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TVERBERG’S THEOREM IS 50 YEARS OLD: A SURVEY

IMRE BÁRÁNY AND PABLO SOBERÓN

Abstract. This survey presents an overview of the advances around Tver-
berg’s theorem, focusing on the last two decades. We discuss the topological,
linear-algebraic, and combinatorial aspects of Tverberg’s theorem and its ap-
plications. The survey contains several open problems and conjectures.

1. Introduction

Tverberg’s theorem has been a cornerstone of combinatorial convexity for over
50 years. Its impact and influence is only comparable to that of the famous and
classic theorems of Carathéodory and Helly. This gem lies at the crossroads of
combinatorics, topology, and linear algebra, and it continues to yield challenging
and interesting open problems. Its states the following.

Theorem 1.1 (Helge Tverberg, 1966 [Tve66]). Given (r − 1)(d+ 1) + 1 points in
R

d, there is a partition of them into r parts whose convex hulls intersect.

Figure 1. An example of a Tverberg partition. The partition is
not unique.

More formally, given X ⊂ R
d of (r − 1)(d + 1) + 1 points, there is a partition

X = X1 ∪ · · · ∪ Xr such that
⋂r

j=1 convXj �= ∅. Such a partition is called a
Tverberg partition; see Figure 1. The number of points in this result is optimal, as
a dimension-counting argument shows. In fact, if X is in general enough position
and in the partition X = X1 ∪ · · · ∪ Xr we have 1 ≤ |Xj | ≤ d + 1 for every j,
then

⋂r
j=1 affXj is a single point if |X| = (r − 1)(d + 1) + 1, and it is empty if

|X| ≤ (r − 1)(d+ 1).
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460 IMRE BÁRÁNY AND PABLO SOBERÓN

The last decade has seen an impressive sequence of results around Tverberg’s
theorem. The purpose of this survey is to give a broad overview of the current
state of the field and point out key open problems. Other surveys covering differ-
ent aspects of Tverberg’s theorem can be found in [Eck79, Eck93,Mat02, BBZ16,
DLGMM17,BZ17].

The paper is organized as follows. In sections 2 and 3 we describe the topological
and colorful versions of Tverberg’s theorem, which have received the most attention
in recent years. In sections 4 and 5 we discuss a large number of variations and
conjectures around Tverberg’s theorem. In section 6 we describe some applications
of Tverberg’s theorem. Finally, in section 7 we present Tverberg-type results where
the settings have changed dramatically, such as Tverberg for convexity spaces or
quantitative versions. In that last section, we focus mostly on results that are
related to geometry.

1.1. Interlude: A short history of Tverberg’s theorem. An early predecessor
of Tverberg’s theorem is Radon’s lemma from 1921 [Rad21, Eck79]. Radon used
it in his proof of Helly’s theorem. It says that any set X of d + 2 points in R

d

can be split into two sets whose convex hulls intersect. So it is the case r = 2 of
Tverberg’s theorem. Its proof is simple: the d + 2 vectors in X have a nontrivial
affine dependence

∑
x∈X α(x)x = 0 and

∑
x∈X α(x) = 0. The sets X1 = {x ∈ X :

α(x) ≥ 0} and X2 = {x ∈ X : α(x) < 0} form a partition of X and their convex
hulls intersect, as one can easily check.

Another result linked to this theorem is Rado’s centerpoint theorem. This states
that for any set X of n points in R

d, there is a point p such that any closed half-

space that contains p also contains at least
⌈

n
d+1

⌉
points of X. The standard proof

of this result uses Helly’s theorem. Tverberg’s theorem implies it in few lines:

setting r =
⌈

n
d+1

⌉
, there is a partition of X into r parts X1, . . . , Xr and a point

p ∈ R
d such that p ∈

⋂r
j=1 convXj . Then p is a centerpoint of X: every closed

half-space containing p contains at least one point from each Xj .
In a paper entitled “On 3N points in a plane”, Birch [Bir59] proves that any

3N points in the plane determine N triangles that have a point in common. His
motivation was the (planar) centerpoint theorem. Actually, he proves more, namely
the case d = 2 of Tverberg’s theorem, and he states the general case as a conjecture.

Tverberg’s original motivation was also the centerpoint theorem, and he learned
about Birch’s result and conjecture only later. He proved it first for d = 3 in 1963
and in full generality in 1964. Here, in his own words, is how he found the proof:
“I recall that the weather was bitterly cold in Manchester. I awoke very early one
morning shivering, as the electric heater in the hotel room had gone off, and I did
not have an extra shilling to feed the meter. So, instead of falling back to sleep, I
reviewed the problem once more, and then the solution dawned on me!” [Tve01].

1.2. Proof methods. By now there are several proofs of Tverberg’s theorem, two
by Tverberg himself [Tve66,Tve81], one by Tverberg and Vrećica [TV93], by Roud-
neff [Rou01a], by Sarkaria [Sar92], and by Zvagelskii [Zva08]. We explain here two
of them. The first (due to Roudneff) cleverly chooses a function whose minimum
is taken on a Tverberg partition.

Proof (Roudneff [Rou01a]). We assume that the points of X are in general position
(the coordinates are algebraically independent, say). Assume P = {X1, . . . , Xr} is
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an r-partition of X with 1 ≤ |Xj | ≤ d+ 1, and define the function

f(x,P) =
r∑

j=1

dist2(x, convXj).

Here dist is the distance given by the Euclidean norm, which is denoted by ‖·‖. For
fixed P the function f is convex on R

d. It tends to infinity as ‖x‖ → ∞, so it attains
its minimum. Then there is a partition, say P, where the minimum of the function
f(x,P) is the smallest; let it be μ. We are going to show that μ = 0, which clearly
suffices. Assume, on the contrary, that μ > 0 and is reached at z ∈ R

d. Denote
by yj the (unique) point in convXj with dist(z, convXj) = ‖z− yj‖. The function
x �→

∑r
1 ‖x− yj‖2 takes its minimum also at x = z, so its gradient at x = z is zero:∑r

1(z − yj) = 0. Note that z = yj is possible but cannot hold for all j since μ > 0.
Define Yj ⊂ Xj for j = 1, . . . , r via yj ∈ relint conv Yj . We claim that⋂r

1 aff Yj = ∅. Otherwise there is a point v ∈
⋂r

1 aff Yj . Let 〈·, ·〉 denote the
standard scalar product, so 〈x, x〉 = ‖x‖2, for instance. Then 〈z − v, z − yj〉 > 0 if
yi �= z (because yj is the closest point to z in conv Yj) and 〈z − v, z − yj〉 = 0 if
yj = z. Summing these inequalities and equalities gives 〈z − v,

∑r
1(z − yj)〉 > 0,

contradicting
∑r

1(z − yj) = 0.
The dimension-counting argument mentioned in the introduction shows now that∑r
1 |Yj | ≤ (r − 1)(d + 1), so one point of X, say x, is not used in any Yj . This is

the point where the general position of X is used. We can decrease the value μ if
〈x− yj , z− yj〉 > 0 for some j with yj �= z because by adding x to Yj there appears
a point on the segment [x, yj ] ⊂ conv(Yj ∪ {x}) that is closer to z than yj . Thus
〈x− yj , z − yj〉 ≤ 0 must hold for every j. Summing these inequalities gives

0 ≥
r∑
1

〈x− yj , z − yj〉 =
r∑
1

〈
(x− z) + (z − yj), z − yj

〉

=
〈
x− z,

r∑
1

(z − yj)
〉
+

r∑
1

〈z − yj , z − yj〉 = 0 + μ > 0,

a contradiction. �
Proof (Sarkaria [Sar92]). This proof has two ingredients. One is the so-called color-
ful Carathéodory theorem of Bárány [Bár82]; see Figure 2. Carathéodory’s classical
theorem [Car07] says in essence that being in the convex hull has a very finite rea-
son. Precisely, if A ⊂ R

d and a ∈ convA, then a ∈ convB for some B ⊂ A with
|B| ≤ d+1. In the colorful version there are d+1 sets or “colors” A1, . . . , Ad+1 ⊂ R

d

and a ∈
⋂d+1

i=1 convAi. A transversal of the sets A1, . . . , Ad+1 is simply a set with
a point ai ∈ Ai for every i.

Theorem 1.2. Assume A1, . . . , Ad+1 ⊂ R
d and a ∈

⋂d+1
i=1 convAi. Then there is

a transversal {ai ∈ Ai : i ∈ [d+ 1]}, such that a ∈ conv{a1, . . . , ad+1}.
The colorful version contains the original one: simply take Ai = A for every i.
The second ingredient is Sarkaria’s tensor trick [Sar92]. We explain it in the form

given in [BO97]. It begins with an artificial tool: choose vectors v1, . . . , vr ∈ R
r−1

so that their unique (up to a multiplier) linear dependence is v1+ · · ·+vr = 0. Now
let X = {x0, x1, . . . , xn} be the set of (r − 1)(d+ 1) + 1 points given in Tverberg’s
theorem, so n = (r − 1)(d+ 1). With xi and vj we associate the tensor

xi,j = vj ⊗ (xi, 1) ∈ R
n;
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Figure 2. The colorful Carathéodory theorem in dimension 2.
Every color class contains the origin in its convex hull. The figure
shows a colorful transversal that preserves this property.

the tensor xi,j can be thought of as an (r − 1)× (d+ 1) matrix as well. Note that
we moved to the n-dimensional space because xi,j ∈ R

n, while the original points
xi are in R

d. Observe that the origin is in the convex hull of the set

Ai = {xi,1, xi,2, . . . , xi,r}
for every i. The colorful Carathéodory theorem applies now in R

n and gives, for
every xi, a tensor xi,j(i) with 0 ∈ conv{x0,j(0), x1,j(1), . . . , xn,j(n)}. Thus 0 ∈ R

n

can be written as a convex combination of the tensors xi,j(i),

0 =
n∑

i=0

αixi,j(i) =
n∑

i=0

αivj(i) ⊗ (xi, 1)

=

r∑
j=1

vj ⊗

⎛
⎝ ∑

i:j=j(i)

αi(xi, 1)

⎞
⎠ =

r∑
j=1

vj ⊗

⎛
⎝ ∑

xi∈Xj

αi(xi, 1)

⎞
⎠ ,

where Xj := {xi ∈ X : j(i) = j}. These sets form a partition of X into r parts.
There is a vector u ∈ R

r−1 orthogonal to v3, . . . , vr such that 〈u, v1〉 = 1. Then
〈u, v2〉 = −1 because of the condition v1+· · ·+vr = 0. Multiplying the last equation
by u from the left gives

∑
xi∈X1

αi(xi, 1) =
∑

xi∈X2
αi(xi, 1). It follows then that∑

xi∈X1

αi(xi, 1) =
∑

xi∈X2

αi(xi, 1) = · · · =
∑

xi∈Xr

αi(xi, 1).

