic character mod q
(generalizations of the Legendre symbol mod p), to get examples of completely
multiplicative functions that are also periodic and which have bounded partial
sums. Of course, this is not a counterexample to (1) and (2) since χ takes the value
0 in addition to ±1.

Example 2. A completely multiplicative function may be specified by its values on
the primes. We tweak Example 1, defining the completely multiplicative function
χ̃ by setting χ̃(p) = χ(p) if p 
= 3, and χ̃(3) = 1. Then for any k and n we have

∣∣∣
n∑

j=1

χ̃(kj)
∣∣∣ = ∣∣∣

n∑
j=1

χ̃(j)
∣∣∣ = ∣∣∣ ∑

�≥0

3�≤n

∑
m≤n/3�

χ(m)
∣∣∣ ≤ 1 +

log n

log 3
.
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On the other hand, taking k = 1 and n = 1 + 3 + 32 + · · ·+ 3r, we find∣∣∣
n∑

j=1

χ̃(n)
∣∣∣ = ∣∣∣

r∑
�=0

∑
m≤3r−�+1

χ(m)
∣∣∣ = r + 1 =

⌈ log n
log 3

⌉
.

Thus, in this example, the discrepancy along homogeneous progressions does go to
infinity, but only at a slow logarithmic pace. In [1], Borwein, Choi, and Coons carry
out an analysis of examples of this type, settling the Erdős discrepancy problem for
modified characters χ̃p defined to be the Legendre symbol mod p on primes � 
= p,
and with χ̃p(p) = 1.

Example 3. Numerical examples . The sequence (1,−1,−1, 1,−1, 1, 1,−1,−1, 1, 1)
of length 11 has discrepancy 1 along homogeneous progressions, and it is the longest
such sequence [13]. In [12] it is shown that the longest sequence of ±1 with discrep-
ancy 2 along homogeneous progressions has size 1160 and that there is a sequence
of length 13000 with discrepancy 3.

While the examples above indicate the delicate nature of the Erdős discrepancy
problem, Tao’s proof in fact gives the following more general result.

Theorem 2 (Tao). Let H be a Hilbert space, and let f : N → H be a function with
‖f(n)‖H = 1 for all n. Then

sup
k,n∈N

∥∥∥
n∑

j=1

f(jk)
∥∥∥
H

= ∞.

Example 4. The Hilbert space in Theorem 2 can be real or complex. In partic-
ular, Theorem 2 applies to any function f from the natural numbers to the unit
circle {|z| = 1}. To specialize once more, rather than looking at ±1 completely
multiplicative functions (as in (2)), we may consider any completely multiplicative
function f : N → {|z| = 1} and ask whether

(4) sup
n∈N

∣∣∣
n∑

j=1

f(j)
∣∣∣ = ∞.

Of course, Theorem 2 provides a positive answer to this question.

Example 5. In Theorem 2 the discrepancy can grow as slowly as
√
log n. Take H

to be a Hilbert space with orthonormal basis e0, e1, e2, . . . . Write n ∈ N as 3ab,
where a is a nonnegative integer and b is coprime to 3. Then set f(n) = χ(b)ea
where χ, the Dirichlet character mod 3, is as in Example 1. Now if k = 3cd (with
c a nonnegative integer and d coprime to 3), then

∥∥∥
n∑

j=1

f(kj)
∥∥∥
H

=
∥∥∥ ∑

a≥0
3a≤n

ec+a

∑
b≤n/3a

χ(b)
∥∥∥
H

≤
√
1 + log n/ log 3.

As in Example 2, this bound is attained if n = 1 + 3 + · · ·+ 3r.

The Erdős discrepancy problem remained dormant for a long time, with no
promising avenues of attack. In December 2009, Gowers proposed the Erdős dis-
crepancy problem as a possible Polymath project, continuing his idea of “massively
collaborative mathematics” which began earlier in 2009 with a new (and quanti-
tative) proof of the density Hales-Jewett theorem (originally due to Furstenberg
and Katznelson). Another successful Polymath project is Polymath 8 from 2013,
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on improving the bounds on small gaps between primes after the breakthroughs
of Zhang, and Maynard and Tao. Polymath 5, the project on the Erdős discrep-
ancy problem, began in January 2010 and was active until the end of 2012. Many
interesting reformulations of the problem were found, and several of these are re-
counted in Gowers’s article [7]. The website [19] documents the various Polymath
discussions and blog posts centered around this problem.

