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COMMENTARY ON

“LONGEST INCREASING SUBSEQUENCES:

FROM PATIENCE SORTING

TO THE BAIK–DEIFT–JOHANSSON THEOREM”

BY DAVID ALDOUS AND PERSI DIACONIS

IVAN CORWIN

Abstract. Immediately following the commentary below, this previously pub-
lished article is reprinted in its entirety: David Aldous and Persi Diaconis,
“Longest increasing subsequences: from patience sorting to the Baik–Deift–
Johansson theorem”, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 4, 413–432.

What is the distribution of the longest increasing subsequence of a permutation
chosen uniformly at random from all N ! permutations on the numbers {1, . . . , N}
(e.g., for a permutation σ = (1, 3, 6, 2, 5, 4) a longest increasing subsequence could
be (1, 3, 6) or (1, 2, 4)—both of length 3)? It is this question that Aldous and Diaco-
nis took up in their 1999 Bulletin of the American Mathematical Society article [1].
At the time, there had been recent breakthrough work of Baik, Deift, and Johans-
son [3] which related the large N asymptotic behavior of the distribution of this
length to the large N asymptotic behavior of eigenvalues of Gaussian Hermitian
random matrices—the so-called GUE (Gaussian Unitary Ensemble) Tracy–Widom
distribution [49] (see [2, 24] for more on random matrix theory).

Over the twenty years that have elapsed since that work, the answer to this
seemingly innocent question has become intertwined with more than a few beauti-
ful stories touching disparate areas within mathematics (e.g., probability, algebraic
combinatorics, representation theory, integrable systems, algebraic geometry, par-
tial differential equations) as well as other domains of theoretical and experimental
research (e.g., physics, biology, statistics, operations research).

While it will take many books to fully expound upon the developments of these
past two decades (some of the developments are contained in [4,9,12,13,15,17,47]),
in this short commentary I will briefly mention aspects of three such stories:

(1) Kardar–Parisi–Zhang universality,
(2) integrable probability,
(3) stochastic PDEs.
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There are many more directions which I will not have space to discuss, including
connections to classical integrable systems (e.g., Painlevé transcendents and Rie-
mann Hilbert problems), quantum integrable systems, random matrix theory, ran-
dom maps, enumerative geometry, asymptotic representation theory (some discus-
sion and further references related to these subjects can be found in [6,22,23,36,37]).
In the space here provided, it will be simply impossible to cite all important and
relevant works, so I must beg pardon for this as well.

1. Kardar–Parisi–Zhang universality

The longest increasing subsequence problem may seem at first to be an isolated
combinatorial oddity. In truth, the behavior predicted in its large N asymptotics
underlies the expansive Kardar–Parisi–Zhang (KPZ ) universality class [35] which
predicts the large-scale and long-time behavior of many disparate systems (see
[17,18,34,44,45] and references therein). This is facilitated by mapping the problem
into a stochastic interface growth model called the polynuclear growth model [38] as
follows.

We start by “Poissonizing” the length of the permutation (or, in statistical
physics parlance, we go to the grand canonical ensemble). Let N be random and
Poisson distributed so that Prob(N = n) = e−NNn/n!. The mean and variance of
the Poisson random variable N are both N , showing that N concentrates closely
around N . Now let σ represent a uniform random permutation on N elements (first
choose N and then choose σ uniformly over permutations of {1, . . . ,N}). There
is an alternative graphical way (see Figure 1) to sample σ. Consider a Poisson
point process of intensity N on a unit square [0, 1]× [0, 1] (this means that for each
very small area dxdy, the probability of finding one point is approximately Ndxdy).
The points can be ordered in terms of their x coordinate and y coordinate. This
immediately yields a permutation (from x order to y order) and by construction
it is equal in distribution to σ. Note that ties in this ordering happen with zero
probability due to the continuous nature of the distributions.

The length of the longest increasing subsequence of σ can be read off as the
length of the longest path (measured by the number of Poisson points encountered
along it) which starts at (0, 0), ends at (1, 1), and can only go at angles between 0

1 2 3 4 5 6

1
2

3
4
5
6

Figure 1. N = 6 Poisson points in a unit square. The associated
permutation is σ = (1, 3, 6, 2, 5, 4) and a longest increasing sub-
sequence (1, 2, 4) is drawn connecting (0, 0) to (1, 1) with lines of
slope between 0 and π/2.
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Figure 2. The mapping between the graphical representation for
the longest increasing subsequence and the polynuclear growth
model. The three figures represent different times (as the hori-
zontal dotted line rises vertically, time increases).

and π/2. The beauty of this graphical representation is that it introduces a space-
time dimension to the problem. Rotating the set of points by π/4 (see the top
portion of Figure 2), one can think of the vertical direction as a time axis and the
horizontal direction as a space axis.