Reading the last coordinate here shows that α :=
∑

xi∈X1
αi =

∑
xi∈X2

αi = · · · =∑
xi∈Xr

αi > 0. (Actually α = 1/r.) Then

p :=
1

α

∑
xi∈X1

αixi =
1

α

∑
xi∈X2

αixi = · · · = 1

α

∑
xi∈Xr

αixi

is a point in the convex hull of each Xj : X1, . . . , Xr, which is the required partition.
�

There is more to Sarkaria’s method than just this proof. To see this, letX1, . . . , Xr

be finite (or compact) sets in R
d. What condition guarantees that

⋂r
1 convXj = ∅?

There is a classical necessary and sufficient condition:
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Theorem 1.3. Under the above conditions,
⋂r

1 convXj = ∅ if and only if there are
closed half-spaces D1, . . . , Dr with Xj ⊂ Dj for every j ∈ [r] such that

⋂r
1 Dj = ∅.

The proof is easy. One direction is trivial. In the other direction the case r = 2
is just the separation theorem for convex sets, and induction on r works for r > 2.

Here comes another necessary and sufficient condition from Arocha et al.
[ABB+09]. First define X =

⋃r
1 Xj ; here either X is a multiset or we assume

that the sets Xj are disjoint. For x ∈ X denote, as before,

x = vj ⊗ (x, 1) if x ∈ Xj and set X = {x : x ∈ X}.
Here the vectors vj ∈ R

r−1 are the same as before.

Theorem 1.4. Under the above conditions,
⋂r

1 convXj �= ∅ if and only if 0 ∈
convX.

The proof is essentially the same as above, starting with the convex combination
of the vectors in X representing the origin:

0 =
∑
x∈X

α(x)x =
r∑

j=1

∑
x∈Xj

α(x)vj ⊗ (x, 1)

=

r∑
j=1

vj ⊗
∑
x∈Xj

α(x)(x, 1).

After this factorization the arguments are analogous to the previous proof.

2. Topological versions

We start with a different formulation of Radon’s theorem. Given a set X of d+2
points in R

d, there is a (d + 1)-dimensional simplex Δd+1 with vertex set V and
an affine map f : Rd+1 → R

d such that f(V ) = X. Proper faces of the simplex are
mapped to the convex hull of the corresponding points of X. So Radon’s theorem
says, in this setting, that there are disjoint (proper) faces of Δd+1 whose f -images
intersect; see Figure 3. What happens if f : Δd+1 → R

d is not affine but only
continuous? The answer is the following theorem of Bajmóczy and Bárány from
1979 [BB79], where skelk Δ

d+1 denotes the k-dimensional skeleton of Δd+1.

Theorem 2.1 (Topological Radon). If f : skeld Δ
d+1 → R

d is continuous, then
the simplex has two disjoint faces σ1, σ2 with f(σ1) ∩ f(σ2) �= ∅.

In other words, the d-skeleton of the (d + 1)-simplex cannot be embedded in
d-space without mapping two points from disjoint faces to the same point in R

d.
Actually, this holds for any (d+1)-dimensional polytope, not only for the simplex.
In this form the result is used (and proved in a slightly more general form) by
Lovász and Schrijver [LSS89] in connection with the Colin de Verdiére number of
graphs. The proof of Theorem 2.1 uses the Borsuk–Ulam theorem.

The famous nonembeddability theorem of Van Kampen and Flores [vK33,Flo33]
says that the d-skeleton of the (2d+ 2)-dimensional simplex cannot be embedded in
R

2d. The particular case of d = 1 is half of Kuratowski’s theorem on the pla-
nar graph: the complete graph K5 on five vertices is not planar. Sarkaria [Sar91]
realized in 1991 that there is some connection between the topological Radon the-
orem and the Van Kampen and Flores theorem. Recently, it has been shown by
Blagojević, Frick, and Ziegler [BFZ14] that the topological Radon theorem implies
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Figure 3. Radon’s theorem, affine and topological versions in R
2

Van Kampen–Flores. The same implication is mentioned (somewhat implicitly) in
Gromov [Gro10] as well. The proof is by the constraint method, a powerful new
technique that has several further implications. Here is how it goes in the given
case.

Proof. Assume that there is a map f : skeld Δ
2d+2 → R

2d that sends any two points
from disjoint faces of skeld Δ

2d+2 to distinct points in R
d. Extend this map to the

2d+1 skeleton of Δ2d+2 continuously (but otherwise arbitrarily), and define a new
map

g : skel2d+1 Δ
2d+2 → R

2d+1,

where the first 2d coordinates of g(x) coincide with those of f(x) and the last
coordinate of g(x) is simply the distance of x from the skeld Δ

2d+2. Since g is
continuous, the topological Radon shows now that for some two points, say x1 and
x2 from pairwise disjoint faces of Δ2d+2, g(x1) = g(x2). So f(x1) = f(x2) and
dist(x1, skeld Δ

2d+2) = dist(x2, skeld Δ
2d+2). But as x1 and x2 belong to disjoint

faces, one of these faces is of dimension at most d, so the last components of both
g(x1) and g(x2) are equal to zero, that is, both x1, x2 ∈ skeld Δ

2d+2. �

Of course Tverberg’s theorem can be reformulated the same way: if f : skeld Δ
n→

R
d is an affine map and n = (r− 1)(d+ 1), then there are disjoint faces F1, . . . , Fr

of Δn such that
⋂r

1 f(Fj) �= ∅. This statement is equivalent to Tverberg’s theorem.
The continuous version (a question of Bárány from 1976) had been a conjecture for
almost 40 years. On the positive side, the following is known.

Theorem 2.2 (Topological Tverberg). If f : skeld Δ
n → R

d is a continuous map,
n = (r− 1)(d+ 1), and r is a prime power, then there are disjoint faces F1, . . . , Fr

of Δn such that
⋂r

1 f(Fj) �= ∅.

The case when r is prime was proved by Bárány, Shlosman, Szűcs [BSS81] in

1981, and the prime power case by Özaydin [Öza87] in 1987 in an unpublished yet
influential paper; see also [Vol96]. We now give the sketch of the proof for the case
when r is prime.
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Proof. Assume f : skeld Δ
n → R

d is a counterexample. Consider the r-fold deleted
product D(n, r) of Δn, that is, the set of r-tuples (x1, . . . , xr) where the points xj

come from disjoint faces of Δn. Then the map F : D(n, r) → R
dr defined by

F (x1, . . . , xr) = (f(x1), . . . , f(xr))

avoids the diagonal {(x, . . . , x) ∈ R
dr : x ∈ R

d}. Note that the cyclic group Zr

acts on the spaces D(n, r) and R
dr: its generator ω maps (x1, . . . , xr) ∈ D(n, r)

to (x2, . . . , xr, x1) and (z1, . . . , zr) ∈ R
dr to (z2, . . . , zr, z1). Moreover, F is Zr-

equivariant:

F (ω(x1, . . . , xr)) = ω(F (x1, . . . , xr)).

Actually, the symmetric group Sr on r elements acts equivariantly onD(n, r) and
R

dr as well but, for this proof, the action of its subgroup Zr suffices. The orthogonal
complement of this diagonal is W (n, r) = {(x1, . . . , xr) ∈ R

dr : x1 + · · · + xr = 0}
which is in fact isomorphic to R

d(r−1); its unit sphere is S(W (n, r)). Consider the
chain of maps

D(n, r) → R
dr \ diagonal → W (n, r) \ {0} → S(W (n, r)),

where R
dr → W (n, r) is the orthogonal projection onto the subspace W (n, r) and

the map W (n, r) → S(W (n, r)) sends x ∈ W (n, r), x �= 0 to x/‖x‖ ∈ S(W (n, r)).
The composition is a map G : D(n, r) → S(W (n, r)) which is again Zr-equivariant.
In addition, the action of Zr is free on both D(n, r) and S(W (n, r)), meaning that
the orbit of any point in D(n, r) and S(W (n, r)) consists of r distinct points. This
is because r is prime. In this case Dold’s theorem, an extension of the Borsuk–Ulam
theorem, applies: there is no Zr-equivariant map from an (n− r)-connected space
to an (n− r)-dimensional space provided the action is free on both spaces [Dol83].
Here S(W (n, r)) is (n− r)-dimensional trivially, and, as shown in [BSS81], D(n, r)
is (n− r)-connected. �

This proof is a typical example of the configuration space–test map scheme (con-
sult [Mat02] and the references therein for more on this method). When this is
applied for the prime power r = pk case of the topological Tverberg theorem, the
map G : D(n, r) → S(W (n, r)) is equivariant with respect to the abelian group

(Zp)
k but the action is not free. What Özaydin [Öza87] observes is that it is fixed

point free (i.e., no point is fixed by all group elements) and so some algebraic topol-

ogy machinery still works and excludes the existence of such a map. Özaydin goes
one step further and shows that, if r is not a prime power, then there is a map
D(n, r) → S(W (n, r)) which is equivariant under the symmetric group Sr. Conse-
quently, the configuration space–test map scheme fails badly here. So what comes
next? Is there a topological Tverberg theorem for nonprime r? This had been “one
of the most challenging problems in this field” according to Matoušek, and “a holy
grail of topological combinatorics” according to Kalai. This question had remained
open for almost 40 years.

In 2010, in a groundbreaking paper, Gromov [Gro10] stated that “The topologi-
cal Tverberg theorem, whenever available, implies the (generalized) Van Kampen–
Flores theorem”. This implication holds for any r, prime or not. Gromov also gives
a proof (or rather a sketch of proof) in three lines. A detailed proof can be found
in [BFZ14]. Surprisingly, this remark of Gromov went completely unnoticed.

The generalized Van Kampen–Flores theorem is due to Sarkaria [Sar91] when r
is prime and to Volovikov [Vol96] when r is prime power. It says the following.
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Theorem 2.3 (Generalized Van Kampen–Flores theorem). Let d ≥ 1 be an inte-
ger, let r be a prime power, let k ≥ (r− 1)d/r be an integer, let N = (d+2)(r− 1),
and let f : ΔN → R

d be a continuous map. Then there exist r pairwise dis-
joint faces σ1, . . . , σr in the k-skeleton of the simplex ΔN whose f -images overlap:
f(σ1) ∩ · · · ∩ f(σr) �= ∅.