For Tao’s eventual resolution of the problem, two developments from the Poly-
math 5 project proved important: First, the general Erdős discrepancy problem
(in the form of general ±1 sequences as in (1) or in the more general Hilbert space
situation as in Theorem 2) can be deduced from the special case of completely mul-
tiplicative functions taking values on the unit circle (as in (4)). Second, if such a
completely multiplicative function correlates with a Dirichlet character (in a sense
to be made precise later), then the discrepancy does tend to infinity. In other
words, if we are close to the situation of Example 2, then (generalizing the work of
[1]) it is possible to show that the discrepancy must grow, even if only very slowly.
Tao himself was a participant in the Polymath 5 project and played a major role
in both these developments.

The missing link is to show that completely multiplicative functions taking val-
ues on the unit circle and with bounded partial sums must correlate with char-
acters. This is the most subtle part of Tao’s argument, and it is carried out in
[25]. The starting point is a recent breakthrough of Matomäki and Radziwi�l�l [14]
in understanding multiplicative functions in short intervals, with further impor-
tant refinements due to Matomäki, Radziwi�l�l, and Tao [15]. On top of this, Tao
brings to the problem several other novel ideas, some motivated by work in additive
combinatorics.

In the rest of this article, I want to give an overview of the ideas behind Theorems
1 and 2, oversimplifying the situation to convey the flavor of the arguments.

Reducing the problem to completely multiplicative functions. Suppose H
is a Hilbert space, and suppose f(n) is a sequence of unit vectors in H with bounded
discrepancy,

(5) sup
k,n

∥∥∥
n∑

j=1

f(kn)
∥∥∥ ≤ C.

From this we wish to construct completely multiplicative functions taking values
on the unit circle and with small discrepancy; we will not exactly achieve this but
something good enough.

Let X be large, and let M be an integer much larger than X. Let p1, . . . , pr
denote the primes below X. Define F : (Z/MZ)r → H by setting

F (a1, . . . , ar) = f(pa1
1 · · · par

r ),

provided 0 ≤ ai ≤ M − 1, and then extending the definition periodically in each
coordinate. Given a natural number n below X, write its prime factorization as
n = pa1

1 · · · par
r so that the exponents ai are nonnegative integers. Set π(n) =

(a1, . . . , ar), which we view as an element of (Z/MZ)r.
If j ≤ X, then note that the coordinates of π(j) are all smaller than �logX/ log 2
.

Therefore if x = (x1, . . . , xr) is such that 0 ≤ xi ≤ M − X for all i, then for all
n ≤ X we have

(6)
∥∥∥

n∑
j=1

F (x+ π(j))
∥∥∥
H

=
∥∥∥

n∑
j=1

f(jpx1
1 · · · pxr

r )
∥∥∥
H

≤ C.
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Now there are Mr vectors x ∈ (Z/MZ)r, and the bound (6) applies to the vast
majority of such x; namely, for (M − X + 1)r = Mr + O(XMr−1) of them, and
recall that M is much larger than X. For the few values of x not covered by (6),
there holds the trivial bound∥∥∥

n∑
j=1

F (x+ π(j))
∥∥∥
H

≤ n ≤ X.

Combining this trivial bound with the estimate (6), we conclude that for all n ≤ X

(7)
1

Mr

∑
x∈(Z/MZ)r

∥∥∥
n∑

j=1

F (x+ π(j))
∥∥∥2
H

≤ C2 + 1,

assuming that M is large enough compared with X.
With e(t) = e2πit, recall the Fourier transform on (Z/MZ)r: for ξ ∈ (Z/MZ)r,

put

F̂ (ξ) =
1

Mr

∑
x∈(Z/MZ)r

F (x)e
(
− x · ξ

M

)
,

which is an element of H. The Fourier inversion formula gives

F (x) =
∑

ξ∈(Z/MZ)r

F̂ (ξ)e
(x · ξ

M

)
,

and Parseval’s formula reads

(8)
∑

ξ∈(Z/MZ)r

‖F̂ (ξ)‖2H =
1

Mr

∑
x∈(Z/MZ)r

‖F (x)‖2H = 1.