In this rotated frame it is natural to consider a rescaled and extended Poisson
point which has intensity 1 (average number of points per unit area) and is defined
on the whole cone {(t, x) : |x| < t}. Let h(t, x) represent the length of the longest
path (where paths now need to go at angles between π/4 and 3π/4). For a given
t, x �→ h(t, x) gives a height function (see the bottom portion of Figure 2), which
is zero for |x| ≥ t, nonnegative everywhere, and increases or decreases by one at a
finite number set of x’s.

The height function h(t, x) evolves as a Markov process in time and is called
the polynuclear growth model. Specifically, a Poisson point at (t, x) produces a
nucleation at time t, position x so that h(t+, x) − h(t−, x) = 1 (t± represents a
moment after and before t). The left edge and right edge of the nucleation step
then move horizontally to the left and right at speed 1. When a left and right
moving step collide, they merge and stop moving. These dynamics are illustrated
in Figure 2. The restriction on the Poisson points to live in {(t, x) : |x| < t} creates
a growth droplet which starts at the origin and moves outward over time. After a
long period of time and after scaling the picture back to unit size, the droplet will
have grown to roughly have a circular shape (as depicted in Figure 3).

The fluctuations of the height function grow over time and display a nontrivial
spatio-temporal correlation structure. In fact, setting hε(t, x) = εh(ε−3t, ε−2x) −
h̄ε(t, x) for a specific centering function h̄ε(t, x) (depending on the circular limit
shape), it is believed that limε→0 hε(·, ·) exists (with the limit taking place relative to
a suitable topology on functions) and is a space-time Markov process known as the
KPZ fixed point [20,41]. Moreover, it is predicted that not just this interface growth
model, but a very wide class of models will all converge to this same universal fixed
point (up to some model specific constants). This defines the strongest definition
for membership in the KPZ universality class.

Despite great interest, the KPZ fixed point is still something of nebulous object.
There are many formulas known (see [41] and the integrable probability discus-
sion below) which encode distributions and transition probabilities associated to
it. What is lacking for the fixed point is a simple physical characterization akin
to the characterization of Brownian motion as the unique (almost surely) contin-
uous process with independent increments and linear quadratic variation. To our
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Figure 3. A possible instance of the polynuclear growth model
after many nucleations. The dotted line represents the circular
limit shape.

knowledge, the KPZ fixed point is not the solution to a stochastic PDE nor is it
characterized via a martingale problem. Even giving an abstract set of properties,
which uniquely identifies the KPZ fixed point, is beyond current state-of-the-art.

Instead of showing convergence to the full KPZ fixed point, a weaker notion
of universality asks that a model displays the associated 3 : 2 : 1 relationship
between scaling exponents for time : space : fluctuation or that certain marginal
distributions of the height function converge to the same limiting distributions. The
initial work of Baik, Deift, and Johansson [3] identified, for the first time, analytic
formulas for what one of these special universal distributions should be. Namely,
they showed that the height h(t, 0) above the origin of the polynuclear growth model
with droplet initial condition has (after correct centering) t1/3 scale fluctuations
which are asymptotically GUE Tracy–Widom distributed. This distribution first
arose in the early 1990s in the context of random matrix theory [49].

There has been some progress in demonstrating the KPZ scaling exponents for
more general growth models (e.g., [5, 46]). On the other hand, progress toward
proving the distributional (e.g., GUE Tracy–Widom) limits has been limited to
special models (like the polynuclear growth mode) which enjoy enhanced algebraic
structure coming from connections to representation theory and integrable systems.
These models are sometimes called exactly solvable or integrable probabilistic sys-
tems, and we will discuss them further below. The solvability of these models is very
precarious—most perturbations, while they should not change the universal limits,
will totally destroy the algebraic structure and render existing asymptotics methods
inapplicable. Despite its limitations to these special models, integrable probability
provides a mathematical laboratory for discovering new asymptotic phenomena,
crafting precise predictions and testing numerical methods and other nonrigorous
methods from physics.