The proof, rediscovered by Blagojević, Frick, and Ziegler [BFZ14] is almost iden-
tical to the previous proof for the case r = 2. It has two ingredients: one is the
topological Tverberg theorem, the other is the constraint method (or the pigeon-
hole principle). The proof also works when r is not a prime power and shows that
if the generalized Van Kampen–Flores theorem fails, then so does the topological
Tverberg theorem.

Unaware of Gromov’s remark connecting the topological Tverberg and the gen-
eralized Van Kampen–Flores theorems, Mabillard and Wagner started working on
extending the Whitney trick [Whi44] to an r-fold Whitney trick. Their hope was

that the method, when combined with Özaydin’s example, would give a counterex-
ample to the topological Tverberg conjecture in the nonprime power case. What
they proved is the following remarkable result [MW15].

Theorem 2.4. Let K be an (r − 1)�-dimensional simplicial complex where r ≥
2, � ≥ 3 are integers, and let D(K, r) denote the r-fold deleted product of K. Then
the following two statements are equivalent:

• there exists an Sr-equivariant map D(K, r) → S(W (r�, r));
• there exists a continuous map f : K → R

r� such that the f -images of any
r disjoint faces of K have no point in common.

Mabillard and Wagner almost succeeded in finding a counterexample to the topo-
logical Tverberg conjecture; what was missing was an example where the generalized
Van Kampen–Flores theorem fails. It was Florian Frick [Fri15] who realized that

the above theorem and Özaydin’s example combined with the constraint method
(or Gromov’s remark), gives a counterexample for every nonprime power r. A more
detailed description, with further applications of the constraint method is presented
in [BFZ17].

The specific example in [Fri15] is with r = 6 and d = 19, so there is a continuous
map from the 19-skeleton of Δ100 to R

19 such that the images of any six disjoint
faces have no point in common. Subsequently, this was further improved by Av-
vakumov, Mabillard, Skopenkov, and Wagner [AMSW15] to a map Δ65 → R

12 with
the same property. Moreover, Mabillard and Wagner [MW15] came up with another
counterexample without using the Gromov or the Blagojević et al. reduction.

There is hope for positive topological results related to Tverberg’s theorem if
r is not a prime power. Even though Tverberg partitions may not exist, strong
intersection properties of the images of disjoint faces of Δn under a map f : Δn →
R

d can be obtained [Sim16]. If we are allowed to use more points, a topological
version of Birch’s theorem is still open.

Problem 2.5. Decide whether the following statement is true: If f : skeld Δ
n → R

d

is a continuous map, n = r(d+1)− 1, then there are disjoint faces σ1, . . . , σr of Δn

such that
⋂r

j=1 f(σj) �= ∅.
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Figure 4. A colorful Tverberg partition

This was first presented as Conjecture 5.5 in [BFZ14], where it is also explained
that n = (r − 1)d− 1 is the smallest value where the conjecture could conceivably
be true.

3. Colorful versions

One intriguing family of variations of Tverberg-type theorems is the colorful
versions of Tverberg’s theorem. The goal is to restrict to partitions of a set X
of points where some pairs of points are required to be in different parts. This is
usually achieved by coloring the points with few colors, and asking that no part
in the partition has more than one point of any color. Motivation came from the
halving plane problem as explained in Section 6. The main open problem of this
kind is the following variant of a conjecture by Bárány and Larman [BL92].

Conjecture 3.1 (Colored Tverberg theorem). Let r, d be positive integers. Let
t = t(d, r) be the smallest positive integer, if it exists, such that for any d + 1
sets F1, F2, . . . , Fd+1 of t points each in R

d, considered as color classes, there are r

disjoint sets X1, . . . , Xr of X =
⋃d+1

i=1 Fi such that

• each Xj has exactly one point of each Fi, and
• the convex hulls of the sets Xj intersect.

Then for any r, d, the number t(d, r) exists and is equal to r.

In the original conjecture in [BL92], each color class is of size at least r, and the
question is whether there is an integer n(d, r) with the following property. If the
union of the color classes is of size n(d, r), then there are disjoint sets X1, . . . , Xr ⊂⋃d+1

i=1 Fi satisfying the two conditions above. This conjecture is still open in general,
but clearly n(d, r) = r(d+ 1) if t(d, r) = r.

A partition as above is called a colorful Tverberg partition. The first result of this
kind was obtained by Bárány, Füredi, and Lovász [BFL90], showing that t(2, 3) ≤ 7.
In the paper containing Conjecture 3.1 [BL92], Bárány and Larman showed that it
is true for d = 2 and any r. Lovász proved the case r = 2 and any d, also known as
the colorful Radon theorem, using the Borsuk–Ulam theorem. His proof appears
in [BL92]. Here we include a linear-algebraic proof of the colorful Radon theorem,
from [Sob15].

Proof. If we are given F1, . . . , Fd+1 pairs of points in R
d, we can name their ele-

ments arbitrarily Fi = {xi, yi} for each i. Consider the (d+1)-vectors of the form
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xi − yi. Since we have more than the dimension, they must have a nontrivial linear
dependence,

d+1∑
i=1

αi(xi − yi) = 0.

If there is any αi < 0, we can swap the names of xi and yi and the sign of αi without
breaking the linear dependence. Once all signs are nonnegative, we can assume by
scaling that their sum is 1, as they were not all zero. A simple manipulation of the
linear dependence gives

d+1∑
i=1

αixi =
d+1∑
i=1

αiyi.

Thus, the partition A = {x1, . . . , xd+1}, B = {y1, . . . , yd+1} satisfies the require-
ments. �

The existence of t(d, r) was first settled by Živaljević and Vrećica [ŽV92], showing
that t(d, r) ≤ 2r − 1 if r is a prime number, which implies t(d, r) ≤ 4r − 3 for all
r. The proof is topological and extends to the topological version of the colorful
Tverberg theorem.

One thing to be noted about Conjecture 3.1 is that it does not imply Tver-
berg’s theorem directly. For colorful versions of other classic results, such as
Carathéodory’s theorem or Helly’s theorem, when the color classes are equal, we
recover the original result [Bár82]. However, there is a theorem by Blagojević,
Matschke, and Ziegler, also called the optimal colorful Tverberg, which generalizes
both Tverberg’s theorem and the Bárány–Larman conjecture. They proved the
following theorem and its topological analogue.

Theorem 3.2 (Optimal colorful Tverberg theorem [BMZ15,BMZ11]). Let r be a
prime number, let n = (r − 1)(d + 1) + 1, and let X be a set of n points in R

d.
Suppose that they are colored with c colors so that each color appears at most r− 1
times. Then, there is a partition of X into r parts X1, . . . , Xr so that each Xj has
at most one point of each color and their convex hulls intersect.

This implies Conjecture 3.1 when r + 1 is a prime number in the following way.
Given F1, . . . , Fd+1 sets of r points each in R

d, add an extra point p0 of a new color.
Then, we can apply Theorem 3.2 to the total set of r(d+ 1) + 1 points. This gives
us a partition into r + 1 parts, and we can simply drop the part containing p0 and
redistribute its points to have a partition, as in Conjecture 3.1.

Problem 3.3. Does Theorem 3.2 hold for all r > 1?

Problem 3.4. Is there a nontopological proof of the colorful Tverberg theorem for
r ≥ 3?

The constraint method by Blagojević, Ziegler, and Frick [BFZ14] mentioned in
section 2 also gives colorful Tverberg’s results. We showcase here how it implies
the bound t(d, r) ≤ 2r − 1 when r is a prime power. The reader may notice that
both the statement and the proof carry on through the topological setting.

Theorem 3.5. Let r be a prime power, and let n = (2r−2)(d+1)+1. Suppose that
the vertices of Δn−1 are colored with d + 1 colors, each of which appears at most
2r − 1 times. Then, for any continuous function f : Δn−1 → R

d, there are points
x1, . . . , xr ∈ Δn−1 in pairwise vertex-disjoint faces such that each xi is contained
in a face that has at most one point of each color and f(x1) = · · · = f(xr).
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Proof. For each color i, let Mi be the simplicial complex of faces of Δn−1 with at
most one vertex of color i. We can then define

fi :Δ
n−1 → R,

fi(x) = dist(x,Mi).

We can use these functions to extend f : Δn−1 → R
d to a new function f̃ =

(f, f1, . . . , fd+1) : Δ
n−1 → R

2d+1. Notice that

n = (2r − 2)(d+ 1) + 1 = (r − 1)(2d+ 2) + 1.

Then, we can apply the colorful Tverberg theorem and find x1, . . . , xr ∈ Δn−1

points contained in vertex-disjoint faces such that f(x1) = · · · = f(xr) and fi(x1) =
· · · = fi(xr) for each i. However, since there are at most 2r − 1 vertices of color i,
one of the xj must be in Mi. This implies that all xj are in Mi, as desired. �

If we have fewer than d + 1 color classes in the colorful Tverberg theorem, we
cannot guarantee the existence of a colorful Tverberg partition into r parts for
sufficiently large r. This follows simply because colorful simplices have positive
codimension. However, when the codimension is not a problem, a similar proof
to the one above yields the following result and its natural topological version
[VŽ94,BFZ14].

Theorem 3.6. Let r, d, c be positive integers such that d > r(d+ 1− c) and r is a
prime power. For any c sets F1, . . . , Fc of 2r − 1 points each in R

d, considered as
color classes, we can find r colorful sets X1, . . . , Xr whose convex hulls intersect.

On the other hand, there are some benefits of increasing the number of color
classes in Conjecture 3.1. In the proof we presented for colorful Radon, a careful
reader may notice that we did not only find two colorful intersecting simplices,
but they used the same coefficients for the convex combination that witnesses the
intersection. If we seek this for colorful partitions with r > 2, then (r − 1)d + 1
color classes are sufficient and necessary [Sob15]. The topological version of this
statement also holds when r is a prime power [BFZ14].

A different way to generalize Tverberg’s theorem stems from the following result
by A. Pór [Pór97].

Theorem 3.7. Given r sets X1, . . . , Xr ⊂ R
d, we have that

⋂r
j=1 convXj �= ∅ if

and only if for every set A ⊂
⋃r

1 Xj of at most (r − 1)(d+ 1) + 1 points, we have⋂r
j=1 conv(A ∩Xj) �= ∅.

The case r = 2 is Kirchberger’s theorem [Kir03]. A colorful version of this
result was proven in [ABB+09], which generalizes both Pór’s result and Tverberg’s
theorem.