Use the Fourier inversion formula
n∑

j=1

F (x+ π(j)) =
∑

ξ∈(Z/MZ)r

F̂ (ξ)e
(x · ξ

M

)( n∑
j=1

e
(π(j) · ξ

M

))
,

so that by Parseval and (7) we obtain

(9)
∑

ξ∈(Z/MZ)r

‖F̂ (ξ)‖2H
∣∣∣

n∑
j=1

e
(π(j) · ξ

M

)∣∣∣2 ≤ C2 + 1.

We can now give a probabilistic interpretation of the estimate (9). We define
a probability space of random completely multiplicative functions f : [1, X] →
{|z| = 1}, by setting f(pj) = e(ξj/M) for all 1 ≤ j ≤ r with probability ‖F̂ (ξ)‖2H
where ξ = (ξ1, . . . , ξr) ∈ (Z/MZ)r. Parseval’s formula (8) shows that this is indeed
a probability space. Further, the estimate (9) may be recast as

(10) E
(∣∣∣∑

j≤n

f(j)
∣∣∣2) ≤ C2 + 1,

for all n ≤ X.
Thus for all large X, we have constructed a probability space (depending on

X) of random completely multiplicative functions with values on the unit circle
such that the expected value of partial sums up to n (for all n ≤ X) is bounded.
By a compactness argument, Tao shows that one can construct a space of random
completely multiplicative functions such that (10) holds for all n instead of just n
below X.
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The estimate (10) forms the basis for Tao’s proof of Theorem 2. Note that (10) is
an average statement, and one cannot extract from it a (deterministic) completely
multiplicative function with all partial sums up to X being bounded. For each n
below X there clearly exists such a function, but perhaps no one function works
for all n ≤ X. If we average (10) over all n ≤ X, then

E
( 1

X

∑
n≤X

∣∣∣∑
j≤n

f(j)
∣∣∣2) ≤ C2 + 1,

so that there must exist completely multiplicative functions f , taking values on the
unit circle, such that

1

X

∑
n≤X

∣∣∣∑
j≤n

f(j)
∣∣∣2 ≤ C2 + 1.

We expect that this estimate cannot hold for large enough X, but this remains an
open problem.

Let us highlight one interesting feature of this construction. Most values of
(a1, . . . , ar) (with 0 ≤ ai ≤ M−1) will satisfy ai ≥ A for all i and any fixed natural
number A. Therefore, most of the values of F will be built out of f evaluated at
multiples of

∏
p≤X pA. This shows the importance of needing all the values of f to

be unit vectors; if f took small values along the multiples of some number (as in
Example 1, or for any Dirichlet character) this will force F to be small almost all
the time, and the construction leads nowhere.

Correlations of values of completely multiplicative functions. Given a se-
quence of unit vectors in a Hilbert space H violating Theorem 2, the argument
above produces a probability space of random completely multiplicative functions
with partial sums bounded in expectation. For the sake of simplicity, let us suppose
that we actually have a completely multiplicative function with values on the unit
circle, and bounded partial sums; that is, a violation to (4).

To motivate the ideas that follow, we begin with a brief discussion of partial
sums of multiplicative functions. Apart from the constant function 1, and Dirichlet
characters (homomorphisms from (Z/qZ)∗ → C∗), perhaps the best known multi-
plicative functions are the Möbius function μ(n) and the Liouville function λ(n).
The Liouville function is completely multiplicative and is defined on the primes by
λ(p) = −1; thus λ(n) = 1 if n has an even number of prime factors (counted with
multiplicity) and is −1 otherwise. The Möbius function μ(n) equals λ(n) whenever
n is square-free, and μ(n) = 0 if n is divisible by the square of some prime; thus
the Möbius function is merely multiplicative (f(mn) = f(m)f(n) whenever m and
n are coprime) rather than being completely multiplicative. For the Möbius and
Liouville functions the first main goal was to exhibit cancellation in their partial
sums, since the estimates

(11) lim
N→∞

1

N

∑
n≤N

μ(n) = lim
N→∞

1

N

∑
n≤N

λ(n) = 0

can be elementarily shown to be equivalent to the prime number theorem. In fact
we believe that λ(n) behaves in many ways like a random collection of signs ±1
(but there are limits to this belief), and that the partial sums above exhibit roughly
square-root cancellation—this is related to the Riemann hypothesis. Of course our
goal is to show that partial sums must get large sometimes; for the Möbius function



TAO’S RESOLUTION OF THE ERDŐS DISCREPANCY PROBLEM 87

(and a similar result holds for λ(n)), let us remark that the partial sums are known

to be larger than
√
N infinitely often, disproving a conjecture of Mertens (see [18]).