Through a combination of rigorous mathematical results from integrable proba-
bility, theoretical physics methods, numerical simulations, and experimental demon-
strations, the notion and scope of KPZ universality has been refined and expanded
quite drastically over the past decades (see the reviews [17, 18, 34, 44, 45]). In fact,
through various mappings (some quite evident like the relation between the longest
increasing subsequence and the polynuclear growth model, and others hidden in
algebraic structure like the relation of those models to random matrix theory),
the KPZ universality class has steadily grown to encompass much more than just
random growth models. The universality class connects to and predicts certain as-
ymptotic behaviors for models of traffic, queues in series, mass transport in random
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media, turbulence, stochastic optimization, quantum entanglement; the statistics
and scaling exponents are closely related to those which arise in random matrix
theory and random tilings; and experimental/numerical work has revealed these
behaviors in many other physical systems like superconductor vortices, disordered
liquid crystals, bacterial colony growth and competition interfaces, cancer growth,
chemical reaction fronts, slow combustion, coffee stains, and conductance fluctua-
tions in Anderson localization.

2. Integrable probability

The longest increasing subsequence (in its various disguises through mappings
described above) is an integrable probabilistic system in that (1) there are many
concise and exact formulas known for expectations of observables of interest (e.g.,
distribution of the length), and (2) taking a limit of the system along with the
expectations and observables provides a precise description of a much wider univer-
sality class (i.e., the KPZ class). Here “integrable” should not be confused with the
notion of an integrable function (whose integral is finite). Rather, it is being used
in the spirit of classical or quantum integrable systems in which there are many
conserved quantities which allow one to integrate or solve the system. Another
synonym, “exactly solvable”, is often used in the study of 2D lattice models [6]—a
subject closely related to this one.

One manifestation of the integrability of the longest increasing subsequence
comes from the following very remarkable formula. Let LN denote the length
of the longest increasing subsequence of permutation drawn uniformly at random
from all N ! permutations on {1, . . . , N}. Then

Prob
(
LN = �

)
=

∑

λ�N :λ1=�

dim2
λ

N !
,

where λ = (λ1 ≥ λ2 ≥ · · · ≥ 0) with λi ∈ Z and
∑

λi = N is called a Young diagram
or partition of size N , and dimλ is the dimension of the irreducible representation of
the symmetric group indexed by the partition λ . There is a simple combinatorial
formula for dimλ as the number of standard Young tableaux of shape λ (i.e., a filling
of the diagram in Figure 4 with the numbers {1, . . . , N} so that within in row and
column, the numbers are strictly increasing). The measure dim2

λ/N ! on partition λ

1 3 5 10 16 17

2 4 6 11

7

8

9 13

1512

14

Figure 4. A standard Young diagram of size 17. Notice that every
row and every column is increasing, and all numbers {1, . . . , 17}
are used only once.
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of size N is called the Plancherel measure; see [12,15,36] for more background and
discussion.

The Plancherel measure enjoys many amazing properties which enable precise
asymptotic calculations. Moreover it fits into a far-reaching hierarchy of measures
which have many varied applications across fields of mathematics. For instance,
the Plancherel measure on partitions (in fact its Poissonization where N is chosen
as a Poisson random variable) is a special case of the Schur measure on partitions λ
(introduced in [43] fairly soon after the work of Baik, Deift, and Johansson) given
by the following prescription

Prob
(
λ
)
= sλ(a1, . . . , am)sλ(b1, . . . , bn)

∏

i,j

(1− aibj).

Here sλ is the Schur symmetric polynomial (for a general reference for the sym-
metric functions discussed below, see [40]). The measure depends on the a and
b parameters at which the Schur polynomials are evaluated, and the fact that it
sums to one over all partition λ is the content of the classical Cauchy–Littlewood
identity for Schur polynomials. Due to the Schur polynomial branching rule, the
Schur measure can be related to the study of random tiling models, and through
certain limit transition it relates to the GUE measure on eigenvalues in random
matrix theory. The Schur measure is a determinantal point process (as can be
showed from determinant and noncrossing path formulas for Schur polynomials)
which provides a well-developed calculus for computing asymptotics. In the decade
after the Baik–Deift–Johansson result, Schur measure and the methods developed
to study it became major tools in uncovering the behavior of the KPZ universality
class; see for instance [4, 11–13,15, 47].