Theorem 3.8. Given positive integers r, d, let n = (r − 1)(d + 1) + 1. We are
given n sets G1, G2, . . . , Gn which are colorful, using r colors. Let X1, . . . , Xr be
the colors classes. Then, if every transversal Y = {y1, . . . , yn}, where yi ∈ Gi for
all i, satisfies that

r⋂
j=1

conv(Y ∩Xj) = ∅,
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there must be a set Gi such that
r⋂

j=1

conv(Gi ∩Xj) = ∅.

The result above implies Tverberg’s theorem if each Gi consists of r copies of
a point ai, all of different colors. It implies Pór’s result if for all i, j we have
Gi ∩Xj = Xj .

Recently, it has been observed that some classic colorful theorems in combi-
natorial geometry can be generalized by using matroids instead of color classes.
Examples are Kalai and Meshulam’s generalization of colorful Helly [KM05] or
Holmsen’s generalization of colorful Carathéodory [Hol16]. Such a version exists
for Tverberg’s theorem, as was proven by Bárány, Kalai, and Meshulam [BKM17].

Theorem 3.9. Let d be a positive integer, let M be a matroid of rank d + 1, and
let b(M) be the maximal number of pairwise disjoint bases of M . Then, for any

continuous map from the matroidal complex of M to R
d, there are

⌈√
b(M)

4

⌉
disjoint

independent sets whose images under f intersect.

Given a set S whose elements are colored with d + 1 colors, we can define the
matroid M on S by saying that a subset is independent if it has at most one element
of each color. An application of Theorem 3.9 to M yields results along the lines of
Conjecture 3.1. However, being able to use any matroid gives much more flexibility.
More on this result can be seen in [BHZ17].

Yet another way to impose conditions on Tverberg’s theorem is using a graph.
We say that a graph G on N vertices is an r-Tverberg graph for Rd if the following
holds. For any set of N points in R

d representing the vertices of G, there is a
Tverberg partition of the points into r parts so that each part is an independent
subset of G. Conjecture 3.1 can be rephrased as saying that the disjoint union
of d + 1 complete graphs Kr is an r-Tverberg graph for R

d. Sparser graphs than
this one are known to be r-Tverberg graphs, as the following result by Hell shows
[Hel08b].

Theorem 3.10. Let r be a prime power. Then a graph is an r-Tverberg graph for
R

d if each of its connected components is either

• has cardinality smaller than r+2
2 ,

• is a complete bipartite graph K1,l for l < r − 1,
• is a path (if r > 3), or
• is a cycle (if r > 4).

4. The structure of Tverberg partitions

Once the existence of Tverberg partitions has been established, the next step
is to have a better understanding of their structure. One way is to relax the
conditions on the partition, such as asking for the convex hulls of the parts to have
a transversal low-dimensional affine subspace (as opposed to a point in common) or
for the parts to have pairwise intersection. Another is to strengthen the conclusion
of the theorem, such as guaranteeing many Tverberg partitions, seeking partitions
which are resistant to changes in the point set, or determining the dimension of the
set of points which witness the intersection of a Tverberg partition.
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4.1. Sierksma’s conjecture. One of the most notable open problems around
Tverberg’s theorem is to give a lower bound for the number of Tverberg parti-
tions we can find in any set of (r− 1)(d+ 1)+ 1 points. Tverberg’s theorem shows
that at least one partition always exists, but in general there is hope for much more.
This was formalized by Sierksma with his now famous conjecture [Sie79].

Conjecture 4.1. Every set of (r− 1)(d+1)+ 1 points in R
d has at least (r− 1)!d

different Tverberg partitions.

It is also known as “the Dutch cheese conjecture” since Sierksma promised a
Dutch cheese as a prize for a solution. The number (r − 1)!d cannot be improved.
A simple example is to take the vertices of a simplex and cluster r − 1 points near
each vertex and one final vertex in the barycenter of the simplex. The number of
Tverberg partitions can be easily counted to be (r−1)!d. A large (and very different)
family of examples exhibiting this bound have been constructed by White [Whi17].
Actually, White answers the following question of Perles.

Every Tverberg partition X1, . . . , Xr (of a set X ⊂ R
d with n = (r−1)(d+1)+1

elements) defines a partition of [n] into r integers k1, . . . , kr where ki = |Xi| for all
i. Of course ki ∈ [d + 1]. Call this partition of [n] the signature of this Tverberg
partition of X. Perles asked whether, given such a partition of [n], is there a set
X ∈ R

d of n elements such that the signature of every Tverberg partition of X has
the given partition of [n]. This was answered in the affirmative by the following
interesting theorem by White.

Theorem 4.2. Assume d ≥ 1, r ≥ 2, and n = (r − 1)(d + 1) + 1. Given integers
k1, . . . , kr with ki ∈ [d + 1] for every i ∈ [r] and k1 + · · · + kr = n, there is a set
X ∈ R

d such that the signature of every Tverberg partition of X coincides with the
multiset {k1, . . . , kr}.

It is not hard to see that the number of these Tverberg partitions is (r − 1)!d.
There are further families of examples achieving this lower bound in Sierksma’s
conjecture. This is explained in detail in section 5.

It is also an interesting question if Sierksma’s bound holds for the topological
versions when r is a prime power. As for lower bounds, Vučić and Živaljević proved
by topological methods that one can always find 1

(r−1)!(r/2)
(r−1)(d+1)/2 Tverberg

partitions if r is a prime number [VŽ93], which extends to the topological version
of the problem. In rough terms this is the square root of the lower bound conjec-
tured by Sierksma. This was extended to prime powers by Hell [Hel07]. The only
nontrivial case of the conjecture which has been verified is d = 2, r = 3 by Hell
[Hel08b].

If r is not a prime power, then we must restrict ourselves to the affine version
of the problem. In this case, the best bound is that (r − d)! Tverberg partitions
exist [Hel08a]. Bounds for the number of partitions in the colorful case (namely, for
instances of Theorem 3.2) and for general Birch partitions (when we use r(d + 1)
points instead of (r − 1)(d+ 1) + 1) can be found in [Hel14,Hel08a].

4.2. The Tverberg–Vrećica conjecture. As mentioned in section 1, one moti-
vation for Tverberg’s theorem is the centerpoint theorem, where one finds a point
that is “very deep” in some finite set X ⊂ R

d. One of the ways to generalize this
theorem is to get a version that works simultaneously for many point sets. This is
shown in the following result, proven independently in [Dol92, ŽV90].
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Theorem 4.3. Let 0 ≤ k ≤ d−1 be integers. Given k+1 finite sets X1, . . . , Xk+1

of points in R
d, there is a k-dimensional affine subspace L such that any closed

half-space containing L also has at least

|Xm|
d− k + 1

points of Xm, for every m ∈ [k + 1].

Note that the case k = 0 is the centerpoint theorem. The other end, the case
k = d − 1 is the discrete version of the classic ham-sandwich theorem. The latter
is a consequence of the Borsuk–Ulam theorem and says the following. Given d nice
probability measures μ1, . . . , μd in Rd, there is a hyperplane that splits the space
into two half-spaces H+ and H− so that μi(H

+) = μ(H−) = 1/2 for every i ∈ [d].
(A measure μ on R

d is nice if μ(h) = 0 for every hyperplane h.)
Just as Tverberg’s theorem is a discrete version of the centerpoint theorem,

one may wonder if there is a discrete analogue of the theorem above. This was
conjectured by Tverberg and Vrećica [TV93].

Conjecture 4.4. Let 0 ≤ k ≤ d be integers. Suppose that we are given integers
r1, r2, . . . , rk+1 and sets X1, . . . , Xk+1 of points of R

d. If for each m ∈ [k + 1]
we have |Xm| = (rm − 1)(d − k + 1) + 1, then we can partition each Xm into rm
parts Xm

1 , . . .Xm
rm in such a way that there is a k-dimensional affine subspace that

intersects conv(Xm
j ) for all m ∈ [k + 1] and j ∈ [rm].

The case k = 0 is Tverberg’s theorem, and k = d follows from taking L = R
d.

Tverberg and Vrećica proved the case k = d−1 in [TV93] and a slightly weaker form
of the case k = d − 2. The conjecture has also been verified by Karasev when all
rm are powers of the same prime p and p(d− k) is even [Kar07], which extends two
prior results [Živ99,Vre03]. These generalizations work in the topological version
of the conjecture.

There is a colorful version of the Tverberg–Vrećica conjecture. To see this, we
consider the elements of each Xm to be colorful. We ask for the partition of each
Xm to satisfy that no two points of the same color are in the same part. In the
special case when r1 = · · · = rm = p for some prime number p, either p(d − k)
is even or k = 0, and each Xm is a colorful set such that no color class has
more than p− 1 points. Blagojević, Matschke, and Ziegler proved in [BMZ11] the
corresponding result for the Tverberg–Vrećica problem. This effectively generalizes
Theorem 3.2. The constraint method also yields results for the Tverberg–Vrećica
conjecture [BDZ16].

Theorem 4.3 is not optimal for a single set, and the depth of the affine subspace
can be improved, as shown by Magazinov and Pór [MP16] for k = 1. There is a
nice conjecture by Bukh, Matoušek, and Nivasch in this direction [BMN10].

Conjecture 4.5. Let 0 ≤ k < d be integers. Given a finite set X of points in R
d,

there is a k-dimensional affine subspace L such that any closed half-space containing
L also has at least

|X|(k + 1)

d+ k + 1
points of X.

Conjecture 4.5 is known for k ∈ {0, d− 2, d− 1}. This conjecture and the results
by Magazinov and Pór beg the question of whether the Tverberg–Vrećica conjecture
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can be improved in the same way for a single set. In other words, we present the
following new conjecture.

Conjecture 4.6. Let r, k, d be integers such that 0 ≤ k < d. Then, for any finite
set X of points in R

d such that ⌈
|X|(k + 1)

d+ k + 1

⌉
≥ r,

there is a partition of X into r sets X1, . . . , Xr and a k-dimensional affine subspace
L such that L intersects each of convX1, . . . , convXr.