Given a completely multiplicative function f with f(n) = ±1, Erdős and Wintner
asked whether

lim
N→∞

1

N

∑
n≤N

f(n)

always exists. If the limits in (11) exist, then it is not hard to show that they must
be 0; so the Erdős–Wintner question offers another way of generalizing and thinking
about the prime number theorem. Wintner [27] showed that if the function f is
mostly like the constant function 1, then the limit above does exist; precisely, if

(12)
∑
p

1− f(p)

p
< ∞, then

1

N

∑
n≤N

f(n) →
∏
p

(
1− f(p)

p

)−1(
1− 1

p

)
.

The harder direction (which includes the Liouville function) is to show that when
the prime sum

∑
p(1 − f(p))/p diverges, then the limiting average of f(n) exists,

and equals 0. This was beautifully resolved by Wirsing [28], who showed that

(13)
∑
p

1− f(p)

p
= ∞ implies

1

N

∑
n≤N

f(n) → 0,

thereby settling this question of Erdős and Wintner.
For a complex valued completely multiplicative function f with |f(n)| = 1, the

story is a little more complicated. The function f(n) = niα for a fixed real number
α has no limiting average value: indeed, by comparing with the integral,

1

N

∑
n≤N

niα ∼ 1

N

N1+iα

1 + iα
=

N iα

1 + iα
,

which oscillates with N . Halász [9] found the right generalization of Wirsing’s work
and developed an ingenious analytic method to show that if

(14)
∑
p

1− Re f(p)p−iα

p
= ∞ for all α ∈ R, then

1

N

∑
n≤N

f(n) → 0.

Given two multiplicative functions f and g taking values in the unit disc, it is
convenient to define the distance between them (up to some point X) as

D(f, g;X)2 =
∑
p≤X

1− Re f(p)g(p)

p
,

and this satisfies the properties of a pseudo-metric, notably the triangle inequality;
see [8] for further discussion. Thus the hypotheses in (13) and (14) may be inter-
preted as f not being close to the function 1 or to any function of the form niα; in
the language of [8], this is stated as f not pretending to be 1 or niα, or (abusing
the English language) as f being “unpretentious”.

Let us now return to the Erdős discrepancy problem. Suppose f is a completely
multiplicative function with |f(n)| = 1 and bounded partial sums. Since the partial

sums are bounded, the sums
∑H

h=1 f(n+ h) must also be bounded for any interval
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[n+ 1, n+H]. Therefore, one must have

1

N

∑
n≤N

∣∣∣
H∑

h=1

f(n+ h)
∣∣∣2 ≤ C

for some constant C. Expanding the left-hand side above gives

1

N

∑
n≤N

∑
h1=h2≤H

|f(n+ h1)|2 +
1

N

∑
n≤N

∑
h1 
=h2≤H

f(n+ h1)f(n+ h2)

= H +
∑

h1 
=h2≤H

1

N

∑
n≤N

f(n+ h1)f(n+ h2).

If H is chosen to be large compared to C, then there must exist h1 
= h2 ≤ H with

(15)
1

N

∣∣∣ ∑
n≤N

f(n+ h1)f(n+ h2)
∣∣∣ ≥ 1

2H
.

Thinking ofN as being very large compared toH, the above estimate says that there
is a strong correlation between the values of f at n and n+h with h = h2−h1 
= 0.
This type of reasoning is often referred to as a van der Corput argument , originating
in van der Corput’s work on bounding exponential sums.

When can a multiplicative function f correlate with a shift of itself? Clearly
the function f(n) = 1 does, and so does a function that pretends to be 1. More
generally the function niα, or anything pretending to be niα, will correlate with its
shifts: for large n there is not much difference between niα and (n + 1)iα. Less
obviously, if f is a Dirichlet character mod q, then the periodicity mod q implies
that f(n)f(n+ q) = 1 whenever (n, q) = 1. One can generalize this by taking
χ(n)niα for any real number α, and still more generally one can take any function
pretending to be χ(n)niα. Note that χ̃ in Example 2 is a function pretending to
be the character χ. In analogy with the results of Wirsing and Halász mentioned
earlier, we may hope that these examples exhaust all the possibilities for a mul-
tiplicative function correlating with a shift of itself. Indeed Elliott [2] formulated
such a conjecture; it needs a small technical correction, which is made in [15].