The hierarchy of Macdonald symmetric polynomials (see Figure 5 as well as [40])
provides a natural generalization of Schur symmetric polynomials, while maintain-
ing or deforming many of their key properties. Macdonald polynomials involve two
extra parameters q and t and degenerate for Schur polynomials when q = t. Other

Macdonald
q; t 2 [0; 1)

q-Whittaker
q 2 [0; 1); t = 0

Hall-Littlewood
q = 0; t 2 [0; 1)

Jack
t = qβ=2 ! 1

Whittaker
q ! 1; t = 0

Monomial
q = 0; t = 1

Schur
q = t

Figure 5. Hierarchy of limits of Macdonald symmetric polynomials
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well-studied symmetric functions which fit into the hierarchy (through various spe-
cialization of parameters or limit transitions) are Hall–Littlewood polynomials (re-
lated to representation theory over finite or p-adic fields), Jack polynomials (related
to spherical functions for Riemannian symmetric spaces), and Whittaker functions
(related to the quantum Toda lattice). The natural deformation of Schur measure
is to replace the Schur polynomials by Macdonald polynomials (or other functions
in the hierarchy). The study of such deformations of Schur measure, as well as
the development of methods to connect these measures to interesting probabilistic
systems and methods to analyze asymptotics (since the determinantal structure of
Schur measure is lost in these deformations) has been a focus of significant research
in the past decade; see for instance [9, 12, 13, 18, 42] and references therein.

There are now many interesting probabilistic systems which fit into this frame-
work. Schur measure relates to random plane partitions, tilings, longest increas-
ing subsequences, polynuclear growth, TASEP, last passage percolation, and GUE
random matrix theory. Measures defined via monomial symmetric polynomials
relate to Kingman partition structures and cycle structures in random permuta-
tions. Jack measure relates to general β random matrix theory ensembles. Hall–
Littlewood measure relates to random matrices over finite fields (and associated
Cohen–Lenstra heuristics in number theory) as well as stochastic vertex models
coming from quantum integrable systems (i.e., the six vertex model and its gener-
alizations). q-Whittaker measure relates to traffic models like q-TASEP, and Whit-
taker measure relates to directed polymer models (which generalize the graphical
construction of the longest increasing subsequence).

Among the systems which fit into the Macdonald hierarchy, one which has re-
ceived particular attention, is the Kardar–Parisi–Zhang (KPZ) stochastic partial
differential equation (SPDE) (or KPZ equation for short), which arises as a limit
of both the Whittaker and Hall–Littlewood measures. The machinery developed to
study these measures has provided a route (see, e.g., [10]) to study the exact dis-
tribution of the solution to this SPDE and prove various long-time limit theorems
(analogous to that of Baik, Deift, and Johansson for the longest increasing subse-
quence). There are other approaches (such as using tools from Bethe ansatz and
quantum integrable systems) which have provided related but different routes for
studying the KPZ equation exact statistics (and many other probabilistic systems);
see, e.g., [14, 19] and references therein.

3. Stochastic PDEs

The KPZ equation describes the evolution of a height function h(t, x) where
t ≥ 0 denotes time, x ∈ R space, and h(t, x) ∈ R the height above x at time t. The
SPDE is

(3.1) ∂th(t, x) =
1
2∂

2
xh(t, x) +

1
2

(
∂xh(t, x)

)2
+ ξ(t, x),

where ξ(t, x) denotes a space-time white noise (i.e., a generalized Gaussian process
which has covariance which is a delta function in space and time). If ξ were replaced
by a deterministic and smooth function, then the Hopf–Cole transform would relate
this equation of Hamilton–Jacobi type to a heat equation so that

(3.2) h(t, x) = log z(t, x) where ∂z(t, x) =
1
2∂

2
xz(t, x) + ξ(t, x)z(t, x).

For white noise ξ, the above SPDE is called the stochastic heat equation (SHE).
See [17, 44] for further background and discussion related to the content below.
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There are two different things one could mean by the phrase “solving the KPZ
equation”. The first notion is in the spirit of PDE theory in which solving corre-
sponds to constructing (generally through a fixed-point scheme) a mapping from
initial data and noise onto solutions. The key questions here usually involve un-
derstanding the local properties (e.g., regularity) of such mappings, as well as de-
termining whether global solutions exist. The second notion is in the spirit of
integrable systems in which one seeks to compute explicit formulas for the distribu-
tion of the constructed solution. From the directions of integrable probability and
KPZ universality, there was a great deal of attention in the last decade ago devoted
to this second notion for the KPZ equation—namely, the question of determining
the distribution of the solution, for example, at a given space-time point and with
given initial data.