The case k = 0 is Tverberg’s theorem, and the case k = d− 1 follows easily by
taking a halving hyperplane of X for L and pairing points of opposite sides of L
to form the partition. A halving hyperplane is a hyperplane that has at least |X|/2
points of X on both sides. Note that if |X| is odd, the halving hyperplane contains
at least one of the points, which can be taken as a singleton in the partition.

Next we prove a version of the above conjecture with k = d − 2 using |X| =(
2d−1
d−1

)
r+O(d) points and the original method by Birch [Bir59]. The case k = d−2

of Conjecture 4.5, proved in [BMN10], gives us an affine flat L of dimension d− 2

such that any half-space that contains it also has |X|(d−1)
2d−1 −O(d) = r points of X.

Notice that L⊥ is a two-dimensional space and L∩L⊥ is a single point p. Denote
byX∗ the projection ofX onto L⊥. We can order the points ofX∗ clockwise around
p and assign to them labels from {1, 2, . . . , r} in such a way that if x∗ has label
i, then the next point has label i + 1 modulo r. This gives us the partition of X
that we wanted. Indeed, if all the points with label j are separated strictly from p,
then there is a closed half-plane H+ that contains all of them but not p. Then, the
complement H− is an open half-plane that contains p but has at most r− 1 points
of X∗, a contradiction.

Given a finite set of points in R
d, finding affine transversals to the convex hulls of

its subsets in general is an interesting problem. Consider the following instance. In-
stead of seeking partitions that have a low-dimensional transversal, what if we seek
a transversal to all sets of a given size? Given d, λ, k the following two parameters
were introduced in [ABMRA11].

First, m(d, λ, k) is the maximum positive integer n such that for any subset of n
points in R

d there is an affine subspace of dimension λ that intersects all the convex
hulls of its subsets of cardinality k.

Second, M(d, λ, k) is the minimum positive integer n such that for every subset
of n points in general position in R

d there is no affine subspace of dimension λ that
intersects all the convex hulls of the subsets of cardinality k. The value ofM(d, λ, k)
is known to be (d−λ)+2k+1−min{k, λ} [ABMRA11], but the value of m(d, λ, k)
is still open. The conjecture from Arocha et al. [ABB+09] is the following (see also
[CMSM+17] for related results).

Conjecture 4.7. For k, d positive integers and 0 ≤ λ ≤ d, we have m(d, λ, k) =
(d− λ) + k + � k

λ� − 1.

4.3. Reay’s conjecture. Tverberg’s theorem gives us a partition of a set of
(r − 1)(d + 1) + 1 points into r sets whose convex hulls all intersect. If instead
we ask for the convex hulls of every k parts to intersect, it is not clear if a smaller
number of points would be sufficient. It was conjectured by Reay that this is not
the case, even for k = 2 [Rea79].
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Conjecture 4.8. There is a set (r + 1)(d − 1) points in R
d such that for any

partition of them into r parts, there are two parts whose convex hulls are disjoint.

For general k it brings the following problem.

Problem 4.9. Given positive integers r, k, d such that r ≥ k ≥ 2, find the smallest
integer R(d, r, k) such that the following holds. For any R(d, r, k) points in R

d there
is a partition of them into r parts X1, . . . , Xr such that the convex hull of every k
of them intersect.

Reay’s conjecture can be written as R(d, r, k) = R(d, r, r) = (r−1)(d+1)+1 for
k ≥ 2. The best current general bound is R(d, r, k) is R(d, r, k) ≥ r

(
k−1
k · d+ 1

)
[ACF+16]. Reay’s conjecture is known to be true for k ≥ d+3

2 or if d < rk
r−k − 1,

along with a few other specific instances [PS16].

4.4. Tverberg with tolerance. Tverberg’s theorem also admits very robust ver-
sions, which resist the removal of points. The first extension of this kind was proven
by Larman [Lar72]; it is also known as Radon’s theorem with tolerance.

Theorem 4.10. Given 2d + 3 points in R
d, there is a partition of them into two

parts A,B such that for any point x we have

conv(A \ {x}) ∩ conv(B \ {x}) �= ∅.
In other words, removing any single point will not break the Radon partition.

This result has been shown to be optimal for 1 ≤ d ≤ 3 by Larman and for d = 4 by
Forge, Las Vergnas, and Schuchert [FLVS01]. The best lower bound for this result
is that at least

⌈
5d
3

⌉
+ 3 points are needed, which was proven by Ramı́rez-Alfonśın

using Lawrence oriented matroids in [RA01].
Extending Larman’s result to partitions into more parts leads to a the following

problem.

Problem 4.11. Let r, t, d be positive integers. Determine the smallest integer
N = N(r, t, d) such that any set X of N points in R

d can be partitioned into r
parts X1, . . . , Xr such that for any set C of at most t points of X, we have

r⋂
j=1

conv(Xj \ C) �= ∅.

A surprising fact about this problem is that for fixed r, d, we have N = rt+o(t),
which was first discovered by Garćıa-Coĺın, Raggi, and Roldán-Pensado [GCRRP17]
using geometric Ramsey-type results.

The current best bounds for this result are N = rt + Õ(
√
t) for large t and

fixed r, t [Sob18], where the Õ hides only polylogarithmic factors. This bound is

polynomial in all variables if the Õ term is expanded, and it is proved using the
probabilistic method combined with Sarkaria’s technique.

For small t, the bound above falls short of an earlier bound

N ≤ (r − 1)(d+ 1)(t+ 1) + 1

[SS12]. The only case when the optimal number is known is d = 1, N(r, t, 1) =
rt + 2r − 1, by Mulzer and Stein [MS14], who studied algorithmic versions of the
problem. Mulzer and Stein’s bound for d = 2, N(r, t, 2) ≤ 2(rt+2r− 1) is also the
best known for some values of r, t. For general lower bounds, using points in the
moment curve gives N(r, t, d) ≥ r(t+ �d/2�+ 1) [Sob15].
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The topological version of the problems with tolerance remains open, even the
cases with t = 1. Tverberg with tolerance also has colorful versions, as in Conjecture
3.1. If we impose conditions on the partitions based on the colors, it is natural
to also impose conditions on the points removed. We define Ncol(r, t, d) as the
smallest integer such that, for any Ncol sets of r points each (considered as color
classes), there is a partition of them into r colorful setsX1, . . . , Xr with the following
property. Even if we remove any t color classes, the convex hulls of what is left
in each Xj still intersect. It is known that for r, d fixed and r ≥ 3, we have
Ncol(r, t, d) ≤ t(1.6 + o(1)) and Ncol(2, t, d) ≤ t(2 + o(1)) [Sob18]. However, it may
be that fewer color classes are needed.

Conjecture 4.12. For r, d fixed, we have Ncol(r, t, d) = t(1 + o(1)).

If we want to remove a larger proportion of points while still having a Tver-
berg partition, we need several partitions. The number of partitions needed was
determined in [Sob17].

Theorem 4.13. Let ε > 0 be a real number, and let r, d,m be positive integers such
that ε > (1−1/r)m. Then, for all finite sets X ⊂ R

d of sufficiently large cardinality,
we can find m partitions of X into r sets each, such that for any subset of at least
ε|X| points of X, at least one of the partitions induces a Tverberg partition.

The condition on ε is sharp. This result follows from extending the probabilistic
approach of [Sob18]. The case m = 1 is essentially the statement N(r, t, d) =
rt+ o(t). It can be interpreted as a version with tolerance (1− ε)|X|.

4.5. Dimension of Tverberg points. Assume X ⊂ R
d, and r is a positive in-

teger, and define Tr(X) as the set of points which are in the intersection of the
convex hulls of some r-Tverberg partition of X. Thus Tr(X) is simply the union of
all

⋂r
1 convXi taken over all r-partition of X. The size or dimension of Tr(X) is

another way to quantify Tverberg partitions. Here we do not assume that X is in
general position, Tr(X) is interesting even in that case.

For a set A ⊂ R
d, we consider dim(A) the Hausdorff dimension of A, with the

convention dim(∅) = −1. With this definition the following conjecture was made
by Kalai in 1974 [Kal00].

Conjecture 4.14 (Cascade conjecture). For any finite set X of points in general
position in R

d, we have
|X|∑
s=1

dim(Ts(X)) ≥ 0.

This conjecture implies Tverberg’s theorem. Indeed, if |X| = (r−1)(d+1)+1 and
has no r-Tverberg partitions, then dim(Ts(X)) ≤ d for s < r an dim(Ts(X)) = −1
for all s ≥ r, which means that the sum above would be at most −1. A weaker
version is also open; see Figure 5.

Conjecture 4.15 (Weak cascade conjecture). For any finite set X of points in
general position in R

d, we have

|X|∑
s=1

dim(conv Ts(X)) ≥ 0.
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Figure 5. This figure shows dim(T1(X)) = 2 and dim(T2(X)) =
1 for a set X of five points in the plane. For this set,

T3(X), T4(X), T5(X) are empty. Notice that
∑5

s=1 dim(Ts(X)) =
2 + 1 + (−1) + (−1) + (−1) = 0, as expected from Conjec-
ture 4.14. The example also agrees with Conjecture 4.16 with
d = 2, r = 2, k = 1.

Here dim(conv T ) is the usual dimension of conv T or aff T . Another conjecture
in this direction was formulated by Reay [Rea68] shortly after Tverberg published
his result.

Conjecture 4.16. Let k, d, r be integers such that 0 ≤ k ≤ d. Then, for any set
X of (r − 1)(d+ 1) + k + 1 points in R

d in general position, we have

dim(Tr(X)) ≥ k.

The case k = 0 is Tverberg’s theorem. Reay proved his conjecture when the
points are in strongly general position, but believed that just general position (i.e.,
no d + 1 points of X lie in a hyperplane) should be enough. The conjecture has
been proved for d ≤ 8 and any k, r, for r ≤ 8 and any d, k and for d = 24, k = 1
and any d; see [Rou01a,Rou01b,Rou09].

We note that for sets of points in general position, Conjecture 4.14 and Conjec-
ture 4.16 are equivalent.

Proof. Assume first that Conjecture 4.16 holds, and let X be a set of n points
in general position in R

d. Then, there are nonnegative integers r, k such that n =
(d+1)(r−1)+k+1 with k ≤ d. Then by Conjecture 4.16 we have dim((Ts(X)) = d
for s ≤ r − 1, dim(Tr(X)) ≥ k and dim((Ts(X)) = −1 for s ≥ r + 1 by the general
position assumption. Therefore

|X|∑
s=1

dim(Ts(X)) ≥ d(r − 1) + k + (−1)(n− r)

= (d+ 1)(r − 1) + k + 1− n = 0.