Unfortunately, very little is understood about correlations of multiplicative func-
tions. For example, take the Liouville function λ(n), which we said earlier is ex-
pected to look like a random sequence of signs ±1. Furthermore, the Liouville
function is known not to correlate with Dirichlet characters; this is essentially the
prime number theorem in arithmetic progressions. Thus we should definitely expect
that as N → ∞,

(16)
1

N

∑
n≤N

λ(n)λ(n+ 1) → 0,

which is also equivalent to saying that all four sign patterns (+,+), (+,−), (−,+),
(−,−) occur roughly equally often among consecutive values of λ(n). More gener-
ally, Chowla conjectured that if ajn + bj (for 1 ≤ j ≤ k) are affine functions with
no two proportional to each other (aibj 
= biaj for all i 
= j), then as N → ∞,

1

N

∑
n≤N

λ(a1n+ b1) · · ·λ(akn+ bk) → 0.
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Chowla’s conjecture implies that among k consecutive values of λ, all 2k possible
patterns of signs occur equally frequently.

The first breakthrough toward these problems came with the work of Matomäki
and Radziwi�l�l [14]. They showed that the Liouville function exhibits cancellation
in almost all intervals [n, n + h], as soon as h → ∞ (however slowly). This was a
remarkable advance on earlier results which required h to grow like a power of n.
Toward (16) they established that for all large N∣∣∣ ∑

n≤N

λ(n)λ(n+ 1)
∣∣∣ ≤ (1− δ)N,

for some δ > 0; from this it follows that all four sign patterns of (λ(n), λ(n + 1))
appear a positive proportion of the time. Following this breakthrough, Mato-
mäki, Radziwi�l�l, and Tao [16] showed that all eight patterns of signs for
(λ(n), λ(n + 1), λ(n + 2)) occur a positive proportion of the time, and moreover
in [15] they showed an average version of the Chowla conjecture. While we have
discussed just the Liouville function, the results in [14] and [15] apply more gener-
ally to all multiplicative functions. For an account of these papers, see the author’s
Bourbaki exposition [23].

These breakthroughs are still insufficient to show estimates like (16). However,
Tao [25] realized that a weaker logarithmic version of (16) could be established.
Namely, he showed that as N → ∞,

1

logN

∑
n≤N

1

n
λ(n)λ(n+ 1) → 0.

More generally, Tao showed a logarithmic version of the (corrected) Elliott conjec-
ture: If f is a multiplicative function with |f(n)| ≤ 1 for all n and such that, for
two affine functions a1n+ b1 and a2n+ b2 with a1b2 
= a2b1,

1

logN

∣∣∣ ∑
n≤N

1

n
f(a1n+ b1)f(a2n+ b2)

∣∣∣
is bounded away from 0, then there is a character χ to small modulus, and a
small real number α such that f(n) pretends to be χ(n)niα. This is the key result
underlying Tao’s proof of Theorems 1 and 2. It builds on the work of Matomäki,
Radziwi�l�l, and Tao—most notably their work in [15]—and adding several other
novel ideas, particularly an “entropy decrement argument” reminiscent of ideas
from additive combinatorics. The subject is currently undergoing a dramatic and
rapid transformation (see [6,10,11,26]) and we simply mention two striking recent
results. From the work of Frantzikinakis and Host [6], it follows that for any k
integers h1, . . . , hk and any irrational number α, one has

1

logN

∑
n≤N

1

n
λ(n+ h1) · · ·λ(n+ hk)e

2πinα → 0, as N → ∞.

This is a step toward the Möbius disjointness conjectures of Sarnak [21, 22]. The
work of Tao and Teräväinen [26] takes a further step toward the logarithmic Chowla
and Elliott conjectures. They show that for any odd natural number k and any k
integers h1, . . . , hk, one has

1

logN

∑
n≤N

1

n
λ(n+ h1) · · ·λ(n+ hk) → 0, as N → ∞.
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As a consequence, they are able to show that all 16 possible sign patterns of
(λ(n), λ(n + 1), λ(n + 2), λ(n + 3)) occur a positive proportion of the time, ex-
tending the result of Matomäki, Radziwi�l�l, and Tao mentioned earlier.