Likewise, in the past decade there has been a flurry of activity related to the
PDE side (first notion above) of studying the KPZ equation, as well as many other
SPDEs. Making sense of the KPZ equation (3.1) is not particularly easy, and that
challenge has prompted a number of important developments. The roughness of
white noise suggests that h should be as rough as Brownian motion in space (e.g.,
if one removed the nonlinearity, then the linear equation is easy to solve, and one
sees that this holds true). This roughness poses a problem since the nonlinearity
asks to differentiate and then square the rough process. So, one has to work to
overcome this challenge.

The simplest scheme to define the solution is to define the Hopf–Cole solution to
the KPZ equation as in (3.2). In other words, solve the SHE with initial data eh(0,x)

and then take the logarithm of the solution z(t, x) to get h(t, x). This turns out to
be the physically relevant notion of solution to the KPZ equation—it captures all
of the expected behavior and arises quite universally from various approximation
schemes to the equation. While the problem of showing that the KPZ equation
arises from all sorts of smoothed or discretized systems has sparked a number of
developments recently, the first such results go back to the early 1990s. It was
first demonstrated in [7] that the KPZ equation with a smoothed noise (given by
convolving ξ against a bump function in space) minus an appropriate function
(depending on time and the smoothing) converges as the smoothing disappears to
the Hopf–Cole solution. The key here is that once the noise is smoothed, one can
make direct sense of the equation.

The first discrete system which was proved to converge to the KPZ equation was
the asymmetric simple exclusion process (ASEP) which is a simple growth model in
which the height function hASEP(t, x) takes integer values for x ∈ Z, and satisfies∣∣hASEP(t, x) − hASEP(t, x + 1)

∣∣ = 1 for all t ≥ 0 and x ∈ Z. The function evolves
by changing local minimums in the height function into local maximums at rate
(i.e., after exponential random weighting times of rate) p and the opposite at rate
q = 1− p. See Figure 6 for an illustration.

In order for ASEP to converge to the KPZ equation it is necessary to introduce
weak asymmetry scaling. For the sake of stating a result, consider ASEP started
so that hASEP(0, 0) = 0, and

{
hASEP(0, x)− hASEP(0, x+ 1)

}
x∈Z

is distributed as
a collection of independent ±1 random variables with equal probability to both
outcomes (i.e., hASEP(0, x) is a random walk in x). Now, consider a sequence of
ASEP models where the asymmetry p− q = ε and the height function are rescaled
with ε as hASEP

ε (t, x) = εhASEP(ε−4t, ε−2x)− ε−2t/2. Then, [8] proved that hASEP
ε
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rate q rate p

Figure 6. The ASEP height function h (on top) and associated
particle occupation function η (on bottom). Height function local
maxima turn to local minima at rate q and the opposite at rate p;
particles hop left at rate q and right at rate p.

converges as ε ↘ 0 to the Hopf–Cole solution to the KPZ equation (i.e., the measure
on space-time functions induced by hASEP

ε converges in distribution to that induced
by h). It should be noted that if one did not perform the special weak asymmetry,
then ASEP is believed to converge to the KPZ fixed point, not the KPZ equation.
This has been demonstrated in [50] at the level of one-point marginal distributions
using tools from integrable probability.

The convergence result of [8] relied on the fact that the ASEP height function
satisfies a discrete version of the Hopf–Cole transform, under which its microscopic
dynamics transform into a microscopic version of the SHE. Since the SHE is linear, it
is then much easier to prove convergence at this level. The existence of a microscopic
Hopf–Cole transform is a delicate matter—changing the dynamics of ASEP to allow
for more general growth rules or height changes will generally break this mechanism.
Integrable probability provides a systematic way to find discrete systems which
enjoy similar exact transforms. Indeed, the microscopic Hopf–Cole transform is a
consequence of something called Markov duality whose origins can be traced back
to symmetries of quantum groups [16,48]. Thus, the Hopf–Cole transform approach
has worked for the handful of systems enjoying such dualities, and it has effectively
proved their convergence to the KPZ equation.