If we now assume Conjecture 4.14, and X is a set of (d+1)(r− 1)+ k+1 points
in general position, note that dim(Ts(X)) ≤ d for s < r, and dim(Ts(X)) = −1 for
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s > r by the general condition assumption. Therefore

0 ≤
|X|∑
s=1

dim(Ts(X))

≤ d(r − 1) + dim(Tr(X)) + (−1)(|X| − r)

= dim(Tr(X))− k. �

This implies that Kalai’s cascade conjecture holds for sets of points in sufficiently
general position and also for points in general position where Roudneff has proven
Reay’s conjecture.

4.6. Finding Tverberg partitions. Centerpoints and notions of depth are key
concepts in data analysis. Centerpoints often play the role of high-dimensional
median. For an n-point set in R

d, there are algorithms that find a centerpoint in
time O(nd−1), which is believed to be optimal [Cha04].

In general, it is computationally difficult to verify the depth of a point in data
set. However, given a Tverberg partition X1, . . . , Xr with a point p in the convex
hull of each Xj , the depth of p is at least r, clearly. This lower bound can be verified
in polynomial time: simply check that p ∈ convXj for each j. This implies that r
is a lower bound for the depth of p in the set of points.

Given a set of n points in R
d, finding Tverberg partitions into

⌈
n

d+1

⌉
parts in

polynomial time is out of reach for current algorithms, and it is an interesting open
problem by itself. To achieve fast algorithms, we have to pay the price of reducing
the number of parts in our partition. There is a deterministic algorithm by Miller

and Sheehy that gives a Tverberg partition with r =
⌈

n
(d+1)2

⌉
in nO(log d) time

[MS10]. Using a lifting argument in combination with Miller and Sheehy’s algo-

rithm, a deterministic algorithm that gives a Tverberg partition with r =
⌈

n
4(d+1)3

⌉
that runs in time dO(log d)n was produced by Mulzer and Werner [MW13]. This is
linear in n for any fixed dimension.

For nondeterministic arguments, one can compute Tverberg points with r =⌈
n

d(d+1)2

⌉
with a probability ε > 0 of failure fixed in advance [RS16]. This algorithm

is weakly polynomial in all variables n, d, log(1/ε).
The algorithmic versions of other variations of Tverberg’s theorem are also in-

teresting. For instance, for Tverberg’s theorem with tolerance, Mulzer and Stein
showed how the two deterministic algorithms described above could be adapted to
that setting in [MS14]. If one is willing to have nondeterministic arguments, the
results in [Sob18] show that by randomly assigning each point to one of X1, . . . , Xr

independently, we can bound the probability of failure efficiently.

5. Universal Tverberg partitions

Assume X ⊂ R
d, and |X| = (r − 1)(d + 1) + 1. A natural question is which

r-partitions of X are Tverberg partitions. One case when this structure is com-
pletely known is when the points of X come from the moment curve m(t) =
(t, t2, . . . , td) ∈ R

d, t ≥ 0, and are far apart from each other. Note that the points
m(t1),m(t2), . . . ,m(tN ) on the moment curve are ordered by t1 < t2 < · · · < tN .
In order to understand the structure of Tverberg partitions, it is better to work
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. . .1 2 r − 1 r r + 1 . . .

︸ ︷︷ ︸
M1

2r − 2
2r − 1

2r

︸ ︷︷ ︸
M2

. . . 3r − 3 3r − 2

︸ ︷︷ ︸
M3

︸ ︷︷ ︸
(r − 1)(d+ 1) + 1. . .

. . .
Md+1︸ ︷︷ ︸

Figure 6. All blocks Mi are of length r and share one element
with Mi−1. In a special r-partition of [n] (n = (r− 1)(d+ 1) + 1),
all the r elements of each block are in different parts of the parti-
tion.

Figure 7. A special partition for d = 3, r = 3. In this example
I1 = {1, 5, 8}, I2 = {2, 4, 7}, I3 = {3, 6, 9}. Note that each Ij has
exactly one element of each Mi.

with sequences (a1, . . . , aN ) of points in R
d (instead of sets X ⊂ R

d). So in this
section we work with sequences.

We start with the simplest case: that of Radon partitions. Consider d+2 points
m(t1), . . . ,m(td+2) on the moment curve with t1 < · · · < td+2. It is well known
(see for instance the books by Grünbaum [Grü03] or Matoušek [Mat02]) that there
is a unique Radon partition in this case, namely, one set is X1 = {m(ti) : i odd}
and the other one is X2 = {m(ti) : i even}. That is, the Radon partition is just
two interlacing sets, meaning that on the moment curve between two consecutive
points of X1 (resp., X2) there is a point of X2 (and X1). It is also known that this
is the universal Radon partition: for every d ∈ N, there is N ∈ N such that any
d-dimensional (general position) vector sequence a1, . . . , aN contains a subsequence
ai1 , . . . , aid+2

with i1 < i2 < · · · < id+2 such that their unique Radon partition is
the interlacing sets X1 = {aij : j odd} and X2 = {aij : j even}. The moment curve
shows that this is the unique universal Radon partition.

What is the corresponding statement for Tverberg partitions?
We need some definitions for partitions of sequences. For k ∈ [d+1], we define the

block Mk as the set of consecutive integers Mk = {(r−1)(k−1)+1, (r−1)(k−1)+
2, . . . , rk−1}. The blocks almost form a partition of [n] with n = (r−1)(d+1)+1,
only the elements r, 2r − 1, 3r − 2, . . . , rd − (d − 1) are covered twice, namely by
M1,M2, M2,M3, etc., Md,Md+1; see Figure 6. We call an r-partition I1, . . . , Ir of
[n] special if |Ij ∩Mk| = 1 for every j ∈ [r] and every k ∈ [d+ 1].

Now let 0 < t1 < · · · < tn be a rapidly increasing sequence of real numbers,
meaning that, for every h ∈ [n − 1], th+1/th is at least as large as some (large)
constant cd,r,h depending only on d, r, h. Consider the set X of points in R

d in the
moment curve, X = {m(t1), . . . ,m(tn)}.

It is clear that a partition P = {I1, . . . , Ir} of [n] induces the partition Q =
{X1, . . . , Xr} of X via Xj = {m(ti) : i ∈ Ij} and vice versa. Note that when
r = 2, that is Radon partitions, each block contains two elements and the special
partitions are exactly the interlacing ones. It was observed by Bárány and Pór,
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and by Mabillard and Wagner (both unpublished), that the Tverberg partitions
into r parts of the point set X = {m(t1), . . . ,m(tn)} can be explicitly described:
assuming that the constants cd,r,h are suitably large, Q is a Tverberg partition of
X if and only if Q is induced by a special partition P of [n].

It is known (and easy to check) that the number of special partitions of [n], which
is then the same as the number of Tverberg partitions of X, is equal to (r − 1)!d

when X = {m(t1), . . . ,m(tn)} and the sequence t1, . . . , tn is rapidly increasing. So
this is another example achieving the lower bound in Sierksma’s conjecture.

A similar example was given by Bukh, Loh, and Nivasch in [BLN17], but instead
of the moment curve, they use the “diagonal of the stretched grid”; for the exact
definition see [BLN17]. The example is again a sequence X = {a1, . . . , an} of points
in R

d with the property that the partition Q = {X1, . . . , Xr} of X is a Tverberg
partition if and only if the corresponding partition P = {I1, . . . , Ir} of [n] is special.
Here, of course, Xj = {ai : i ∈ Ij} again. The example also achieves the lower
bound in Sierksma’s conjecture, as one can easily check.

Which Tverberg partitions must always appear in every set X ⊂ R
d of large

enough cardinality (when X is in general position)? In other words, consider an
r-partition P of [n]. Given a sequence a1, . . . , aN of N points in R

d with N large
enough, can one always find a subsequence b1, b2, . . . , bn where P induces a Tverberg
partition? If such a partition always exists, then P is called unavoidable: the name
indicates that such a partition is always present in a long enough sequence. The
previous examples show that an unavoidable partition has to be a special partition
of [n]. Bukh, Loh, and Nivasch showed in [BLN17] that in low dimensions (d = 1, 2)
the unavoidable partitions are exactly the special ones, and they conjectured that
in high dimensions the same statement holds. Shortly after, Pór characterized
such partitions P in all dimensions [Pór18], answering positively the conjecture
in [BLN17]. Actually, Pór proved the following universality theorem for Tverberg
partitions of vector sequences.

Theorem 5.1 (Universal Tverberg partitions). Given integers d ≥ 1, r ≥ 2 and
m ≥ n = (r−1)(d+1)+1, there is an integer N with the following property. Every
sequence a1, . . . , aN ∈ R

d of vectors in general position contains a subsequence
b1, . . . , bm such that for every subsequence bi1 , . . . , bin with 1 ≤ i1 < i2 < · · · < in ≤
m, the Tverberg partitions are exactly the ones induced by the special partitions of
[n].

6. Applications of Tverberg’s theorem

An early application, actually the motivation for both Birch [Bir59] and Tver-
berg, was Rado’s centerpoint theorem, described in section 1.1. The set C(X) of
centerpoints for a given set X ∈ R

d is a convex set that contains every Tverberg
point. It is known, however, that the convex hull of the Tverberg points does not
coincide with C(X) [Avi93].

Another geometric application is the so-called first selection lemma. It states
the following.

Theorem 6.1. Given a set X of n points in R
d (in general position), there is a

point z ∈ R
d which is contained in the convex hull of at least cd

(
n

d+1

)
of the

(
n

d+1

)
possible (d+1)-tuples of X, here cd ≥ (d+1)−d is a constant depending only on d.
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This result was proved by Boros and Füredi [BF84] for d = 2; the general case
by Bárány [Bár82]. The exact value of the constant cd is known only for d = 2
[BMN11] and [BF84], where c2 = 2/9. The proof in [Bár82] shows cd ≥ (d+ 1)−d.

It is known [BMN11] that cd ≤ (d+1)!
(d+1)d+1 . There was a slight improvement by

Wagner [Wag03]. In a remarkable paper Gromov [Gro10] gives an exponential
improvement by showing that

cd ≥ 2d

(d+ 1)(d+ 1)!
∼ ed

(d+ 1)d+1
.

In fact, Gromov proves the following stronger, topological statement: for every con-
tinuous map f : skeld Δ

n−1 → R
d there is a point in R

d whose preimage intersects
at least

2d

(d+ 1)(d+ 1)!

