Skip to Main Content

Bulletin of the American Mathematical Society

The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.

ISSN 1088-9485 (online) ISSN 0273-0979 (print)

The 2020 MCQ for Bulletin of the American Mathematical Society is 0.84.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

MathSciNet review: 3855021
Full text of review: PDF   This review is available free of charge.
Book Information:

Authors: Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych and Victor Ostrik
Title: Tensor categories
Additional book information: Mathematical Surveys and Monographs, Vol. 205, American Mathematical Society, Providence, RI, 2015, xvi+343 pp., ISBN 978-1-4704-2024-6, US$65.00

References [Enhancements On Off] (What's this?)

  • Proceedings of the International Congress of Mathematicians. Vol. I, II, Mathematical Society of Japan, Tokyo; Springer-Verlag, Tokyo, 1991. Held in Kyoto, August 21–29, 1990; Edited by Ichirô Satake. MR 1159197
  • John C. Baez and James Dolan, Categorification, Higher category theory (Evanston, IL, 1997) Contemp. Math., vol. 230, Amer. Math. Soc., Providence, RI, 1998, pp. 1–36. MR 1664990, DOI 10.1090/conm/230/03336
  • Bojko Bakalov and Alexander Kirillov Jr., Lectures on tensor categories and modular functors, University Lecture Series, vol. 21, American Mathematical Society, Providence, RI, 2001. MR 1797619, DOI 10.1090/ulect/021
  • B. Bartlett, C. L. Douglas, C. J. Schommer-Pries, and J. Vicary, Modular categories as representations of the $3$-dimensional bordism $2$-category, ArXiv e-prints (2015).
  • Paul Bruillard, Siu-Hung Ng, Eric C. Rowell, and Zhenghan Wang, Rank-finiteness for modular categories, J. Amer. Math. Soc. 29 (2016), no. 3, 857–881. MR 3486174, DOI 10.1090/jams/842
  • Pavel Etingof and Shlomo Gelaki, Some properties of finite-dimensional semisimple Hopf algebras, Math. Res. Lett. 5 (1998), no. 1-2, 191–197. MR 1617921, DOI 10.4310/MRL.1998.v5.n2.a5
  • Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. MR 2183279, DOI 10.4007/annals.2005.162.581
  • V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388. MR 908150, DOI 10.2307/1971403
  • Vaughan F. R. Jones, Scott Morrison, and Noah Snyder, The classification of subfactors of index at most 5, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 2, 277–327. MR 3166042, DOI 10.1090/S0273-0979-2013-01442-3
  • André Joyal and Ross Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20–78. MR 1250465, DOI 10.1006/aima.1993.1055
  • M. M. Kapranov and V. A. Voevodsky, $2$-categories and Zamolodchikov tetrahedra equations, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991) Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 177–259. MR 1278735, DOI 10.1016/0022-4049(94)90097-3
  • Alexander Kirillov Jr. and Viktor Ostrik, On a $q$-analogue of the McKay correspondence and the ADE classification of $\mathfrak {sl}_2$ conformal field theories, Adv. Math. 171 (2002), no. 2, 183–227. MR 1936496, DOI 10.1006/aima.2002.2072
  • S. Mac Lane, The PNAS way back then, Proceedings of the National Academy of Sciences 94 (1997), no. 12, 5983–5985.
  • Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory, Comm. Math. Phys. 123 (1989), no. 2, 177–254. MR 1002038
  • Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma, Non-abelian anyons and topological quantum computation, Rev. Modern Phys. 80 (2008), no. 3, 1083–1159. MR 2443722, DOI 10.1103/RevModPhys.80.1083
  • Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 119–172. MR 996454
  • B. Pareigis, Non-additive ring and module theory. II. ${\cal C}$-categories, ${\cal C}$-functors and ${\cal C}$-morphisms, Publ. Math. Debrecen 24 (1977), no. 3-4, 351–361. MR 498792
  • N. Reshetikhin and V. G. Turaev, Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597. MR 1091619, DOI 10.1007/BF01239527
  • Vladimir Turaev and Hans Wenzl, Semisimple and modular categories from link invariants, Math. Ann. 309 (1997), no. 3, 411–461. MR 1474200, DOI 10.1007/s002080050120
  • Vladimir G. Turaev, Modular categories and $3$-manifold invariants, Internat. J. Modern Phys. B 6 (1992), no. 11-12, 1807–1824. Topological and quantum group methods in field theory and condensed matter physics. MR 1186845, DOI 10.1142/S0217979292000876
  • Hans Wenzl, $C^*$ tensor categories from quantum groups, J. Amer. Math. Soc. 11 (1998), no. 2, 261–282. MR 1470857, DOI 10.1090/S0894-0347-98-00253-7
  • Edward Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351–399. MR 990772

  • Review Information:

    Reviewer: Eric C. Rowell
    Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
    Journal: Bull. Amer. Math. Soc. 55 (2018), 545-551
    Published electronically: May 23, 2018
    Review copyright: © Copyright 2018 American Mathematical Society