Define η(t, x) = hASEP(t, x) − hASEP(t, x + 1), and think of η(t, x) = 1 as cor-
responding to there being a particle at x and η(t, x) = −1 as there being a hole.
Then ASEP can be interpreted as a simple particle-hopping model. Particles at-
tempt to jump left at rate p and right at rate q, but they only make the jump if the
destination is unoccupied. From this perspective, it is clear that one can generalize
the model considerably—for instance allowing for non-nearest-neighbor jumps or
jump rates which depend on local configurations. The Hopf–Cole approach is, for
the most part, too rigid to accommodate these changes (though [21] managed to
extend the approach to some non-nearest-neighbor systems).

There are now a number of other approaches to show the robustness of the KPZ
equation under various approximation schemes. Besides the Hopf–Cole method,
these include the methods of energy solutions [25,29], regularity structures [30,31],
paracontrolled distributions [27, 28], and renormalization groups [39]. Each ap-
proach offers some advantages and some limitations, though they all yield the same
Hopf–Cole solution. For instance, energy solutions can be used to prove the general
non-nearest-neighbor exclusion processes converge (under weak asymmetry) to the
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KPZ equation (see, e.g., [26])—but the convergence can only be done for processes
started from their stationary measure (i.e., where the η(0, x) are ±1 independently
in x with the same probabilities). The other three notions have been useful in

showing that stochastic Hamilton–Jacobi equations (i.e., replacing the
(
∂xh

)2
terms

with a general nonlinear function) or equations with non-Gaussian noise all con-
verge to the KPZ equation when rescaled appropriately (see, e.g., [32, 33]). Those
approaches and results are, however, limited at present to periodic domains and
cannot be used to prove convergence results on the full line. Currently, the scope of
each of these approaches has nontrivial symmetric difference—each approach offers
something new and useful to understanding the approximation theory for the KPZ
equation. Moreover, some of these approaches (namely, regularity structures, para-
controlled distributions, and renormalization group) can be applied systematically
for more general classes of nonlinear SPDEs.

Conclusion

Twenty years ago, Baik, Deift, and Johansson discovered a remarkable limit
theorem connecting asymptotics of the longest increasing subsequence to those of
random matrix theory. Aldous and Diaconis related a few stories (e.g., patience
sorting) related to this theorem. In this commentary, I have tried to relate few
other stories that developed over the elapsed time in a manner closely intertwined
with this original work (but not covered in Aldous and Diaconis’s article). The
number of topics and fields I have touched upon is far exceeded by those about
which I have said nothing. Surely, the interconnectedness of all of these areas is a
beautiful illustration of the unity of mathematics and science.
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[48] G. M. Schütz, Duality relations for asymmetric exclusion processes, J. Statist. Phys. 86
(1997), no. 5-6, 1265–1287, DOI 10.1007/BF02183623. MR1450767

[49] C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Comm. Math.
Phys. 159 (1994), no. 1, 151–174. MR1257246

[50] C. A. Tracy and H. Widom, Asymptotics in ASEP with step initial condition, Comm. Math.
Phys. 290 (2009), no. 1, 129–154, DOI 10.1007/s00220-009-0761-0. MR2520510

Columbia University, Department of Mathematics, 2990 Broadway, New York, New

York

Email address: ivan.corwin@gmail.com

http://www.ams.org/mathscinet-getitem?mr=3373641
http://www.ams.org/mathscinet-getitem?mr=1984868
http://www.ams.org/mathscinet-getitem?mr=1245942
http://www.ams.org/mathscinet-getitem?mr=3459120
http://www.ams.org/mathscinet-getitem?mr=1354144
http://www.ams.org/mathscinet-getitem?mr=3380693
http://www.ams.org/mathscinet-getitem?mr=1856553
http://www.ams.org/mathscinet-getitem?mr=3098078
http://www.ams.org/mathscinet-getitem?mr=3373647
http://www.ams.org/mathscinet-getitem?mr=2318311
http://www.ams.org/mathscinet-getitem?mr=3468738
http://www.ams.org/mathscinet-getitem?mr=1450767
http://www.ams.org/mathscinet-getitem?mr=1257246
http://www.ams.org/mathscinet-getitem?mr=2520510

	1. Kardar–Parisi–Zhang universality
	2. Integrable probability
	3. Stochastic PDEs
	Conclusion
	Acknowledgments
	References