(
n

d+ 1

)

faces of dimension d. Theorem 6.1 is the special case when f : skeld Δ
n−1 → R

d

is an affine map. Surprisingly, the topological proof gives a better constant. A
simplified proof appeared in [Kar12].

Problem 6.2. What is the order of magnitude of the constant cd? Does (d+1)d+1cd
exhibit exponential or superexponential growth? Also, are the constants for the
topological and affine versions of the problem equal?

One seminal application of Tverberg’s theorem is the weak ε-net theorem for
convex sets [ABFK92].

Theorem 6.3. Let d be a positive integer, and let ε > 0 be a real number. Then,
there is a constant n = n(d, ε) such that for each finite set X of points in R

d, there
is a set P of n(d, ε) points such that for each Y ⊂ X with |Y | ≥ ε|X|, we have

P ∩ conv Y �= ∅.

This is a very strong result on the combinatorial properties of convex sets. The
reader may verify that the equation n(d, d/(d+1)) = 1 is the centerpoint theorem.
The weak ε-net theorem for convex sets is proved by repeatedly using the first
selection lemma to greedily construct the set P , one point at a time. If one applies
Gromov’s topological extension of Theorem 6.1 instead of the first selection lemma,
we obtain a topological version of Theorem 6.3 [MS17]. The weak ε-net theorem
was a key component of the proof of Hadwiger–Debrunner (p, q) conjecture [AK92]
(cf. [ABFK92]), a celebrated result in combinatorial geometry.

Another application of Tverberg’s theorem, or rather of its colorful version, con-
cerns halving planes. In this case Tverberg’s theorem helped to locate the key
question in the following way. A halving plane of a finite set X ⊂ R

3 of points
in general position is a plane spanned by three points of X that has equally many
points of X on either side of it. (So |X| = n is odd.) While the first author was
working with Füredi and Lovász on establishing upper bounds on the number of
halving planes, they encountered the following question: given a set X ⊂ R

2 of n
points in general position, a crossing is the intersection of the lines spanned by x, y
and by u, v where x, y, u, v are distinct points from X. It is evident that there are
1
2

(
n
2

)(
n−2
2

)
∼ n4 crossings. How many of them are contained in a typical triangle

spanned by points in X? A direct application of Tverberg’s theorem combined
with a double counting argument shows that the number of crossings is again of
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order n4. This was the first step in establishing an O(n3−ε) bound on the number
of halving planes. The proof uses the supersaturated hypergraph lemma of Erdős
and Simonovits [ES83], and that is why a special version of Tverberg’s theorem,
a colorful variant, was needed; see [BFL90]. The method was extended to higher
dimensions in [ABFK92]. This is how the halving plane question led to the colorful
Tverberg theorem. The moral is that when working on a question in combinatorial
convexity, it is always good to check what Tverberg’s theorem says in the given
situation.

Another application of the colorful Tverberg theorem is a result by Pach [Pac98]
on homogeneous selection:

Theorem 6.4. Assume we are given sets C1, . . . , Cd+1 ⊂ R
d (considered as color

classes) that have the same size |Ci| = n for all i ∈ [n]. Then there are subsets
Qi ⊂ Ci with |Qi| ≥ cdn and a point z ∈ R

d, such that z ∈ conv{x1, . . . , xd+1} for
every transversal x1 ∈ Q1, . . . , xd+1 ∈ Qd+1. Here cd > 0 is a constant depending
only on d.

There are further geometric applications of Tverberg’s theorem in [BN17] and
in quantum correcting codes in [KLV00].

Here is a purely combinatorial result, originally a theorem of Lindström [Lin72]
that turned out to be a consequence of Tverberg’s theorem.

Theorem 6.5. Assume n, r > 1 are integers and set N = (r−1)n+1. If A1, . . . , AN

are nonempty subsets of an n-element set, then there are nonempty and disjoint
subsets J1, . . . , Jr of [N ] such that

⋃
i∈J1

Ai = · · · =
⋃

i∈Jr
Ai.

The geometric proof, found by Tverberg himself [Tve71], transfers this purely
combinatorial partition problem to convex geometry.

Proof. We assume that the ground set is [n], that is, Ai ⊂ [n]. Associate with each
set Ai the vector

ai =
χAi

|Ai|
,

where χAi
is the characteristic vector of Ai. So ai is in R

n but it lies, in fact, in the
affine subspace S where the sum of the coordinates is equal to one. This subspace
is a copy of Rn−1. We can apply Tverberg’s theorem to the points a1, . . . , aN ∈ S.
This gives us a partition I1, . . . , Ir of [N ] and a point a ∈ S with

a ∈
r⋂

h=1

conv{ai : i ∈ Ih}.

The common point a ∈ S ⊂ R
n is a nonzero vector in R

n with nonnegative coordi-
nates. Let J ⊂ [n] be the set of nonzero coordinates of a. It is easy to see that for
a suitable subset Jh of Ih, J is the union of Ai with i ∈ Jh for every h ∈ [r]. �

The result above can be extended to bound the number of such partitions, effec-
tively proving the analogue of Sierksma’s conjecture in tropical geometry [GM10].

There is a recent and very powerful application of the topological Tverberg
theorem due to Frick [Fri17b,Fri17a]. One of the first examples of a combinatorial
problem solved with topological methods is Lovász’s groundbreaking proof [Lov78]
of Kneser’s conjecture. He used the Borsuk–Ulam theorem to establish a lower
bound on the chromatic number of Kneser graphs. Since then, topological methods
have been used to bound the chromatic number of graph and hypergraphs.
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{1, 2} {3, 4}
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{1, 5}

{1, 4}

{2, 5}

Figure 8. A labeled figure of KN2(skel0 Δ
4,Δ4). The vertices

are pairs of integers in [5] and there is an edge between two pairs
if they are disjoint.

The connection between Tverberg type results and Kneser hypergraphs was first
noted and used by Sarkaria in 1990 [Sar90, Sar91]. Going much further, Frick
elucidates the underlying connection between intersection patterns of finite sets
and topological statements, via Tverberg-type theorems. This creates a dictionary
between the two types of results. To state just one theorem of this kind, let L be
a simplicial complex, and let K ⊂ L be a subcomplex. Denote by KNr(K,L) the
r-uniform hypergraph whose vertices are the inclusion-minimal faces of L that are
not contained in K and whose hyperedges are the r-tuples of vertices when the
corresponding faces are pairwise disjoint.

For example, if r = 2, L = Δ4, and K = skel0 Δ
4 = [5], then KNr(K,L) is the

1-skeleton of Δ4, that is, the Petersen graph; see Figure 8. If r = 2, L = Δn−1, and
K = skelk−2 Δ

n−1, then the vertices of KN2(K,L) are the k-tuples of [n], with two
connected if they are disjoint. This is exactly the Kneser graph of k-subsets of [n].

The general principle behind the constraint method developed in [BFZ14] is then
used to prove the following result [Fri17b].

Theorem 6.6. Assume d, k ≥ 0 and r ≥ 2 are integers. Let L be a simplicial
complex such that for every continuous map g : L → R

d+k there exist disjoint faces
σ1, . . . , σr of L such that g(σ1) ∩ · · · ∩ g(σr) �= ∅. If χ(KNr(K,L)) ≤ k for some
subcomplex K of L, then for every continuous map f : K → R

d there are r pairwise
disjoint faces σ1, . . . , σr of K such that f(σ1) ∩ · · · ∩ f(σr) �= ∅.

This result can be used in two directions: establishing the upper bound
χ(KNr(K,L)) ≤ k proves the existence of an r-fold intersection point for every
continuous map f : K → R

d, and exhibiting a continuous map f : K → R
d without

such an r-fold intersection gives the lower bound χ(KNr(K,L)) ≥ k+ 1. The the-
orem relates intersection patterns of continuous images of faces in a simplicial com-
plex to intersection patterns of finite sets. It implies, generalizes, and unifies several
earlier results of this type, including those by Lovász [Lov78], Dol’nikov [Dol88],
Alon, Frankl, Lovász [AFL86], and Kř́ıž [Kř́ı92].
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7. Tverberg-type results in distinct settings

7.1. Convexity spaces and S-convexity. Many variations of Tverberg’s theo-
rem appear if we change the underlying space we are using. For example, consider
the following integer version of Tverberg’s theorem.

Theorem 7.1 (Integer Tverberg). Given r, d positive integers, there is an integer
L = L(r, d) such that for any set of L points in R

d with integer coordinates there
is a partition of the set into r parts L1, . . . , Lr such that the intersection of their
convex hulls contains a point with integer coordinates.

The exact values of L(r, d) are not known, even for r = 2. The existence of
L(r, d) follows from results by Jamison [JW81], as was noted by Eckhoff [Eck00].
The number of points needed is much larger than in the noninteger case. For
instance, we have the lower bound L(r, d) > (r − 1)2d. To see this, take r − 1
copies of each vertex of the hypercube [0, 1]d. This lower bound may not always be
optimal. For r = 2, Onn proved 5

42
d+1 ≤ L(2, d) ≤ d(2d−1)+3 [Onn91]. The case

d = 3 remains interesting, with L(2, 3) ≤ 17 being the best upper bound [BB03].
The best general upper bound up to date is L(r, d) ≤ (r− 1)d2d+1 [DLLHRS17b].

Problem 7.2. Determine the value L(2, 3), or improve the current bounds 11 ≤
L(2, 3) ≤ 17.

To properly state Tverberg’s theorem in abstract terms, we only need two ingre-
dients. First is Cd, the family of all sets in R

d that are considered convex, and the

second is to be able to compute convex hull; i.e., an operator conv : 2R
d → Cd with

a few properties. Thus, given a ground set Y , a way to axiomatize convexity is to
have an operator conv : 2Y → 2Y which satisfies the following:

• conv(convA)) = convA for all A ⊂ Y ;
• A ⊂ convA for all A ⊂ Y ;
• A ⊂ B ⊂ Y implies convA ⊂ convB;
• for a countable sequence A1 ⊂ A2 ⊂ · · · ⊂ Y , we have that

⋃∞
i=1 conv(Ai) =

conv (
⋃∞

i=1 Ai).

We say that the pair (Y, conv) is a convexity space. A central question of con-
vexity spaces is the following.

Problem 7.3. Given a convexity space (Y, conv) and a positive integer t, determine
the value of rt (if it exists) such that for any X ⊂ Y of rt points there is a partition
of X into t parts X1, . . . , Xt such that

t⋂
j=1

convXj �= ∅.

