Book Review
The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.
MathSciNet review: 3855022
Full text of review: PDF This review is available free of charge.
Book Information:
Authors: Alexander M. Olevskii and Alexander Ulanovskii
Title: Functions with disconnected spectrum: Sampling, interpolation, translates
Additional book information: University Lecture Series, Vol. 65, American Mathematical Society, Providence, RI, 2016, x+138 pp., ISBN 978-1-4704-2889-1
- Joaquim Bruna, Alexander Olevskii, and Alexander Ulanovskii, Completeness in $L^1(\Bbb R)$ of discrete translates, Rev. Mat. Iberoam. 22 (2006), no. 1, 1–16. MR 2267311, DOI https://doi.org/10.4171/RMI/447
- R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366. MR 47179, DOI https://doi.org/10.1090/S0002-9947-1952-0047179-6
- Gerald B. Folland and Alladi Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl. 3 (1997), no. 3, 207–238. MR 1448337, DOI https://doi.org/10.1007/BF02649110
- Alex Iosevich, Nets Katz, and Terence Tao, The Fuglede spectral conjecture holds for convex planar domains, Math. Res. Lett. 10 (2003), no. 5-6, 559–569. MR 2024715, DOI https://doi.org/10.4310/MRL.2003.v10.n5.a1
- M. Ĭ. Kadec′, The exact value of the Paley-Wiener constant, Dokl. Akad. Nauk SSSR 155 (1964), 1253–1254 (Russian). MR 0162088
- Jean-Pierre Kahane, Sur les fonctions moyenne-périodiques bornées, Ann. Inst. Fourier (Grenoble) 7 (1957), 293–314 (French). MR 102702
- Gady Kozma and Shahaf Nitzan, Combining Riesz bases, Invent. Math. 199 (2015), no. 1, 267–285. MR 3294962, DOI https://doi.org/10.1007/s00222-014-0522-3
- H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967), 37–52. MR 222554, DOI https://doi.org/10.1007/BF02395039
- Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava, Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem, Ann. of Math. (2) 182 (2015), no. 1, 327–350. MR 3374963, DOI https://doi.org/10.4007/annals.2015.182.1.8
- Basarab Matei and Yves Meyer, Simple quasicrystals are sets of stable sampling, Complex Var. Elliptic Equ. 55 (2010), no. 8-10, 947–964. MR 2674875, DOI https://doi.org/10.1080/17476930903394689
- Shahaf Nitzan and Alexander Olevskii, Revisiting Landau’s density theorems for Paley-Wiener spaces, C. R. Math. Acad. Sci. Paris 350 (2012), no. 9-10, 509–512 (English, with English and French summaries). MR 2929058, DOI https://doi.org/10.1016/j.crma.2012.05.003
- Shahaf Nitzan, Alexander Olevskii, and Alexander Ulanovskii, Exponential frames on unbounded sets, Proc. Amer. Math. Soc. 144 (2016), no. 1, 109–118. MR 3415581, DOI https://doi.org/10.1090/S0002-9939-2015-12868-7
- Alexander Olevskiĭ, Completeness in $L^2(\mathbf R)$ of almost integer translates, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 9, 987–991 (English, with English and French summaries). MR 1451238, DOI https://doi.org/10.1016/S0764-4442%2897%2987873-1
- Alexander Olevskiĭ and Alexander Ulanovskii, Universal sampling and interpolation of band-limited signals, Geom. Funct. Anal. 18 (2008), no. 3, 1029–1052. MR 2439002, DOI https://doi.org/10.1007/s00039-008-0674-7
- Joaquim Ortega-Cerdà and Kristian Seip, Fourier frames, Ann. of Math. (2) 155 (2002), no. 3, 789–806. MR 1923965, DOI https://doi.org/10.2307/3062132
- B. S. Pavlov, The basis property of a system of exponentials and the condition of Muckenhoupt, Dokl. Akad. Nauk SSSR 247 (1979), no. 1, 37–40 (Russian). MR 545940
- Kristian Seip, Density theorems for sampling and interpolation in the Bargmann-Fock space, Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, 322–328. MR 1136138, DOI https://doi.org/10.1090/S0273-0979-1992-00290-2
- Kristian Seip, Beurling type density theorems in the unit disk, Invent. Math. 113 (1993), no. 1, 21–39. MR 1223222, DOI https://doi.org/10.1007/BF01244300
- Terence Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), no. 2-3, 251–258. MR 2067470, DOI https://doi.org/10.4310/MRL.2004.v11.n2.a8
Review Information:
Reviewer: Mishko Mitkovski
Affiliation: Department of Mathematical Sciences, Clemson University, Clemson, South Carolina
Email: mmitkov@clemson.edu
Journal: Bull. Amer. Math. Soc. 55 (2018), 553-560
DOI: https://doi.org/10.1090/bull/1593
Published electronically: August 16, 2017
Review copyright: © Copyright 2017 American Mathematical Society