Coming back again to the Erdős discrepancy problem, Tao’s logarithmic version
of the Chowla and Elliott conjectures suffices to show that a completely multi-
plicative function f with |f(n)| = 1 and bounded partial sums must correlate with
functions of the form χ(n)niα. Indeed given a completely multiplicative f with
bounded partial sums, we can carry out a logarithmic van der Corput argument:

1

logN

∑
n≤N

1

n

∣∣∣
H∑

h=1

f(n+ h)
∣∣∣2 ≤ C,

and expanding the above we obtain (in place of (15))

1

logN

∣∣∣ ∑
n≤N

1

n
f(n+ h1)f(n+ h2)

∣∣∣ ≥ 1

2H
,

for some h1 
= h2 ≤ H. Now invoking Tao’s work [25], it follows that f must
correlate with (or pretend to be) χ(n)niα for a suitable character χ and a real
number α.

Finishing the proof. We are now at the last stage of the proof. Suppose for
simplicity that f is a completely multiplicative function taking values ±1 and with
bounded partial sums. As described above, f must correlate with some function
of the form χ(n)niα, and since f is real, one can ensure that α = 0 and χ is
real as well. Let q denote the conductor of the character χ, and define χ̃ to be a
completely multiplicative function with χ̃(p) = χ(p) for all p � q, and χ̃(p) = f(p)
for p|q. Put f(n) = χ̃(n)g(n) for a completely multiplicative function g taking
values ±1. Assume that the correlation of f and χ takes the simplified form

(17)
∑
p

1− f(p)χ̃(p)

p
=

∑
p

1− g(p)

p
≤ C,

for some constant C.
The idea is to decouple the character-like function χ̃ from g (which is close to

the function 1). Let H be a large integer, and let k be such that 2k > 2H. Let X
be much larger than qk. Since the partial sums of f are bounded, it follows that

∣∣∣ ∑
n≡0 mod qk

1

n1+1/ logX

H∑
h=1

f(n+ h)
∣∣∣ ≤ A

logX

qk
,

for some constant A. If n ≡ 0 mod qk, then for all h ≤ H we see that (n+h, qk) =
(h, qk) must be a divisor of qk−1, and therefore f(n + h) = χ̃(n + h)g(n + h) =
χ̃(h)g(n+ h). Using this above, we obtain

(18)
∣∣∣

H∑
h=1

χ̃(h)
∑

n≡0 mod qk

g(n+ h)

n1+1/ logX

∣∣∣ ≤ A
logX

qk
.

The hypothesis (17) says that g is close to the constant function 1 and, rather
as in Wintner’s result (12), it is not hard to show that∑
n≡0 mod qk

g(n+ h)

n1+1/ logX
≈ logX

qk

∏
p

(
1− 1

p1+1/ logX

)(
1− g(p)

p1+1/ logX

)−1

≈ S
logX

qk
,
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for some constant S > 0. Roughly, this says that g is equidistributed in residue
classes mod qk, and in establishing this, one uses that (h, qk)|qk−1, and that g(p) =
1 (by construction) for all p|q. Inserting this in (18) we conclude that

(19)
∣∣∣

H∑
h=1

χ̃(h)
∣∣∣ ≤ B,

for some constant B.
Thus, from knowing that the partial sums of f are bounded, we have passed to

knowing that the partial sums of the character-like function χ̃ are bounded. At
this stage, let us simplify our task once more and assume that the modulus q is a
prime number. We are now back to the situation of Example 2! Write H in base
q as H = h0 + h1q + · · · + hrq

r, where 0 ≤ hj ≤ q − 1 and hr ≥ 1. Then, a small
calculation shows

H∑
h=1

χ̃(h) =
r∑

j=0

f(q)j
( ∑

n≤hj

χ(n)
)
.

Choose hj = 0 if f(q)j = −1 (which happens only if f(q) = −1 and j is odd) and
hj = 1 if f(q)j = 1 (which happens whenever j is even, and if f(q) = 1, then for all
j). With this choice the above is at least �logH/(2 log q)�, which goes to infinity
with H. This contradicts (19), and completes our (oversimplified) proof sketch.
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