The reason for the conflicting notation with our use of the variable r is that,
in the context of convexity spaces, the number rt above is called the tth Radon
number. A classic conjecture by Eckhoff was that for any convexity space with a
finite r2, we have rt ≤ (t − 1)(r2 − 1) + 1. In other words, it asked if Tverberg’s
theorem follows from Radon for purely combinatorial reasons. Hopes for this were
dashed by an example, presented by Boris Bukh in an unpublished preprint, that
constructs a convexity space with r2 = 4 and rt ≥ 3(t− 1) + 2 [Buk10]. It remains
open whether rt can be bounded as a function that is linear in both r2 and t, which
is enough for several applications.
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General convexity spaces are outside the scope of this survey. The interested
reader should consult Eckhoff’s survey [Eck00] on the subject, which also discusses
convexity spaces where Eckhoff’s conjecture is known to hold. We focus on con-
vexity spaces which are closely related to convexity in R

d.
An example is S-convexity, which generalizes the integer case. Given a set S ⊂

R
d, we say that a set A ⊂ S is S-convex if A = S ∩ convA, where conv(·) denotes

the usual convex hull in R
d. Given A ⊂ S, we define the S-convex hull convS(A)

as the intersection of all S-convex sets B such that A ⊂ B.
A Tverberg-type theorem for S would simply be the existence of a number

TS(r, d) such that for any set X of TS(r, d) points of S, there is a partition of them
into r sets X1, . . . , Xr such that

r⋂
j=1

convS(Xj) �= ∅.

It turns out that the existence of such theorems relies on whether there is a Helly-
type theorem for S-convexity [DLLHRS17b]. An S-convexity Helly theorem simply
says that there is a natural number h(S) such that, for any finite family of convex
sets in R

d, if the intersection of any h(S) or fewer of them contains a point of S,
then the intersection of the whole family contains a point of S. The existence of
Tverberg-type theorems is given by the following theorem.

Theorem 7.4. If convS has a Helly theorem with Helly number h(S), then it has
a Tverberg theorem. Moreover, TS(r, d) ≤ h(S)d(r − 1) + 1 for all r.

This result implies the upper bound for integer Tverberg if we use Doignon’s
theorem, which says that h(Zd) = 2d [Doi73,Sca77,Bel76]. If we have a quantitative
Helly for S, i.e., a natural number hk(S) such that, for any finite family of convex
sets in R

d, if the intersection of any hk(S) of them contains at least k points of
S, then the intersection of the whole family contains at least k points of S, then
we also obtain a similar Tverberg theorem, where now

⋂r
j=1 convS(Xj) contains at

least k points of S. The related Helly-type results on S-convexity are described in
[ADLS17].

Although S-convexity often gives worse bounds than the classic setting, it is
interesting that in some cases the asymptotic behavior of variations of Tverberg’s
theorem remains the same. For example, we can naturally ask for a version of
Tverberg with tolerance, Problem 4.11, which makes sense in the integer lattice.
We get the following result.

Theorem 7.5. Let r, t, d be positive integers, where r, d are fixed. Then, there
is a number L(t) = rt + o(t) such that the following holds. Given a set X of
L(t) points with integer coordinates in R

d, there is a partition of X into r sets
X1, . . . , Xr such that for any C ⊂ X of cardinality at most t, the convex hulls
conv(X1 \ C), . . . , conv(Xr \ C) have a common point with integer coordinates.

For a proof, we only need to follow the methods of [GCRRP17] verbatim. When
they require the usage of a centerpoint, we simply need to use an integer point of
depth 2−d, which exist as a consequence of Doignon’s theorem. It is interesting
that for this version the linear-algebraic methods that use Sarkaria’s technique fail
completely.
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7.2. Tverberg-type theorem on families of sets. It is possible to prove Tver-
berg-type results if we are dealing with families of subsets of Rd instead of just
points. In this case, we have to replace the convex hulls by other operators or require
a conclusion stronger than the intersection of the convex hulls being nonempty. For
example, given a family F of d + 1 hyperplanes in general position, we denote
by Δ(F) the simplex whose faces are given by F . Then, we have the following
Tverberg-type result by Karasev [Kar08,Kar11].

Theorem 7.6. Let r, d be positive integers such that r is a prime power. Let F be
a family of r(d+1) hyperplanes in general position in R

d. Then, there is a partition
of F into r sets F1, . . . ,Fr of d+ 1 hyperplanes each such that

r⋂
j=1

Δ(Fj) �= ∅.

For this result there is also a corresponding discrete version of a centerpoint
theorem for hyperplanes. Given a family of hyperplanes F and a point p ∈ R

d, we
define the depth of p in F as the minimum number of members of F that a ray
starting from p must hit. This was introduced in [RH99], and it was conjectured
that every finite family F of hyperplanes in general position in R

d has a point p at
depth greater than or equal to |F|/(d+ 1). Theorem 7.6 implies that the answer is
affirmative when |F|/(d+ 1) is a prime power.

Problem 7.7. Does Theorem 7.6 hold if r is not a prime power?

Another family of variations appear if we have a family of convex sets which are
large (i.e., they have large volume, large diameter, many lattice points, etc., and
we want to partition them so that the intersection of the convex hull of the parts is
also a large convex set. We call these quantitative versions of Tverberg’s theorem.
Take for example the following Tverberg-type theorem for the diameter [Sob16].

Theorem 7.8. Let r, d be positive integers, and let ε > 0 be a real number. Then
there is a number M = M(r, d, ε, diam) such that the following holds. Given a
family X of M intervals of length 1 in R

d, there is a partition of X into r subfamilies
X1, . . . , Xr such that the diameter of

⋂r
j=1 conv(

⋃
Xj) is at least 1− ε. Moreover,

M is linear in r.

The loss of diameter ε is necessary for this result. An equivalent statement can
be proved for other functions [RS17], such as the volume. It is unclear if the loss ε
is still necessary in that setting.

Problem 7.9. Given r, d, determine if there is a number M(r, d, vol) such that the
following holds. For any family C of M convex sets in R

d, each of volume at least
one, there is a partition of C into r subfamilies C1, . . . , Cr such that

vol

⎛
⎝ r⋂

j=1

conv
(⋃

Cj
)⎞⎠ ≥ 1.

Other interpretations of quantitative Tverberg appear in [DLLHRS17b],
[DLLHRS17a]. In those results, we are given a family of n “large” convex sets
K1, . . . ,Kn, and we seek a transversal y1 ∈ K1, . . . , yn ∈ Kn that admits a (usual)
Tverberg partition but where the intersection of the convex hulls of the parts is
also large.
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We can also significantly change the convexity in the conclusion of Tverberg’s
theorem. As mentioned in the introduction, if a subset X of R

d with |X| =
(r − 1)(d + 1) + 1 is in sufficiently general position, then for a partition of X
into r sets X = X1 ∪ · · · ∪Xr, 1 ≤ |Xj | ≤ d + 1 for every j, then

⋂r
j=1 affXj is a

single point.
Tverberg’s theorem simply says that we can always find a partition such that, if

{p} =
⋂r

j=1 affXj , the coefficients of the affine combination of Xj that give p are
nonnegative. It turns out that sometimes we can prescribe some of those coefficients
to be negative [Bár17].

Theorem 7.10. Let X be a subset of R
d of (r − 1)(d + 1) + 1 points in suffi-

ciently strong general position. Let M ⊂ X be a set of points such that conv(M) ∩
conv(X \M) = ∅. Then, there is a partition of X into r parts X1, . . . , Xr such that
in the affine combinations that witness

⋂r
j=1 affXj �= ∅ either

• all the coefficients for M are negative and all the coefficients for X \M are
positive, or

• all the coefficients for M are positive and all the coefficients for X \M are
negative.

Corollary 7.11. Assume that, under the conditions of the previous theorem, |M | <
r. Then in the affine combinations that witness

⋂r
j=1 affXj �= ∅, all the coefficients

for M are negative and all the coefficients for X \M are positive.

However, if we require that k coefficients be negative but do not prescribe which
k points will carry the negative coefficients, the values of k for which this is possible
is an open problem.

Problem 7.12. Find all triples of integers d, r, k for which the following holds.
Given a subsetX of Rd of (r−1)(d+1)+1 point in sufficiently general position, there
is a partition of X into r parts X1, . . . , Xr such that among the affine combinations
that witness

⋂r
j=1 affXj �= ∅, exactly k coefficients are negative.
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[BS17] I. Bárány and P. Soberón, Tverberg plus minus, arXiv:1612.05630 (2017).
[Bel76] D. E. Bell, A theorem concerning the integer lattice, Studies in Appl. Math. 56

(1976/77), no. 2, 187–188. MR0462617
[BB03] K. Bezdek and A. Blokhuis, The Radon number of the three-dimensional integer

lattice, Discrete Comput. Geom. 30 (2003), no. 2, 181–184, DOI 10.1007/s00454-
003-0003-8. U.S.–Hungarian Workshops on Discrete Geometry and Convexity (Bu-
dapest, 1999/Auburn, AL, 2000). MR2007959

[Bir59] B. J. Birch, On 3N points in a plane, Proc. Cambridge Philos. Soc. 55 (1959),
289–293. MR0109315

http://www.ams.org/mathscinet-getitem?mr=857448
http://www.ams.org/mathscinet-getitem?mr=1185788
http://www.ams.org/mathscinet-getitem?mr=3625571
http://www.ams.org/mathscinet-getitem?mr=2519872
http://www.ams.org/mathscinet-getitem?mr=2737193
http://www.ams.org/mathscinet-getitem?mr=565677
http://www.ams.org/mathscinet-getitem?mr=676720
http://www.ams.org/mathscinet-getitem?mr=3692134
http://www.ams.org/mathscinet-getitem?mr=3495518
http://www.ams.org/mathscinet-getitem?mr=3726596
http://www.ams.org/mathscinet-getitem?mr=1171558
http://www.ams.org/mathscinet-getitem?mr=1467385
http://www.ams.org/mathscinet-getitem?mr=602247
http://www.ams.org/mathscinet-getitem?mr=0462617
http://www.ams.org/mathscinet-getitem?mr=2007959
http://www.ams.org/mathscinet-getitem?mr=0109315
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[BMZ11] P. V. M. Blagojević, B. Matschke, and G. M. Ziegler, Optimal bounds for a colorful
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[ES83] P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinator-
ica 3 (1983), no. 2, 181–192, DOI 10.1007/BF02579292. MR726456
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